mirror of https://github.com/ethereum/go-ethereum
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1232 lines
40 KiB
1232 lines
40 KiB
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package vm
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/consensys/gnark-crypto/ecc"
|
|
bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
|
|
"github.com/consensys/gnark-crypto/ecc/bls12-381/fp"
|
|
"github.com/consensys/gnark-crypto/ecc/bls12-381/fr"
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/math"
|
|
"github.com/ethereum/go-ethereum/core/tracing"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/crypto/blake2b"
|
|
"github.com/ethereum/go-ethereum/crypto/bn256"
|
|
"github.com/ethereum/go-ethereum/crypto/kzg4844"
|
|
"github.com/ethereum/go-ethereum/params"
|
|
"golang.org/x/crypto/ripemd160"
|
|
)
|
|
|
|
// PrecompiledContract is the basic interface for native Go contracts. The implementation
|
|
// requires a deterministic gas count based on the input size of the Run method of the
|
|
// contract.
|
|
type PrecompiledContract interface {
|
|
RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
|
|
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
|
|
}
|
|
|
|
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Frontier and Homestead releases.
|
|
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{0x1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{0x2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{0x4}): &dataCopy{},
|
|
}
|
|
|
|
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Byzantium release.
|
|
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{0x1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{0x2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{0x4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false},
|
|
common.BytesToAddress([]byte{0x6}): &bn256AddByzantium{},
|
|
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulByzantium{},
|
|
common.BytesToAddress([]byte{0x8}): &bn256PairingByzantium{},
|
|
}
|
|
|
|
// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Istanbul release.
|
|
var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{0x1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{0x2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{0x4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false},
|
|
common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
|
|
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
|
|
common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
|
|
common.BytesToAddress([]byte{0x9}): &blake2F{},
|
|
}
|
|
|
|
// PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Berlin release.
|
|
var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{0x1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{0x2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{0x4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true},
|
|
common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
|
|
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
|
|
common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
|
|
common.BytesToAddress([]byte{0x9}): &blake2F{},
|
|
}
|
|
|
|
// PrecompiledContractsCancun contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Cancun release.
|
|
var PrecompiledContractsCancun = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{0x1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{0x2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{0x4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true},
|
|
common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
|
|
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
|
|
common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
|
|
common.BytesToAddress([]byte{0x9}): &blake2F{},
|
|
common.BytesToAddress([]byte{0xa}): &kzgPointEvaluation{},
|
|
}
|
|
|
|
// PrecompiledContractsPrague contains the set of pre-compiled Ethereum
|
|
// contracts used in the Prague release.
|
|
var PrecompiledContractsPrague = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{0x01}): &ecrecover{},
|
|
common.BytesToAddress([]byte{0x02}): &sha256hash{},
|
|
common.BytesToAddress([]byte{0x03}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{0x04}): &dataCopy{},
|
|
common.BytesToAddress([]byte{0x05}): &bigModExp{eip2565: true},
|
|
common.BytesToAddress([]byte{0x06}): &bn256AddIstanbul{},
|
|
common.BytesToAddress([]byte{0x07}): &bn256ScalarMulIstanbul{},
|
|
common.BytesToAddress([]byte{0x08}): &bn256PairingIstanbul{},
|
|
common.BytesToAddress([]byte{0x09}): &blake2F{},
|
|
common.BytesToAddress([]byte{0x0a}): &kzgPointEvaluation{},
|
|
common.BytesToAddress([]byte{0x0b}): &bls12381G1Add{},
|
|
common.BytesToAddress([]byte{0x0c}): &bls12381G1Mul{},
|
|
common.BytesToAddress([]byte{0x0d}): &bls12381G1MultiExp{},
|
|
common.BytesToAddress([]byte{0x0e}): &bls12381G2Add{},
|
|
common.BytesToAddress([]byte{0x0f}): &bls12381G2Mul{},
|
|
common.BytesToAddress([]byte{0x10}): &bls12381G2MultiExp{},
|
|
common.BytesToAddress([]byte{0x11}): &bls12381Pairing{},
|
|
common.BytesToAddress([]byte{0x12}): &bls12381MapG1{},
|
|
common.BytesToAddress([]byte{0x13}): &bls12381MapG2{},
|
|
}
|
|
|
|
var PrecompiledContractsBLS = PrecompiledContractsPrague
|
|
|
|
var (
|
|
PrecompiledAddressesPrague []common.Address
|
|
PrecompiledAddressesCancun []common.Address
|
|
PrecompiledAddressesBerlin []common.Address
|
|
PrecompiledAddressesIstanbul []common.Address
|
|
PrecompiledAddressesByzantium []common.Address
|
|
PrecompiledAddressesHomestead []common.Address
|
|
)
|
|
|
|
func init() {
|
|
for k := range PrecompiledContractsHomestead {
|
|
PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
|
|
}
|
|
for k := range PrecompiledContractsByzantium {
|
|
PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
|
|
}
|
|
for k := range PrecompiledContractsIstanbul {
|
|
PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
|
|
}
|
|
for k := range PrecompiledContractsBerlin {
|
|
PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
|
|
}
|
|
for k := range PrecompiledContractsCancun {
|
|
PrecompiledAddressesCancun = append(PrecompiledAddressesCancun, k)
|
|
}
|
|
for k := range PrecompiledContractsPrague {
|
|
PrecompiledAddressesPrague = append(PrecompiledAddressesPrague, k)
|
|
}
|
|
}
|
|
|
|
// ActivePrecompiles returns the precompiles enabled with the current configuration.
