Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/p2p/discover/table.go

696 lines
20 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover
import (
"context"
"fmt"
"net/netip"
"slices"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
maxReplacements = 10 // Size of per-bucket replacement list
// We keep buckets for the upper 1/15 of distances because
// it's very unlikely we'll ever encounter a node that's closer.
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits / 15 // Number of buckets
bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket
// IP address limits.
bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
tableIPLimit, tableSubnet = 10, 24
seedMinTableTime = 5 * time.Minute
seedCount = 30
seedMaxAge = 5 * 24 * time.Hour
)
// Table is the 'node table', a Kademlia-like index of neighbor nodes. The table keeps
// itself up-to-date by verifying the liveness of neighbors and requesting their node
// records when announcements of a new record version are received.
type Table struct {
mutex sync.Mutex // protects buckets, bucket content, nursery, rand
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*enode.Node // bootstrap nodes
rand reseedingRandom // source of randomness, periodically reseeded
ips netutil.DistinctNetSet
revalidation tableRevalidation
db *enode.DB // database of known nodes
net transport
cfg Config
log log.Logger
// loop channels
refreshReq chan chan struct{}
revalResponseCh chan revalidationResponse
addNodeCh chan addNodeOp
addNodeHandled chan bool
trackRequestCh chan trackRequestOp
initDone chan struct{}
closeReq chan struct{}
closed chan struct{}
nodeAddedHook func(*bucket, *tableNode)
nodeRemovedHook func(*bucket, *tableNode)
}
// transport is implemented by the UDP transports.
type transport interface {
Self() *enode.Node
RequestENR(*enode.Node) (*enode.Node, error)
lookupRandom() []*enode.Node
lookupSelf() []*enode.Node
ping(*enode.Node) (seq uint64, err error)
}
// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
entries []*tableNode // live entries, sorted by time of last contact
replacements []*tableNode // recently seen nodes to be used if revalidation fails
ips netutil.DistinctNetSet
index int
}
type addNodeOp struct {
node *enode.Node
isInbound bool
forceSetLive bool // for tests
}
type trackRequestOp struct {
node *enode.Node
foundNodes []*enode.Node
success bool
}
func newTable(t transport, db *enode.DB, cfg Config) (*Table, error) {
cfg = cfg.withDefaults()
tab := &Table{
net: t,
db: db,
cfg: cfg,
log: cfg.Log,
refreshReq: make(chan chan struct{}),
revalResponseCh: make(chan revalidationResponse),
addNodeCh: make(chan addNodeOp),
addNodeHandled: make(chan bool),
trackRequestCh: make(chan trackRequestOp),
initDone: make(chan struct{}),
closeReq: make(chan struct{}),
closed: make(chan struct{}),
ips: netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
}
for i := range tab.buckets {
tab.buckets[i] = &bucket{
index: i,
ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
}
}
tab.rand.seed()
tab.revalidation.init(&cfg)
// initial table content
if err := tab.setFallbackNodes(cfg.Bootnodes); err != nil {
return nil, err
}
tab.loadSeedNodes()
return tab, nil
}
// Nodes returns all nodes contained in the table.
func (tab *Table) Nodes() [][]BucketNode {
tab.mutex.Lock()
defer tab.mutex.Unlock()
nodes := make([][]BucketNode, len(tab.buckets))
for i, b := range &tab.buckets {
nodes[i] = make([]BucketNode, len(b.entries))
for j, n := range b.entries {
nodes[i][j] = BucketNode{
Node: n.Node,
Checks: int(n.livenessChecks),
Live: n.isValidatedLive,
AddedToTable: n.addedToTable,
AddedToBucket: n.addedToBucket,
}
}
}
return nodes
}
func (tab *Table) self() *enode.Node {
return tab.net.Self()
}
// getNode returns the node with the given ID or nil if it isn't in the table.
func (tab *Table) getNode(id enode.ID) *enode.Node {
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(id)
for _, e := range b.entries {
if e.ID() == id {
return e.Node
}
}
return nil
}
// close terminates the network listener and flushes the node database.
func (tab *Table) close() {
close(tab.closeReq)
<-tab.closed
}
// setFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
nursery := make([]*enode.Node, 0, len(nodes))
for _, n := range nodes {
if err := n.ValidateComplete(); err != nil {
return fmt.Errorf("bad bootstrap node %q: %v", n, err)
}
if tab.cfg.NetRestrict != nil && !tab.cfg.NetRestrict.ContainsAddr(n.IPAddr()) {
tab.log.Error("Bootstrap node filtered by netrestrict", "id", n.ID(), "ip", n.IPAddr())
continue
}
nursery = append(nursery, n)
}
tab.nursery = nursery
return nil
}
// isInitDone returns whether the table's initial seeding procedure has completed.
func (tab *Table) isInitDone() bool {
select {
case <-tab.initDone:
return true
default:
return false
}
}
func (tab *Table) refresh() <-chan struct{} {
done := make(chan struct{})
select {
case tab.refreshReq <- done:
case <-tab.closeReq:
close(done)
}
return done
}
// findnodeByID returns the n nodes in the table that are closest to the given id.
