mirror of https://github.com/ethereum/go-ethereum
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
446 lines
10 KiB
446 lines
10 KiB
package metrics
|
|
|
|
import (
|
|
"math"
|
|
"math/rand"
|
|
"sync"
|
|
"time"
|
|
|
|
"golang.org/x/exp/slices"
|
|
)
|
|
|
|
const rescaleThreshold = time.Hour
|
|
|
|
type SampleSnapshot interface {
|
|
Count() int64
|
|
Max() int64
|
|
Mean() float64
|
|
Min() int64
|
|
Percentile(float64) float64
|
|
Percentiles([]float64) []float64
|
|
Size() int
|
|
StdDev() float64
|
|
Sum() int64
|
|
Variance() float64
|
|
}
|
|
|
|
// Samples maintain a statistically-significant selection of values from
|
|
// a stream.
|
|
type Sample interface {
|
|
Snapshot() SampleSnapshot
|
|
Clear()
|
|
Update(int64)
|
|
}
|
|
|
|
// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
|
|
// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
|
|
// Decay Model for Streaming Systems".
|
|
//
|
|
// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf>
|
|
type ExpDecaySample struct {
|
|
alpha float64
|
|
count int64
|
|
mutex sync.Mutex
|
|
reservoirSize int
|
|
t0, t1 time.Time
|
|
values *expDecaySampleHeap
|
|
rand *rand.Rand
|
|
}
|
|
|
|
// NewExpDecaySample constructs a new exponentially-decaying sample with the
|
|
// given reservoir size and alpha.
|
|
func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
|
|
if !Enabled {
|
|
return NilSample{}
|
|
}
|
|
s := &ExpDecaySample{
|
|
alpha: alpha,
|
|
reservoirSize: reservoirSize,
|
|
t0: time.Now(),
|
|
values: newExpDecaySampleHeap(reservoirSize),
|
|
}
|
|
s.t1 = s.t0.Add(rescaleThreshold)
|
|
return s
|
|
}
|
|
|
|
// SetRand sets the random source (useful in tests)
|
|
func (s *ExpDecaySample) SetRand(prng *rand.Rand) Sample {
|
|
s.rand = prng
|
|
return s
|
|
}
|
|
|
|
// Clear clears all samples.
|
|
func (s *ExpDecaySample) Clear() {
|
|
s.mutex.Lock()
|
|
defer s.mutex.Unlock()
|
|
s.count = 0
|
|
s.t0 = time.Now()
|
|
s.t1 = s.t0.Add(rescaleThreshold)
|
|
s.values.Clear()
|
|
}
|
|
|
|
// Snapshot returns a read-only copy of the sample.
|
|
func (s *ExpDecaySample) Snapshot() SampleSnapshot {
|
|
s.mutex.Lock()
|
|
defer s.mutex.Unlock()
|
|
var (
|
|
samples = s.values.Values()
|
|
values = make([]int64, len(samples))
|
|
max int64 = math.MinInt64
|
|
min int64 = math.MaxInt64
|
|
sum int64
|
|
)
|
|
for i, item := range samples {
|
|
v := item.v
|
|
values[i] = v
|
|
sum += v
|
|
if v > max {
|
|
max = v
|
|
}
|
|
if v < min {
|
|
min = v
|
|
}
|
|
}
|
|
return newSampleSnapshotPrecalculated(s.count, values, min, max, sum)
|
|
}
|
|
|
|
// Update samples a new value.
|
|
func (s *ExpDecaySample) Update(v int64) {
|
|
s.update(time.Now(), v)
|
|
}
|
|
|
|
// update samples a new value at a particular timestamp. This is a method all
|
|
// its own to facilitate testing.
|
|
func (s *ExpDecaySample) update(t time.Time, v int64) {
|
|
s.mutex.Lock()
|
|
defer s.mutex.Unlock()
|
|
s.count++
|
|
if s.values.Size() == s.reservoirSize {
|
|
s.values.Pop()
|
|
}
|
|
var f64 float64
|
|
if s.rand != nil {
|
|
f64 = s.rand.Float64()
|
|
} else {
|
|
f64 = rand.Float64()
|
|
}
|
|
s.values.Push(expDecaySample{
|
|
k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / f64,
|
|
v: v,
|
|
})
|
|
if t.After(s.t1) {
|
|
values := s.values.Values()
|
|
t0 := s.t0
|
|
s.values.Clear()
|
|
s.t0 = t
|
|
s.t1 = s.t0.Add(rescaleThreshold)
|
|
for _, v := range values {
|
|
v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
|
|
s.values.Push(v)
|
|
}
|
|
}
|
|
}
|
|
|
|
// NilSample is a no-op Sample.
|
|
type NilSample struct{}
|
|
|
|
func (NilSample) Clear() {}
|
|
func (NilSample) Snapshot() SampleSnapshot { return (*emptySnapshot)(nil) }
|
|
func (NilSample) Update(v int64) {}
|
|
|
|
// SamplePercentiles returns an arbitrary percentile of the slice of int64.