|
|
func ActivePrecompiles(rules params.Rules) []common.Address {
|
|
switch {
|
|
case rules.IsPrague:
|
|
return PrecompiledAddressesPrague
|
|
case rules.IsCancun:
|
|
return PrecompiledAddressesCancun
|
|
case rules.IsBerlin:
|
|
return PrecompiledAddressesBerlin
|
|
case rules.IsIstanbul:
|
|
return PrecompiledAddressesIstanbul
|
|
case rules.IsByzantium:
|
|
return PrecompiledAddressesByzantium
|
|
default:
|
|
return PrecompiledAddressesHomestead
|
|
}
|
|
}
|
|
|
|
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
|
|
// It returns
|
|
// - the returned bytes,
|
|
// - the _remaining_ gas,
|
|
// - any error that occurred
|
|
func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64, logger *tracing.Hooks) (ret []byte, remainingGas uint64, err error) {
|
|
gasCost := p.RequiredGas(input)
|
|
if suppliedGas < gasCost {
|
|
return nil, 0, ErrOutOfGas
|
|
}
|
|
if logger != nil && logger.OnGasChange != nil {
|
|
logger.OnGasChange(suppliedGas, suppliedGas-gasCost, tracing.GasChangeCallPrecompiledContract)
|
|
}
|
|
suppliedGas -= gasCost
|
|
output, err := p.Run(input)
|
|
return output, suppliedGas, err
|
|
}
|
|
|
|
// ecrecover implemented as a native contract.
|
|
type ecrecover struct{}
|
|
|
|
func (c *ecrecover) RequiredGas(input []byte) uint64 {
|
|
return params.EcrecoverGas
|
|
}
|
|
|
|
func (c *ecrecover) Run(input []byte) ([]byte, error) {
|
|
const ecRecoverInputLength = 128
|
|
|
|
input = common.RightPadBytes(input, ecRecoverInputLength)
|
|
// "input" is (hash, v, r, s), each 32 bytes
|
|
// but for ecrecover we want (r, s, v)
|
|
|
|
r := new(big.Int).SetBytes(input[64:96])
|
|
s := new(big.Int).SetBytes(input[96:128])
|
|
v := input[63] - 27
|
|
|
|
// tighter sig s values input homestead only apply to tx sigs
|
|
if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
|
|
return nil, nil
|
|
}
|
|
// We must make sure not to modify the 'input', so placing the 'v' along with
|
|
// the signature needs to be done on a new allocation
|
|
sig := make([]byte, 65)
|
|
copy(sig, input[64:128])
|
|
sig[64] = v
|
|
// v needs to be at the end for libsecp256k1
|
|
pubKey, err := crypto.Ecrecover(input[:32], sig)
|
|
// make sure the public key is a valid one
|
|
if err != nil {
|
|
return nil, nil
|
|
}
|
|
|
|
// the first byte of pubkey is bitcoin heritage
|
|
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
|
|
}
|
|
|
|
// SHA256 implemented as a native contract.
|
|
type sha256hash struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
//
|
|
// This method does not require any overflow checking as the input size gas costs
|
|
// required for anything significant is so high it's impossible to pay for.
|
|
func (c *sha256hash) RequiredGas(input []byte) uint64 {
|
|
return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
|
|
}
|
|
func (c *sha256hash) Run(input []byte) ([]byte, error) {
|
|
h := sha256.Sum256(input)
|
|
return h[:], nil
|
|
}
|
|
|
|
// RIPEMD160 implemented as a native contract.
|
|
type ripemd160hash struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
//
|
|
// This method does not require any overflow checking as the input size gas costs
|
|
// required for anything significant is so high it's impossible to pay for.
|
|
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
|
|
return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
|
|
}
|
|
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
|
|
ripemd := ripemd160.New()
|
|
ripemd.Write(input)
|
|
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
|
|
}
|
|
|
|
// data copy implemented as a native contract.
|
|
type dataCopy struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
//
|
|
// This method does not require any overflow checking as the input size gas costs
|
|
// required for anything significant is so high it's impossible to pay for.
|
|
func (c *dataCopy) RequiredGas(input []byte) uint64 {
|
|
return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
|
|
}
|
|
func (c *dataCopy) Run(in []byte) ([]byte, error) {
|
|
return common.CopyBytes(in), nil
|
|
}
|
|
|
|
// bigModExp implements a native big integer exponential modular operation.