// This is used by the FINDNODE/v4 handler.
//
// The preferLive parameter says whether the caller wants liveness-checked results. If
// preferLive is true and the table contains any verified nodes, the result will not
// contain unverified nodes. However, if there are no verified nodes at all, the result
// will contain unverified nodes.
func (tab *Table) findnodeByID(target enode.ID, nresults int, preferLive bool) *nodesByDistance {
tab.mutex.Lock()
defer tab.mutex.Unlock()
// Scan all buckets. There might be a better way to do this, but there aren't that many
// buckets, so this solution should be fine. The worst-case complexity of this loop
// is O(tab.len() * nresults).
nodes := &nodesByDistance{target: target}
liveNodes := &nodesByDistance{target: target}
for _, b := range &tab.buckets {
for _, n := range b.entries {
nodes.push(n.Node, nresults)
if preferLive && n.isValidatedLive {
liveNodes.push(n.Node, nresults)
}
}
}
if preferLive && len(liveNodes.entries) > 0 {
return liveNodes
}
return nodes
}
// appendLiveNodes adds nodes at the given distance to the result slice.
// This is used by the FINDNODE/v5 handler.
func (tab *Table) appendLiveNodes(dist uint, result []*enode.Node) []*enode.Node {
if dist > 256 {
return result
}
if dist == 0 {
return append(result, tab.self())
}
tab.mutex.Lock()
for _, n := range tab.bucketAtDistance(int(dist)).entries {
if n.isValidatedLive {
result = append(result, n.Node)
}
}
tab.mutex.Unlock()
// Shuffle result to avoid always returning same nodes in FINDNODE/v5.
tab.rand.Shuffle(len(result), func(i, j int) {
result[i], result[j] = result[j], result[i]
})
return result
}
// len returns the number of nodes in the table.
func (tab *Table) len() (n int) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
for _, b := range &tab.buckets {
n += len(b.entries)
}
return n
}
// addFoundNode adds a node which may not be live. If the bucket has space available,
// adding the node succeeds immediately. Otherwise, the node is added to the replacements
// list.
//
// The caller must not hold tab.mutex.
func (tab *Table) addFoundNode(n *enode.Node, forceSetLive bool) bool {
op := addNodeOp{node: n, isInbound: false, forceSetLive: forceSetLive}
select {
case tab.addNodeCh <- op:
return <-tab.addNodeHandled
case <-tab.closeReq:
return false
}
}
// addInboundNode adds a node from an inbound contact. If the bucket has no space, the
// node is added to the replacements list.
//
// There is an additional safety measure: if the table is still initializing the node is
// not added. This prevents an attack where the table could be filled by just sending ping
// repeatedly.
//
// The caller must not hold tab.mutex.
func (tab *Table) addInboundNode(n *enode.Node) bool {
op := addNodeOp{node: n, isInbound: true}
select {
case tab.addNodeCh <- op:
return <-tab.addNodeHandled
case <-tab.closeReq:
return false
}
}
func (tab *Table) trackRequest(n *enode.Node, success bool, foundNodes []*enode.Node) {
op := trackRequestOp{n, foundNodes, success}
select {
case tab.trackRequestCh <- op:
case <-tab.closeReq:
}
}
// loop is the main loop of Table.
func (tab *Table) loop() {
var (
refresh = time.NewTimer(tab.nextRefreshTime())
refreshDone = make(chan struct{}) // where doRefresh reports completion
waiting = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
revalTimer = mclock.NewAlarm(tab.cfg.Clock)
reseedRandTimer = time.NewTicker(10 * time.Minute)
)
defer refresh.Stop()
defer revalTimer.Stop()
defer reseedRandTimer.Stop()
// Start initial refresh.
go tab.doRefresh(refreshDone)
loop:
for {
nextTime := tab.revalidation.run(tab, tab.cfg.Clock.Now())
revalTimer.Schedule(nextTime)
select {
case <-reseedRandTimer.C:
tab.rand.seed()
case <-revalTimer.C():
case r := <-tab.revalResponseCh:
tab.revalidation.handleResponse(tab, r)
case op := <-tab.addNodeCh:
tab.mutex.Lock()
ok := tab.handleAddNode(op)
tab.mutex.Unlock()
tab.addNodeHandled <- ok
case op := <-tab.trackRequestCh:
tab.handleTrackRequest(op)
case <-refresh.C:
if refreshDone == nil {
refreshDone = make(chan struct{})
go tab.doRefresh(refreshDone)
}
case req := <-tab.refreshReq:
waiting = append(waiting, req)
if refreshDone == nil {
refreshDone = make(chan struct{})
go tab.doRefresh(refreshDone)
}
case <-refreshDone:
for _, ch := range waiting {
close(ch)
}
waiting, refreshDone = nil, nil
refresh.Reset(tab.nextRefreshTime())
case <-tab.closeReq:
break loop
}
}
if refreshDone != nil {
<-refreshDone
}
for _, ch := range waiting {
close(ch)
}
close(tab.closed)
}
// doRefresh performs a lookup for a random target to keep buckets full. seed nodes are
// inserted if the table is empty (initial bootstrap or discarded faulty peers).
