Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/core/state/statedb.go

1412 lines
48 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package state provides a caching layer atop the Ethereum state trie.
package state
import (
"errors"
"fmt"
"maps"
"slices"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/core/stateless"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/utils"
"github.com/holiman/uint256"
"golang.org/x/sync/errgroup"
)
// TriesInMemory represents the number of layers that are kept in RAM.
const TriesInMemory = 128
type mutationType int
const (
update mutationType = iota
deletion
)
type mutation struct {
typ mutationType
applied bool
}
func (m *mutation) copy() *mutation {
return &mutation{typ: m.typ, applied: m.applied}
}
func (m *mutation) isDelete() bool {
return m.typ == deletion
}
// StateDB structs within the ethereum protocol are used to store anything
// within the merkle trie. StateDBs take care of caching and storing
// nested states. It's the general query interface to retrieve:
//
// * Contracts
// * Accounts
//
// Once the state is committed, tries cached in stateDB (including account
// trie, storage tries) will no longer be functional. A new state instance
// must be created with new root and updated database for accessing post-
// commit states.
type StateDB struct {
db Database
prefetcher *triePrefetcher
trie Trie
reader Reader
// originalRoot is the pre-state root, before any changes were made.
// It will be updated when the Commit is called.
originalRoot common.Hash
// This map holds 'live' objects, which will get modified while
// processing a state transition.
stateObjects map[common.Address]*stateObject
// This map holds 'deleted' objects. An object with the same address
// might also occur in the 'stateObjects' map due to account
// resurrection. The account value is tracked as the original value
// before the transition. This map is populated at the transaction
// boundaries.
stateObjectsDestruct map[common.Address]*stateObject
// This map tracks the account mutations that occurred during the
// transition. Uncommitted mutations belonging to the same account
// can be merged into a single one which is equivalent from database's
// perspective. This map is populated at the transaction boundaries.
mutations map[common.Address]*mutation
// DB error.
// State objects are used by the consensus core and VM which are
// unable to deal with database-level errors. Any error that occurs
// during a database read is memoized here and will eventually be
// returned by StateDB.Commit. Notably, this error is also shared
// by all cached state objects in case the database failure occurs
// when accessing state of accounts.
dbErr error
// The refund counter, also used by state transitioning.
refund uint64
// The tx context and all occurred logs in the scope of transaction.
thash common.Hash
txIndex int
logs map[common.Hash][]*types.Log
logSize uint
// Preimages occurred seen by VM in the scope of block.
preimages map[common.Hash][]byte
// Per-transaction access list
accessList *accessList
accessEvents *AccessEvents
// Transient storage
transientStorage transientStorage
// Journal of state modifications. This is the backbone of
// Snapshot and RevertToSnapshot.
journal *journal
// State witness if cross validation is needed
witness *stateless.Witness
// Measurements gathered during execution for debugging purposes
AccountReads time.Duration
AccountHashes time.Duration
AccountUpdates time.Duration
AccountCommits time.Duration
StorageReads time.Duration
StorageUpdates time.Duration
StorageCommits time.Duration
SnapshotCommits time.Duration
TrieDBCommits time.Duration
AccountLoaded int // Number of accounts retrieved from the database during the state transition
AccountUpdated int // Number of accounts updated during the state transition
AccountDeleted int // Number of accounts deleted during the state transition
StorageLoaded int // Number of storage slots retrieved from the database during the state transition
StorageUpdated atomic.Int64 // Number of storage slots updated during the state transition
StorageDeleted atomic.Int64 // Number of storage slots deleted during the state transition
}
// New creates a new state from a given trie.
func New(root common.Hash, db Database) (*StateDB, error) {
tr, err := db.OpenTrie(root)
if err != nil {
return nil, err
}
reader, err := db.Reader(root)
if err != nil {
return nil, err
}
sdb := &StateDB{
db: db,
trie: tr,
originalRoot: root,
reader: reader,
stateObjects: make(map[common.Address]*stateObject),
stateObjectsDestruct: make(map[common.Address]*stateObject),
mutations: make(map[common.Address]*mutation),
logs: make(map[common.Hash][]*types.Log),
preimages: make(map[common.Hash][]byte),
journal: newJournal(),
accessList: newAccessList(),
transientStorage: newTransientStorage(),
}
if db.TrieDB().IsVerkle() {
sdb.accessEvents = NewAccessEvents(db.PointCache())
}
return sdb, nil
}
// StartPrefetcher initializes a new trie prefetcher to pull in nodes from the
// state trie concurrently while the state is mutated so that when we reach the
// commit phase, most of the needed data is already hot.