|
|
type bigModExp struct {
|
|
eip2565 bool
|
|
}
|
|
|
|
var (
|
|
big1 = big.NewInt(1)
|
|
big3 = big.NewInt(3)
|
|
big4 = big.NewInt(4)
|
|
big7 = big.NewInt(7)
|
|
big8 = big.NewInt(8)
|
|
big16 = big.NewInt(16)
|
|
big20 = big.NewInt(20)
|
|
big32 = big.NewInt(32)
|
|
big64 = big.NewInt(64)
|
|
big96 = big.NewInt(96)
|
|
big480 = big.NewInt(480)
|
|
big1024 = big.NewInt(1024)
|
|
big3072 = big.NewInt(3072)
|
|
big199680 = big.NewInt(199680)
|
|
)
|
|
|
|
// modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
|
|
//
|
|
// def mult_complexity(x):
|
|
// if x <= 64: return x ** 2
|
|
// elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
|
|
// else: return x ** 2 // 16 + 480 * x - 199680
|
|
//
|
|
// where is x is max(length_of_MODULUS, length_of_BASE)
|
|
func modexpMultComplexity(x *big.Int) *big.Int {
|
|
switch {
|
|
case x.Cmp(big64) <= 0:
|
|
x.Mul(x, x) // x ** 2
|
|
case x.Cmp(big1024) <= 0:
|
|
// (x ** 2 // 4 ) + ( 96 * x - 3072)
|
|
x = new(big.Int).Add(
|
|
new(big.Int).Div(new(big.Int).Mul(x, x), big4),
|
|
new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
|
|
)
|
|
default:
|
|
// (x ** 2 // 16) + (480 * x - 199680)
|
|
x = new(big.Int).Add(
|
|
new(big.Int).Div(new(big.Int).Mul(x, x), big16),
|
|
new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
|
|
)
|
|
}
|
|
return x
|
|
}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bigModExp) RequiredGas(input []byte) uint64 {
|
|
var (
|
|
baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
|
|
expLen = new(big.Int).SetBytes(getData(input, 32, 32))
|
|
modLen = new(big.Int).SetBytes(getData(input, 64, 32))
|
|
)
|
|
if len(input) > 96 {
|
|
input = input[96:]
|
|
} else {
|
|
input = input[:0]
|
|
}
|
|
// Retrieve the head 32 bytes of exp for the adjusted exponent length
|
|
var expHead *big.Int
|
|
if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
|
|
expHead = new(big.Int)
|
|
} else {
|
|
if expLen.Cmp(big32) > 0 {
|
|
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
|
|
} else {
|
|
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
|
|
}
|
|
}
|
|
// Calculate the adjusted exponent length
|
|
var msb int
|
|
if bitlen := expHead.BitLen(); bitlen > 0 {
|
|
msb = bitlen - 1
|
|
}
|
|
adjExpLen := new(big.Int)
|
|
if expLen.Cmp(big32) > 0 {
|
|
adjExpLen.Sub(expLen, big32)
|
|
adjExpLen.Mul(big8, adjExpLen)
|
|
}
|
|
adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
|
|
// Calculate the gas cost of the operation
|
|
gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
|
|
if c.eip2565 {
|
|
// EIP-2565 has three changes
|
|
// 1. Different multComplexity (inlined here)
|
|
// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
|
|
//
|
|
// def mult_complexity(x):
|
|
// ceiling(x/8)^2
|
|
//
|
|
//where is x is max(length_of_MODULUS, length_of_BASE)
|
|
gas = gas.Add(gas, big7)
|
|
gas = gas.Div(gas, big8)
|
|
gas.Mul(gas, gas)
|
|
|
|
gas.Mul(gas, math.BigMax(adjExpLen, big1))
|
|
// 2. Different divisor (`GQUADDIVISOR`) (3)
|
|
gas.Div(gas, big3)
|
|
if gas.BitLen() > 64 {
|
|
return math.MaxUint64
|
|
}
|
|
// 3. Minimum price of 200 gas
|
|
if gas.Uint64() < 200 {
|
|
return 200
|
|
}
|
|
return gas.Uint64()
|
|
}
|
|
gas = modexpMultComplexity(gas)
|
|
gas.Mul(gas, math.BigMax(adjExpLen, big1))
|
|
gas.Div(gas, big20)
|
|
|
|
if gas.BitLen() > 64 {
|
|
return math.MaxUint64
|
|
}
|
|
return gas.Uint64()
|
|
}
|
|
|
|
func (c *bigModExp) Run(input []byte) ([]byte, error) {
|
|
var (
|
|
baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
|
|
expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
|
|
modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
|
|
)
|
|
if len(input) > 96 {
|
|
input = input[96:]
|
|
} else {
|
|
input = input[:0]
|
|
}
|
|
// Handle a special case when both the base and mod length is zero
|
|
if baseLen == 0 && modLen == 0 {
|
|
return []byte{}, nil
|
|
}
|
|
// Retrieve the operands and execute the exponentiation
|
|
var (
|
|
base = new(big.Int).SetBytes(getData(input, 0, baseLen))
|
|
exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
|
|
mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
|
|
v []byte
|
|
)
|
|
switch {
|
|
case mod.BitLen() == 0:
|
|
// Modulo 0 is undefined, return zero
|
|
return common.LeftPadBytes([]byte{}, int(modLen)), nil
|
|
case base.BitLen() == 1: // a bit length of 1 means it's 1 (or -1).