func (tab *Table) doRefresh(done chan struct{}) {
defer close(done)
// Load nodes from the database and insert
// them. This should yield a few previously seen nodes that are
// (hopefully) still alive.
tab.loadSeedNodes()
// Run self lookup to discover new neighbor nodes.
tab.net.lookupSelf()
// The Kademlia paper specifies that the bucket refresh should
// perform a lookup in the least recently used bucket. We cannot
// adhere to this because the findnode target is a 512bit value
// (not hash-sized) and it is not easily possible to generate a
// sha3 preimage that falls into a chosen bucket.
// We perform a few lookups with a random target instead.
for i := 0; i < 3; i++ {
tab.net.lookupRandom()
}
}
func (tab *Table) loadSeedNodes() {
seeds := tab.db.QuerySeeds(seedCount, seedMaxAge)
seeds = append(seeds, tab.nursery...)
for i := range seeds {
seed := seeds[i]
if tab.log.Enabled(context.Background(), log.LevelTrace) {
age := time.Since(tab.db.LastPongReceived(seed.ID(), seed.IPAddr()))
addr, _ := seed.UDPEndpoint()
tab.log.Trace("Found seed node in database", "id", seed.ID(), "addr", addr, "age", age)
}
tab.mutex.Lock()
tab.handleAddNode(addNodeOp{node: seed, isInbound: false})
tab.mutex.Unlock()
}
}
func (tab *Table) nextRefreshTime() time.Duration {
half := tab.cfg.RefreshInterval / 2
return half + time.Duration(tab.rand.Int63n(int64(half)))
}
// bucket returns the bucket for the given node ID hash.
func (tab *Table) bucket(id enode.ID) *bucket {
d := enode.LogDist(tab.self().ID(), id)
return tab.bucketAtDistance(d)
}
func (tab *Table) bucketAtDistance(d int) *bucket {
if d <= bucketMinDistance {
return tab.buckets[0]
}
return tab.buckets[d-bucketMinDistance-1]
}
func (tab *Table) addIP(b *bucket, ip netip.Addr) bool {
if !ip.IsValid() || ip.IsUnspecified() {
return false // Nodes without IP cannot be added.
}
if netutil.AddrIsLAN(ip) {
return true
}
if !tab.ips.AddAddr(ip) {
tab.log.Debug("IP exceeds table limit", "ip", ip)
return false
}
if !b.ips.AddAddr(ip) {
tab.log.Debug("IP exceeds bucket limit", "ip", ip)
tab.ips.RemoveAddr(ip)
return false
}
return true
}
func (tab *Table) removeIP(b *bucket, ip netip.Addr) {
if netutil.AddrIsLAN(ip) {
return
}
tab.ips.RemoveAddr(ip)
b.ips.RemoveAddr(ip)
}
// handleAddNode adds the node in the request to the table, if there is space.
// The caller must hold tab.mutex.
func (tab *Table) handleAddNode(req addNodeOp) bool {
if req.node.ID() == tab.self().ID() {
return false
}
// For nodes from inbound contact, there is an additional safety measure: if the table
// is still initializing the node is not added.
if req.isInbound && !tab.isInitDone() {
return false
}
b := tab.bucket(req.node.ID())
n, _ := tab.bumpInBucket(b, req.node, req.isInbound)
if n != nil {
// Already in bucket.
return false
}
if len(b.entries) >= bucketSize {
// Bucket full, maybe add as replacement.
tab.addReplacement(b, req.node)
return false
}
if !tab.addIP(b, req.node.IPAddr()) {
// Can't add: IP limit reached.
return false
}
// Add to bucket.
wn := &tableNode{Node: req.node}
if req.forceSetLive {
wn.livenessChecks = 1
wn.isValidatedLive = true
}
b.entries = append(b.entries, wn)
b.replacements = deleteNode(b.replacements, wn.ID())
tab.nodeAdded(b, wn)
return true
}
// addReplacement adds n to the replacement cache of bucket b.