|
|
func SamplePercentile(values []int64, p float64) float64 {
|
|
return CalculatePercentiles(values, []float64{p})[0]
|
|
}
|
|
|
|
// CalculatePercentiles returns a slice of arbitrary percentiles of the slice of
|
|
// int64. This method returns interpolated results, so e.g if there are only two
|
|
// values, [0, 10], a 50% percentile will land between them.
|
|
//
|
|
// Note: As a side-effect, this method will also sort the slice of values.
|
|
// Note2: The input format for percentiles is NOT percent! To express 50%, use 0.5, not 50.
|
|
func CalculatePercentiles(values []int64, ps []float64) []float64 {
|
|
scores := make([]float64, len(ps))
|
|
size := len(values)
|
|
if size == 0 {
|
|
return scores
|
|
}
|
|
slices.Sort(values)
|
|
for i, p := range ps {
|
|
pos := p * float64(size+1)
|
|
|
|
if pos < 1.0 {
|
|
scores[i] = float64(values[0])
|
|
} else if pos >= float64(size) {
|
|
scores[i] = float64(values[size-1])
|
|
} else {
|
|
lower := float64(values[int(pos)-1])
|
|
upper := float64(values[int(pos)])
|
|
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
|
|
}
|
|
}
|
|
return scores
|
|
}
|
|
|
|
// sampleSnapshot is a read-only copy of another Sample.
|
|
type sampleSnapshot struct {
|
|
count int64
|
|
values []int64
|
|
|
|
max int64
|
|
min int64
|
|
mean float64
|
|
sum int64
|
|
variance float64
|
|
}
|
|
|
|
// newSampleSnapshotPrecalculated creates a read-only sampleSnapShot, using
|
|
// precalculated sums to avoid iterating the values
|
|
func newSampleSnapshotPrecalculated(count int64, values []int64, min, max, sum int64) *sampleSnapshot {
|
|
if len(values) == 0 {
|
|
return &sampleSnapshot{
|
|
count: count,
|
|
values: values,
|
|
}
|
|
}
|
|
return &sampleSnapshot{
|
|
count: count,
|
|
values: values,
|
|
max: max,
|
|
min: min,
|
|
mean: float64(sum) / float64(len(values)),
|
|
sum: sum,
|
|
}
|
|
}
|
|
|
|
// newSampleSnapshot creates a read-only sampleSnapShot, and calculates some
|
|
// numbers.
|
|
func newSampleSnapshot(count int64, values []int64) *sampleSnapshot {
|
|
var (
|
|
max int64 = math.MinInt64
|
|
min int64 = math.MaxInt64
|
|
sum int64
|
|
)
|
|
for _, v := range values {
|
|
sum += v
|
|
if v > max {
|
|
max = v
|
|
}
|
|
if v < min {
|
|
min = v
|
|
}
|
|
}
|
|
return newSampleSnapshotPrecalculated(count, values, min, max, sum)
|
|
}
|
|
|
|
// Count returns the count of inputs at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Count() int64 { return s.count }
|
|
|
|
// Max returns the maximal value at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Max() int64 { return s.max }
|
|
|
|
// Mean returns the mean value at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Mean() float64 { return s.mean }
|
|
|
|
// Min returns the minimal value at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Min() int64 { return s.min }
|
|
|
|
// Percentile returns an arbitrary percentile of values at the time the
|
|
// snapshot was taken.
|
|
func (s *sampleSnapshot) Percentile(p float64) float64 {
|
|
return SamplePercentile(s.values, p)
|
|
}
|
|
|
|
// Percentiles returns a slice of arbitrary percentiles of values at the time
|
|
// the snapshot was taken.
|
|
func (s *sampleSnapshot) Percentiles(ps []float64) []float64 {
|
|
return CalculatePercentiles(s.values, ps)
|
|
}
|
|
|
|
// Size returns the size of the sample at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Size() int { return len(s.values) }
|
|
|
|
// Snapshot returns the snapshot.
|
|
func (s *sampleSnapshot) Snapshot() SampleSnapshot { return s }
|
|
|
|
// StdDev returns the standard deviation of values at the time the snapshot was
|
|
// taken.
|
|
func (s *sampleSnapshot) StdDev() float64 {
|
|
if s.variance == 0.0 {
|
|
s.variance = SampleVariance(s.mean, s.values)
|
|
}
|
|
return math.Sqrt(s.variance)
|
|
}
|
|
|
|
// Sum returns the sum of values at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Sum() int64 { return s.sum }
|
|
|
|
// Values returns a copy of the values in the sample.
|
|
func (s *sampleSnapshot) Values() []int64 {
|
|
values := make([]int64, len(s.values))
|
|
copy(values, s.values)
|
|
return values
|
|
}
|
|
|
|
// Variance returns the variance of values at the time the snapshot was taken.