|
|
//If base == 1, then we can just return base % mod (if mod >= 1, which it is)
|
|
v = base.Mod(base, mod).Bytes()
|
|
default:
|
|
v = base.Exp(base, exp, mod).Bytes()
|
|
}
|
|
return common.LeftPadBytes(v, int(modLen)), nil
|
|
}
|
|
|
|
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
|
|
// returning it, or an error if the point is invalid.
|
|
func newCurvePoint(blob []byte) (*bn256.G1, error) {
|
|
p := new(bn256.G1)
|
|
if _, err := p.Unmarshal(blob); err != nil {
|
|
return nil, err
|
|
}
|
|
return p, nil
|
|
}
|
|
|
|
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
|
|
// returning it, or an error if the point is invalid.
|
|
func newTwistPoint(blob []byte) (*bn256.G2, error) {
|
|
p := new(bn256.G2)
|
|
if _, err := p.Unmarshal(blob); err != nil {
|
|
return nil, err
|
|
}
|
|
return p, nil
|
|
}
|
|
|
|
// runBn256Add implements the Bn256Add precompile, referenced by both
|
|
// Byzantium and Istanbul operations.
|
|
func runBn256Add(input []byte) ([]byte, error) {
|
|
x, err := newCurvePoint(getData(input, 0, 64))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
y, err := newCurvePoint(getData(input, 64, 64))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
res := new(bn256.G1)
|
|
res.Add(x, y)
|
|
return res.Marshal(), nil
|
|
}
|
|
|
|
// bn256AddIstanbul implements a native elliptic curve point addition conforming to
|
|
// Istanbul consensus rules.
|
|
type bn256AddIstanbul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256AddGasIstanbul
|
|
}
|
|
|
|
func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
|
|
return runBn256Add(input)
|
|
}
|
|
|
|
// bn256AddByzantium implements a native elliptic curve point addition
|
|
// conforming to Byzantium consensus rules.
|
|
type bn256AddByzantium struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256AddGasByzantium
|
|
}
|
|
|
|
func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
|
|
return runBn256Add(input)
|
|
}
|
|
|
|
// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
|
|
// both Byzantium and Istanbul operations.
|
|
func runBn256ScalarMul(input []byte) ([]byte, error) {
|
|
p, err := newCurvePoint(getData(input, 0, 64))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
res := new(bn256.G1)
|
|
res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
|
|
return res.Marshal(), nil
|
|
}
|
|
|
|
// bn256ScalarMulIstanbul implements a native elliptic curve scalar
|
|
// multiplication conforming to Istanbul consensus rules.
|
|
type bn256ScalarMulIstanbul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256ScalarMulGasIstanbul
|
|
}
|
|
|
|
func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
|
|
return runBn256ScalarMul(input)
|
|
}
|
|
|
|
// bn256ScalarMulByzantium implements a native elliptic curve scalar
|
|
// multiplication conforming to Byzantium consensus rules.
|
|
type bn256ScalarMulByzantium struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256ScalarMulGasByzantium
|
|
}
|
|
|
|
func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
|
|
return runBn256ScalarMul(input)
|
|
}
|
|
|
|
var (
|
|
// true32Byte is returned if the bn256 pairing check succeeds.
|
|
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
|
|
|
|
// false32Byte is returned if the bn256 pairing check fails.
|
|
false32Byte = make([]byte, 32)
|
|
|
|
// errBadPairingInput is returned if the bn256 pairing input is invalid.
|
|
errBadPairingInput = errors.New("bad elliptic curve pairing size")
|
|
)
|
|
|
|
// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
|
|
// Byzantium and Istanbul operations.
|
|
func runBn256Pairing(input []byte) ([]byte, error) {
|
|
// Handle some corner cases cheaply
|
|
if len(input)%192 > 0 {
|
|
return nil, errBadPairingInput
|
|
}
|
|
// Convert the input into a set of coordinates
|
|
var (
|
|
cs []*bn256.G1
|
|
ts []*bn256.G2
|
|
)
|
|
for i := 0; i < len(input); i += 192 {
|
|
c, err := newCurvePoint(input[i : i+64])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
t, err := newTwistPoint(input[i+64 : i+192])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
cs = append(cs, c)
|
|
ts = append(ts, t)
|
|
}
|
|
// Execute the pairing checks and return the results
|
|
if bn256.PairingCheck(cs, ts) {
|
|
return true32Byte, nil
|
|
}
|
|
return false32Byte, nil
|
|
}
|
|
|
|
// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
|
|
// conforming to Istanbul consensus rules.