func (tab *Table) addReplacement(b *bucket, n *enode.Node) {
if containsID(b.replacements, n.ID()) {
// TODO: update ENR
return
}
if !tab.addIP(b, n.IPAddr()) {
return
}
wn := &tableNode{Node: n, addedToTable: time.Now()}
var removed *tableNode
b.replacements, removed = pushNode(b.replacements, wn, maxReplacements)
if removed != nil {
tab.removeIP(b, removed.IPAddr())
}
}
func (tab *Table) nodeAdded(b *bucket, n *tableNode) {
if n.addedToTable == (time.Time{}) {
n.addedToTable = time.Now()
}
n.addedToBucket = time.Now()
tab.revalidation.nodeAdded(tab, n)
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(b, n)
}
if metrics.Enabled {
bucketsCounter[b.index].Inc(1)
}
}
func (tab *Table) nodeRemoved(b *bucket, n *tableNode) {
tab.revalidation.nodeRemoved(n)
if tab.nodeRemovedHook != nil {
tab.nodeRemovedHook(b, n)
}
if metrics.Enabled {
bucketsCounter[b.index].Dec(1)
}
}
// deleteInBucket removes node n from the table.
// If there are replacement nodes in the bucket, the node is replaced.
func (tab *Table) deleteInBucket(b *bucket, id enode.ID) *tableNode {
index := slices.IndexFunc(b.entries, func(e *tableNode) bool { return e.ID() == id })
if index == -1 {
// Entry has been removed already.
return nil
}
// Remove the node.
n := b.entries[index]
b.entries = slices.Delete(b.entries, index, index+1)
tab.removeIP(b, n.IPAddr())
tab.nodeRemoved(b, n)
// Add replacement.
if len(b.replacements) == 0 {
tab.log.Debug("Removed dead node", "b", b.index, "id", n.ID(), "ip", n.IPAddr())
return nil
}
rindex := tab.rand.Intn(len(b.replacements))
rep := b.replacements[rindex]
b.replacements = slices.Delete(b.replacements, rindex, rindex+1)
b.entries = append(b.entries, rep)
tab.nodeAdded(b, rep)
tab.log.Debug("Replaced dead node", "b", b.index, "id", n.ID(), "ip", n.IPAddr(), "r", rep.ID(), "rip", rep.IPAddr())
return rep
}
// bumpInBucket updates a node record if it exists in the bucket.
// The second return value reports whether the node's endpoint (IP/port) was updated.
func (tab *Table) bumpInBucket(b *bucket, newRecord *enode.Node, isInbound bool) (n *tableNode, endpointChanged bool) {
i := slices.IndexFunc(b.entries, func(elem *tableNode) bool {
return elem.ID() == newRecord.ID()
})
if i == -1 {
return nil, false // not in bucket
}
n = b.entries[i]
// For inbound updates (from the node itself) we accept any change, even if it sets
// back the sequence number. For found nodes (!isInbound), seq has to advance. Note
// this check also ensures found discv4 nodes (which always have seq=0) can't be
// updated.
if newRecord.Seq() <= n.Seq() && !isInbound {
return n, false
}
// Check endpoint update against IP limits.
ipchanged := newRecord.IPAddr() != n.IPAddr()
portchanged := newRecord.UDP() != n.UDP()
if ipchanged {
tab.removeIP(b, n.IPAddr())
if !tab.addIP(b, newRecord.IPAddr()) {
// It doesn't fit with the limit, put the previous record back.
tab.addIP(b, n.IPAddr())
return n, false
}
}
// Apply update.
n.Node = newRecord
if ipchanged || portchanged {
// Ensure node is revalidated quickly for endpoint changes.
tab.revalidation.nodeEndpointChanged(tab, n)
return n, true
}
return n, false
}
func (tab *Table) handleTrackRequest(op trackRequestOp) {
var fails int
if op.success {
// Reset failure counter because it counts _consecutive_ failures.
tab.db.UpdateFindFails(op.node.ID(), op.node.IPAddr(), 0)
} else {
fails = tab.db.FindFails(op.node.ID(), op.node.IPAddr())
fails++
tab.db.UpdateFindFails(op.node.ID(), op.node.IPAddr(), fails)
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(op.node.ID())
// Remove the node from the local table if it fails to return anything useful too
// many times, but only if there are enough other nodes in the bucket. This latter
// condition specifically exists to make bootstrapping in smaller test networks more
// reliable.
if fails >= maxFindnodeFailures && len(b.entries) >= bucketSize/4 {
tab.deleteInBucket(b, op.node.ID())
}
// Add found nodes.
for _, n := range op.foundNodes {
tab.handleAddNode(addNodeOp{n, false, false})
}
}
// pushNode adds n to the front of list, keeping at most max items.
func pushNode(list []*tableNode, n *tableNode, max int) ([]*tableNode, *tableNode) {
if len(list) < max {
list = append(list, nil)
}
removed := list[len(list)-1]
copy(list[1:], list)
list[0] = n
return list, removed
}