|
|
func (s *sampleSnapshot) Variance() float64 {
|
|
if s.variance == 0.0 {
|
|
s.variance = SampleVariance(s.mean, s.values)
|
|
}
|
|
return s.variance
|
|
}
|
|
|
|
// SampleVariance returns the variance of the slice of int64.
|
|
func SampleVariance(mean float64, values []int64) float64 {
|
|
if len(values) == 0 {
|
|
return 0.0
|
|
}
|
|
var sum float64
|
|
for _, v := range values {
|
|
d := float64(v) - mean
|
|
sum += d * d
|
|
}
|
|
return sum / float64(len(values))
|
|
}
|
|
|
|
// A uniform sample using Vitter's Algorithm R.
|
|
//
|
|
// <http://www.cs.umd.edu/~samir/498/vitter.pdf>
|
|
type UniformSample struct {
|
|
count int64
|
|
mutex sync.Mutex
|
|
reservoirSize int
|
|
values []int64
|
|
rand *rand.Rand
|
|
}
|
|
|
|
// NewUniformSample constructs a new uniform sample with the given reservoir
|
|
// size.
|
|
func NewUniformSample(reservoirSize int) Sample {
|
|
if !Enabled {
|
|
return NilSample{}
|
|
}
|
|
return &UniformSample{
|
|
reservoirSize: reservoirSize,
|
|
values: make([]int64, 0, reservoirSize),
|
|
}
|
|
}
|
|
|
|
// SetRand sets the random source (useful in tests)
|
|
func (s *UniformSample) SetRand(prng *rand.Rand) Sample {
|
|
s.rand = prng
|
|
return s
|
|
}
|
|
|
|
// Clear clears all samples.
|
|
func (s *UniformSample) Clear() {
|
|
s.mutex.Lock()
|
|
defer s.mutex.Unlock()
|
|
s.count = 0
|
|
s.values = make([]int64, 0, s.reservoirSize)
|
|
}
|
|
|
|
// Snapshot returns a read-only copy of the sample.
|
|
func (s *UniformSample) Snapshot() SampleSnapshot {
|
|
s.mutex.Lock()
|
|
values := make([]int64, len(s.values))
|
|
copy(values, s.values)
|
|
count := s.count
|
|
s.mutex.Unlock()
|
|
return newSampleSnapshot(count, values)
|
|
}
|
|
|
|
// Update samples a new value.
|
|
func (s *UniformSample) Update(v int64) {
|
|
s.mutex.Lock()
|
|
defer s.mutex.Unlock()
|
|
s.count++
|
|
if len(s.values) < s.reservoirSize {
|
|
s.values = append(s.values, v)
|
|
} else {
|
|
var r int64
|
|
if s.rand != nil {
|
|
r = s.rand.Int63n(s.count)
|
|
} else {
|
|
r = rand.Int63n(s.count)
|
|
}
|
|
if r < int64(len(s.values)) {
|
|
s.values[int(r)] = v
|
|
}
|
|
}
|
|
}
|
|
|
|
// expDecaySample represents an individual sample in a heap.
|
|
type expDecaySample struct {
|
|
k float64
|
|
v int64
|
|
}
|
|
|
|
func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
|
|
return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
|
|
}
|
|
|
|
// expDecaySampleHeap is a min-heap of expDecaySamples.
|
|
// The internal implementation is copied from the standard library's container/heap
|
|
type expDecaySampleHeap struct {
|
|
s []expDecaySample
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) Clear() {
|
|
h.s = h.s[:0]
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) Push(s expDecaySample) {
|
|
n := len(h.s)
|
|
h.s = h.s[0 : n+1]
|
|
h.s[n] = s
|
|
h.up(n)
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) Pop() expDecaySample {
|
|
n := len(h.s) - 1
|
|
h.s[0], h.s[n] = h.s[n], h.s[0]
|
|
h.down(0, n)
|
|
|
|
n = len(h.s)
|
|
s := h.s[n-1]
|
|
h.s = h.s[0 : n-1]
|
|
return s
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) Size() int {
|
|
return len(h.s)
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) Values() []expDecaySample {
|
|
return h.s
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) up(j int) {
|
|
for {
|
|
i := (j - 1) / 2 // parent
|
|
if i == j || !(h.s[j].k < h.s[i].k) {
|
|
break
|
|
}
|
|
h.s[i], h.s[j] = h.s[j], h.s[i]
|
|
j = i
|
|
}
|
|
}
|
|
|
|
func (h *expDecaySampleHeap) down(i, n int) {
|
|
for {
|
|
j1 := 2*i + 1
|
|
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
|
|
break
|
|
}
|
|
j := j1 // left child
|
|
if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
|
|
j = j2 // = 2*i + 2 // right child
|
|
}
|
|
if !(h.s[j].k < h.s[i].k) {
|
|
break
|
|
}
|
|
h.s[i], h.s[j] = h.s[j], h.s[i]
|
|
i = j
|
|
}
|
|
}
|
|
|