|
|
type bn256PairingIstanbul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
|
|
}
|
|
|
|
func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
|
|
return runBn256Pairing(input)
|
|
}
|
|
|
|
// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
|
|
// conforming to Byzantium consensus rules.
|
|
type bn256PairingByzantium struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
|
|
}
|
|
|
|
func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
|
|
return runBn256Pairing(input)
|
|
}
|
|
|
|
type blake2F struct{}
|
|
|
|
func (c *blake2F) RequiredGas(input []byte) uint64 {
|
|
// If the input is malformed, we can't calculate the gas, return 0 and let the
|
|
// actual call choke and fault.
|
|
if len(input) != blake2FInputLength {
|
|
return 0
|
|
}
|
|
return uint64(binary.BigEndian.Uint32(input[0:4]))
|
|
}
|
|
|
|
const (
|
|
blake2FInputLength = 213
|
|
blake2FFinalBlockBytes = byte(1)
|
|
blake2FNonFinalBlockBytes = byte(0)
|
|
)
|
|
|
|
var (
|
|
errBlake2FInvalidInputLength = errors.New("invalid input length")
|
|
errBlake2FInvalidFinalFlag = errors.New("invalid final flag")
|
|
)
|
|
|
|
func (c *blake2F) Run(input []byte) ([]byte, error) {
|
|
// Make sure the input is valid (correct length and final flag)
|
|
if len(input) != blake2FInputLength {
|
|
return nil, errBlake2FInvalidInputLength
|
|
}
|
|
if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
|
|
return nil, errBlake2FInvalidFinalFlag
|
|
}
|
|
// Parse the input into the Blake2b call parameters
|
|
var (
|
|
rounds = binary.BigEndian.Uint32(input[0:4])
|
|
final = input[212] == blake2FFinalBlockBytes
|
|
|
|
h [8]uint64
|
|
m [16]uint64
|
|
t [2]uint64
|
|
)
|
|
for i := 0; i < 8; i++ {
|
|
offset := 4 + i*8
|
|
h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
|
|
}
|
|
for i := 0; i < 16; i++ {
|
|
offset := 68 + i*8
|
|
m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
|
|
}
|
|
t[0] = binary.LittleEndian.Uint64(input[196:204])
|
|
t[1] = binary.LittleEndian.Uint64(input[204:212])
|
|
|
|
// Execute the compression function, extract and return the result
|
|
blake2b.F(&h, m, t, final, rounds)
|
|
|
|
output := make([]byte, 64)
|
|
for i := 0; i < 8; i++ {
|
|
offset := i * 8
|
|
binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
|
|
}
|
|
return output, nil
|
|
}
|
|
|
|
var (
|
|
errBLS12381InvalidInputLength = errors.New("invalid input length")
|
|
errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
|
|
errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup")
|
|
errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup")
|
|
)
|
|
|
|
// bls12381G1Add implements EIP-2537 G1Add precompile.
|
|
type bls12381G1Add struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G1AddGas
|
|
}
|
|
|
|
func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G1Add precompile.
|
|
// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
|
|
// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
|
|
if len(input) != 256 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0, p1 *bls12381.G1Affine
|
|
|
|
// Decode G1 point p_0
|
|
if p0, err = decodePointG1(input[:128]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode G1 point p_1
|
|
if p1, err = decodePointG1(input[128:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// No need to check the subgroup here, as specified by EIP-2537
|
|
|
|
// Compute r = p_0 + p_1
|
|
p0.Add(p0, p1)
|
|
|
|
// Encode the G1 point result into 128 bytes
|
|
return encodePointG1(p0), nil
|
|
}
|
|
|
|
// bls12381G1Mul implements EIP-2537 G1Mul precompile.
|
|
type bls12381G1Mul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G1MulGas
|
|
}
|
|
|
|
func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G1Mul precompile.
|
|
// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
|
|
// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
|
|
if len(input) != 160 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0 *bls12381.G1Affine
|
|
|
|
// Decode G1 point
|
|
if p0, err = decodePointG1(input[:128]); err != nil {
|
|
return nil, err
|
|
}
|
|
// 'point is on curve' check already done,
|
|
// Here we need to apply subgroup checks.
