Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/core/block_validator.go

173 lines
6.8 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"errors"
"fmt"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
)
// BlockValidator is responsible for validating block headers, uncles and
// processed state.
//
// BlockValidator implements Validator.
type BlockValidator struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus.Engine // Consensus engine used for validating
}
// NewBlockValidator returns a new block validator which is safe for re-use
func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus.Engine) *BlockValidator {
validator := &BlockValidator{
config: config,
engine: engine,
bc: blockchain,
}
return validator
}
// ValidateBody validates the given block's uncles and verifies the block
// header's transaction and uncle roots. The headers are assumed to be already
// validated at this point.
func (v *BlockValidator) ValidateBody(block *types.Block) error {
// Check whether the block is already imported.
if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) {
return ErrKnownBlock
}
// Header validity is known at this point. Here we verify that uncles, transactions
// and withdrawals given in the block body match the header.
header := block.Header()
if err := v.engine.VerifyUncles(v.bc, block); err != nil {
return err
}
if hash := types.CalcUncleHash(block.Uncles()); hash != header.UncleHash {
return fmt.Errorf("uncle root hash mismatch (header value %x, calculated %x)", header.UncleHash, hash)
}
if hash := types.DeriveSha(block.Transactions(), trie.NewStackTrie(nil)); hash != header.TxHash {
return fmt.Errorf("transaction root hash mismatch (header value %x, calculated %x)", header.TxHash, hash)
}
// Withdrawals are present after the Shanghai fork.
if header.WithdrawalsHash != nil {
// Withdrawals list must be present in body after Shanghai.
if block.Withdrawals() == nil {
return errors.New("missing withdrawals in block body")
}
if hash := types.DeriveSha(block.Withdrawals(), trie.NewStackTrie(nil)); hash != *header.WithdrawalsHash {
return fmt.Errorf("withdrawals root hash mismatch (header value %x, calculated %x)", *header.WithdrawalsHash, hash)
}
} else if block.Withdrawals() != nil {
// Withdrawals are not allowed prior to Shanghai fork
return errors.New("withdrawals present in block body")
}
// Blob transactions may be present after the Cancun fork.
var blobs int
for _, tx := range block.Transactions() {
// Count the number of blobs to validate against the header's dataGasUsed
blobs += len(tx.BlobHashes())
// Validate the data blobs individually too
if tx.Type() == types.BlobTxType {
if tx.To() == nil {
return errors.New("contract creation attempt by blob transaction") // TODO(karalabe): Why not make the field non-nil-able
}
if len(tx.BlobHashes()) == 0 {
return errors.New("no-blob blob transaction present in block body")
}
for _, hash := range tx.BlobHashes() {
if hash[0] != params.BlobTxHashVersion {
return fmt.Errorf("blob hash version mismatch (have %d, supported %d)", hash[0], params.BlobTxHashVersion)
}
}
}
}
if header.DataGasUsed != nil {
if want := *header.DataGasUsed / params.BlobTxDataGasPerBlob; uint64(blobs) != want { // div because the header is surely good vs the body might be bloated
return fmt.Errorf("data gas used mismatch (header %v, calculated %v)", *header.DataGasUsed, blobs*params.BlobTxDataGasPerBlob)
}
} else {
if blobs > 0 {
return errors.New("data blobs present in block body")
}
}
if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) {
if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) {
return consensus.ErrUnknownAncestor
}
return consensus.ErrPrunedAncestor
}
return nil
}
// ValidateState validates the various changes that happen after a state transition,
// such as amount of used gas, the receipt roots and the state root itself.
func (v *BlockValidator) ValidateState(block *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas uint64) error {
header := block.Header()
if block.GasUsed() != usedGas {
return fmt.Errorf("invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas)
}
// Validate the received block's bloom with the one derived from the generated receipts.
// For valid blocks this should always validate to true.
rbloom := types.CreateBloom(receipts)
if rbloom != header.Bloom {
return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom, rbloom)
}
// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, Rn]]))
receiptSha := types.DeriveSha(receipts, trie.NewStackTrie(nil))
if receiptSha != header.ReceiptHash {
return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha)
}
// Validate the state root against the received state root and throw
// an error if they don't match.
if root := statedb.IntermediateRoot(v.config.IsEIP158(header.Number)); header.Root != root {
return fmt.Errorf("invalid merkle root (remote: %x local: %x) dberr: %w", header.Root, root, statedb.Error())
}
return nil
}
// CalcGasLimit computes the gas limit of the next block after parent. It aims
// to keep the baseline gas close to the provided target, and increase it towards
// the target if the baseline gas is lower.
func CalcGasLimit(parentGasLimit, desiredLimit uint64) uint64 {
delta := parentGasLimit/params.GasLimitBoundDivisor - 1
limit := parentGasLimit
if desiredLimit < params.MinGasLimit {
desiredLimit = params.MinGasLimit
}
// If we're outside our allowed gas range, we try to hone towards them
if limit < desiredLimit {
limit = parentGasLimit + delta
if limit > desiredLimit {
limit = desiredLimit
}
return limit
}
if limit > desiredLimit {
limit = parentGasLimit - delta
if limit < desiredLimit {
limit = desiredLimit
}
}
return limit
}