|
|
if !p0.IsInSubGroup() {
|
|
return nil, errBLS12381G1PointSubgroup
|
|
}
|
|
// Decode scalar value
|
|
e := new(big.Int).SetBytes(input[128:])
|
|
|
|
// Compute r = e * p_0
|
|
r := new(bls12381.G1Affine)
|
|
r.ScalarMultiplication(p0, e)
|
|
|
|
// Encode the G1 point into 128 bytes
|
|
return encodePointG1(r), nil
|
|
}
|
|
|
|
// bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
|
|
type bls12381G1MultiExp struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
|
|
// Calculate G1 point, scalar value pair length
|
|
k := len(input) / 160
|
|
if k == 0 {
|
|
// Return 0 gas for small input length
|
|
return 0
|
|
}
|
|
// Lookup discount value for G1 point, scalar value pair length
|
|
var discount uint64
|
|
if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
|
|
discount = params.Bls12381MultiExpDiscountTable[k-1]
|
|
} else {
|
|
discount = params.Bls12381MultiExpDiscountTable[dLen-1]
|
|
}
|
|
// Calculate gas and return the result
|
|
return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
|
|
}
|
|
|
|
func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G1MultiExp precompile.
|
|
// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
|
|
// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
|
|
k := len(input) / 160
|
|
if len(input) == 0 || len(input)%160 != 0 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
points := make([]bls12381.G1Affine, k)
|
|
scalars := make([]fr.Element, k)
|
|
|
|
// Decode point scalar pairs
|
|
for i := 0; i < k; i++ {
|
|
off := 160 * i
|
|
t0, t1, t2 := off, off+128, off+160
|
|
// Decode G1 point
|
|
p, err := decodePointG1(input[t0:t1])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// 'point is on curve' check already done,
|
|
// Here we need to apply subgroup checks.
|
|
if !p.IsInSubGroup() {
|
|
return nil, errBLS12381G1PointSubgroup
|
|
}
|
|
points[i] = *p
|
|
// Decode scalar value
|
|
scalars[i] = *new(fr.Element).SetBytes(input[t1:t2])
|
|
}
|
|
|
|
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
|
|
r := new(bls12381.G1Affine)
|
|
r.MultiExp(points, scalars, ecc.MultiExpConfig{})
|
|
|
|
// Encode the G1 point to 128 bytes
|
|
return encodePointG1(r), nil
|
|
}
|
|
|
|
// bls12381G2Add implements EIP-2537 G2Add precompile.
|
|
type bls12381G2Add struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G2AddGas
|
|
}
|
|
|
|
func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G2Add precompile.
|
|
// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
|
|
// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
|
|
if len(input) != 512 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0, p1 *bls12381.G2Affine
|
|
|
|
// Decode G2 point p_0
|
|
if p0, err = decodePointG2(input[:256]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode G2 point p_1
|
|
if p1, err = decodePointG2(input[256:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// No need to check the subgroup here, as specified by EIP-2537
|
|
|
|
// Compute r = p_0 + p_1
|
|
r := new(bls12381.G2Affine)
|
|
r.Add(p0, p1)
|
|
|
|
// Encode the G2 point into 256 bytes
|
|
return encodePointG2(r), nil
|
|
}
|
|
|
|
// bls12381G2Mul implements EIP-2537 G2Mul precompile.
|
|
type bls12381G2Mul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G2MulGas
|
|
}
|
|
|
|
func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G2MUL precompile logic.
|
|
// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
|
|
// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
|
|
if len(input) != 288 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0 *bls12381.G2Affine
|
|
|
|
// Decode G2 point
|
|
if p0, err = decodePointG2(input[:256]); err != nil {
|
|
return nil, err
|
|
}
|
|
// 'point is on curve' check already done,
|
|
// Here we need to apply subgroup checks.
|
|
if !p0.IsInSubGroup() {
|
|
return nil, errBLS12381G2PointSubgroup
|
|
}
|
|
// Decode scalar value
|
|
e := new(big.Int).SetBytes(input[256:])
|
|
|
|
// Compute r = e * p_0
|
|
r := new(bls12381.G2Affine)
|
|
r.ScalarMultiplication(p0, e)
|
|
|
|
// Encode the G2 point into 256 bytes
|
|
return encodePointG2(r), nil
|
|
}
|
|
|
|
// bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
|
|
type bls12381G2MultiExp struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
|
|
// Calculate G2 point, scalar value pair length
|
|
k := len(input) / 288
|
|
if k == 0 {
|
|
// Return 0 gas for small input length
|
|
return 0
|
|
}
|
|
// Lookup discount value for G2 point, scalar value pair length
|
|
var discount uint64
|
|
if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
|
|
discount = params.Bls12381MultiExpDiscountTable[k-1]
|
|
} else {
|
|
discount = params.Bls12381MultiExpDiscountTable[dLen-1]
|
|
}
|
|
// Calculate gas and return the result
|
|
return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
|
|
}
|
|
|
|
func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G2MultiExp precompile logic
|
|
// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
|
|
// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
|
|
k := len(input) / 288
|
|
if len(input) == 0 || len(input)%288 != 0 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
points := make([]bls12381.G2Affine, k)
|
|
scalars := make([]fr.Element, k)
|
|
|
|
// Decode point scalar pairs
|
|
for i := 0; i < k; i++ {
|
|
off := 288 * i
|
|
t0, t1, t2 := off, off+256, off+288
|
|
// Decode G2 point
|
|
p, err := decodePointG2(input[t0:t1])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// 'point is on curve' check already done,
|
|
// Here we need to apply subgroup checks.
|
|
if !p.IsInSubGroup() {
|
|
return nil, errBLS12381G2PointSubgroup
|
|
}
|
|
points[i] = *p
|
|
// Decode scalar value
|
|
scalars[i] = *new(fr.Element).SetBytes(input[t1:t2])
|
|
}
|
|
|
|
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
|
|
r := new(bls12381.G2Affine)
|
|
r.MultiExp(points, scalars, ecc.MultiExpConfig{})
|
|
|
|
// Encode the G2 point to 256 bytes.
|
|
return encodePointG2(r), nil
|
|
}
|
|
|
|
// bls12381Pairing implements EIP-2537 Pairing precompile.
|
|
type bls12381Pairing struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
|
|
}
|
|
|
|
func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 Pairing precompile logic.
|
|
// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
|
|
// > - `128` bytes of G1 point encoding
|
|
// > - `256` bytes of G2 point encoding
|
|
// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
|
|
// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
|
|
k := len(input) / 384
|
|
if len(input) == 0 || len(input)%384 != 0 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
|
|
var (
|
|
p []bls12381.G1Affine
|
|
q []bls12381.G2Affine
|
|
)
|
|
|
|
// Decode pairs
|
|
for i := 0; i < k; i++ {
|
|
off := 384 * i
|
|
t0, t1, t2 := off, off+128, off+384
|
|
|
|
// Decode G1 point
|
|
p1, err := decodePointG1(input[t0:t1])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode G2 point
|
|
p2, err := decodePointG2(input[t1:t2])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// 'point is on curve' check already done,
|
|
// Here we need to apply subgroup checks.
|
|
if !p1.IsInSubGroup() {
|
|
return nil, errBLS12381G1PointSubgroup
|
|
}
|
|
if !p2.IsInSubGroup() {
|
|
return nil, errBLS12381G2PointSubgroup
|
|
}
|
|
p = append(p, *p1)
|
|
q = append(q, *p2)
|
|
}
|
|
// Prepare 32 byte output
|
|
out := make([]byte, 32)
|
|
|
|
// Compute pairing and set the result
|
|
ok, err := bls12381.PairingCheck(p, q)
|
|
if err == nil && ok {
|
|
out[31] = 1
|
|
}
|
|
return out, nil
|
|
}
|
|
|
|
func decodePointG1(in []byte) (*bls12381.G1Affine, error) {
|
|
if len(in) != 128 {
|
|
return nil, errors.New("invalid g1 point length")
|
|
}
|
|
// decode x
|
|
x, err := decodeBLS12381FieldElement(in[:64])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// decode y
|
|
y, err := decodeBLS12381FieldElement(in[64:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
elem := bls12381.G1Affine{X: x, Y: y}
|
|
if !elem.IsOnCurve() {
|
|
return nil, errors.New("invalid point: not on curve")
|
|
}
|
|
|
|
return &elem, nil
|
|
}
|
|
|
|
// decodePointG2 given encoded (x, y) coordinates in 256 bytes returns a valid G2 Point.
|
|
func decodePointG2(in []byte) (*bls12381.G2Affine, error) {
|
|
if len(in) != 256 {
|
|
return nil, errors.New("invalid g2 point length")
|
|
}
|
|
x0, err := decodeBLS12381FieldElement(in[:64])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
x1, err := decodeBLS12381FieldElement(in[64:128])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
y0, err := decodeBLS12381FieldElement(in[128:192])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
y1, err := decodeBLS12381FieldElement(in[192:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
p := bls12381.G2Affine{X: bls12381.E2{A0: x0, A1: x1}, Y: bls12381.E2{A0: y0, A1: y1}}
|
|
if !p.IsOnCurve() {
|
|
return nil, errors.New("invalid point: not on curve")
|
|
}
|
|
return &p, err
|
|
}
|
|
|
|
// decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
|
|
// Removes top 16 bytes of 64 byte input.
|
|
func decodeBLS12381FieldElement(in []byte) (fp.Element, error) {
|
|
if len(in) != 64 {
|
|
return fp.Element{}, errors.New("invalid field element length")
|
|
}
|
|
// check top bytes
|
|
for i := 0; i < 16; i++ {
|
|
if in[i] != byte(0x00) {
|
|
return fp.Element{}, errBLS12381InvalidFieldElementTopBytes
|
|
}
|
|
}
|
|
var res [48]byte
|
|
copy(res[:], in[16:])
|
|
|
|
return fp.BigEndian.Element(&res)
|
|
}
|
|
|
|
// encodePointG1 encodes a point into 128 bytes.
|
|
func encodePointG1(p *bls12381.G1Affine) []byte {
|
|
out := make([]byte, 128)
|
|
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:]), p.X)
|
|
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[64+16:]), p.Y)
|
|
return out
|
|
}
|
|
|
|
// encodePointG2 encodes a point into 256 bytes.
|
|
func encodePointG2(p *bls12381.G2Affine) []byte {
|
|
out := make([]byte, 256)
|
|
// encode x
|
|
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:16+48]), p.X.A0)
|
|
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[80:80+48]), p.X.A1)
|
|
// encode y
|
|
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[144:144+48]), p.Y.A0)
|
|
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[208:208+48]), p.Y.A1)
|
|
return out
|
|
}
|
|
|
|
// bls12381MapG1 implements EIP-2537 MapG1 precompile.
|
|
type bls12381MapG1 struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381MapG1Gas
|
|
}
|
|
|
|
func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 Map_To_G1 precompile.
|
|
// > Field-to-curve call expects an `64` bytes input that is interpreted as an element of the base field.
|
|
// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
|
|
if len(input) != 64 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
|
|
// Decode input field element
|
|
fe, err := decodeBLS12381FieldElement(input)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Compute mapping
|
|
r := bls12381.MapToG1(fe)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encode the G1 point to 128 bytes
|
|
return encodePointG1(&r), nil
|
|
}
|
|
|
|
// bls12381MapG2 implements EIP-2537 MapG2 precompile.
|
|
type bls12381MapG2 struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381MapG2Gas
|
|
}
|
|
|
|
func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
|
|
// > Field-to-curve call expects an `128` bytes input that is interpreted as an element of the quadratic extension field.
|
|
// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
|
|
if len(input) != 128 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
|
|
// Decode input field element
|
|
c0, err := decodeBLS12381FieldElement(input[:64])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c1, err := decodeBLS12381FieldElement(input[64:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Compute mapping
|
|
r := bls12381.MapToG2(bls12381.E2{A0: c0, A1: c1})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encode the G2 point to 256 bytes
|
|
return encodePointG2(&r), nil
|
|
}
|
|
|
|
// kzgPointEvaluation implements the EIP-4844 point evaluation precompile.
|
|
type kzgPointEvaluation struct{}
|
|
|
|
// RequiredGas estimates the gas required for running the point evaluation precompile.
|
|
func (b *kzgPointEvaluation) RequiredGas(input []byte) uint64 {
|
|
return params.BlobTxPointEvaluationPrecompileGas
|
|
}
|
|
|
|
const (
|
|
blobVerifyInputLength = 192 // Max input length for the point evaluation precompile.
|
|
blobCommitmentVersionKZG uint8 = 0x01 // Version byte for the point evaluation precompile.
|
|
blobPrecompileReturnValue = "000000000000000000000000000000000000000000000000000000000000100073eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001"
|
|
)
|
|
|
|
var (
|
|
errBlobVerifyInvalidInputLength = errors.New("invalid input length")
|
|
errBlobVerifyMismatchedVersion = errors.New("mismatched versioned hash")
|
|
errBlobVerifyKZGProof = errors.New("error verifying kzg proof")
|
|
)
|
|
|
|
// Run executes the point evaluation precompile.
|
|
func (b *kzgPointEvaluation) Run(input []byte) ([]byte, error) {
|
|
if len(input) != blobVerifyInputLength {
|
|
return nil, errBlobVerifyInvalidInputLength
|
|
}
|
|
// versioned hash: first 32 bytes
|
|
var versionedHash common.Hash
|
|
copy(versionedHash[:], input[:])
|
|
|
|
var (
|
|
point kzg4844.Point
|
|
claim kzg4844.Claim
|
|
)
|
|
// Evaluation point: next 32 bytes
|
|
copy(point[:], input[32:])
|
|
// Expected output: next 32 bytes
|
|
copy(claim[:], input[64:])
|
|
|
|
// input kzg point: next 48 bytes
|
|
var commitment kzg4844.Commitment
|
|
copy(commitment[:], input[96:])
|
|
if kZGToVersionedHash(commitment) != versionedHash {
|
|
return nil, errBlobVerifyMismatchedVersion
|
|
}
|
|
|
|
// Proof: next 48 bytes
|
|
var proof kzg4844.Proof
|
|
copy(proof[:], input[144:])
|
|
|
|
if err := kzg4844.VerifyProof(commitment, point, claim, proof); err != nil {
|
|
return nil, fmt.Errorf("%w: %v", errBlobVerifyKZGProof, err)
|
|
}
|
|
|
|
return common.Hex2Bytes(blobPrecompileReturnValue), nil
|
|
}
|
|
|
|
// kZGToVersionedHash implements kzg_to_versioned_hash from EIP-4844
|
|
func kZGToVersionedHash(kzg kzg4844.Commitment) common.Hash {
|
|
h := sha256.Sum256(kzg[:])
|
|
h[0] = blobCommitmentVersionKZG
|
|
|
|
return h
|
|
}
|
|
|