func (s *StateDB) StartPrefetcher(namespace string, witness *stateless.Witness) {
// Terminate any previously running prefetcher
s.StopPrefetcher()
// Enable witness collection if requested
s.witness = witness
// With the switch to the Proof-of-Stake consensus algorithm, block production
// rewards are now handled at the consensus layer. Consequently, a block may
// have no state transitions if it contains no transactions and no withdrawals.
// In such cases, the account trie won't be scheduled for prefetching, leading
// to unnecessary error logs.
//
// To prevent this, the account trie is always scheduled for prefetching once
// the prefetcher is constructed. For more details, see:
// https://github.com/ethereum/go-ethereum/issues/29880
s.prefetcher = newTriePrefetcher(s.db, s.originalRoot, namespace, witness == nil)
if err := s.prefetcher.prefetch(common.Hash{}, s.originalRoot, common.Address{}, nil, nil, false); err != nil {
log.Error("Failed to prefetch account trie", "root", s.originalRoot, "err", err)
}
}
// StopPrefetcher terminates a running prefetcher and reports any leftover stats
// from the gathered metrics.
func (s *StateDB) StopPrefetcher() {
if s.prefetcher != nil {
s.prefetcher.terminate(false)
s.prefetcher.report()
s.prefetcher = nil
}
}
// setError remembers the first non-nil error it is called with.
func (s *StateDB) setError(err error) {
if s.dbErr == nil {
s.dbErr = err
}
}
// Error returns the memorized database failure occurred earlier.
func (s *StateDB) Error() error {
return s.dbErr
}
func (s *StateDB) AddLog(log *types.Log) {
s.journal.logChange(s.thash)
log.TxHash = s.thash
log.TxIndex = uint(s.txIndex)
log.Index = s.logSize
s.logs[s.thash] = append(s.logs[s.thash], log)
s.logSize++
}
// GetLogs returns the logs matching the specified transaction hash, and annotates
// them with the given blockNumber and blockHash.
func (s *StateDB) GetLogs(hash common.Hash, blockNumber uint64, blockHash common.Hash) []*types.Log {
logs := s.logs[hash]
for _, l := range logs {
l.BlockNumber = blockNumber
l.BlockHash = blockHash
}
return logs
}
func (s *StateDB) Logs() []*types.Log {
var logs []*types.Log
for _, lgs := range s.logs {
logs = append(logs, lgs...)
}
return logs
}
// AddPreimage records a SHA3 preimage seen by the VM.
func (s *StateDB) AddPreimage(hash common.Hash, preimage []byte) {
if _, ok := s.preimages[hash]; !ok {
s.preimages[hash] = slices.Clone(preimage)
}
}
// Preimages returns a list of SHA3 preimages that have been submitted.
func (s *StateDB) Preimages() map[common.Hash][]byte {
return s.preimages
}
// AddRefund adds gas to the refund counter
func (s *StateDB) AddRefund(gas uint64) {
s.journal.refundChange(s.refund)
s.refund += gas
}
// SubRefund removes gas from the refund counter.
// This method will panic if the refund counter goes below zero
func (s *StateDB) SubRefund(gas uint64) {
s.journal.refundChange(s.refund)
if gas > s.refund {
panic(fmt.Sprintf("Refund counter below zero (gas: %d > refund: %d)", gas, s.refund))
}
s.refund -= gas
}
// Exist reports whether the given account address exists in the state.
// Notably this also returns true for self-destructed accounts.
func (s *StateDB) Exist(addr common.Address) bool {
return s.getStateObject(addr) != nil
}
// Empty returns whether the state object is either non-existent
// or empty according to the EIP161 specification (balance = nonce = code = 0)
func (s *StateDB) Empty(addr common.Address) bool {
so := s.getStateObject(addr)
return so == nil || so.empty()
}
// GetBalance retrieves the balance from the given address or 0 if object not found
func (s *StateDB) GetBalance(addr common.Address) *uint256.Int {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.Balance()
}
return common.U2560
}
// GetNonce retrieves the nonce from the given address or 0 if object not found
func (s *StateDB) GetNonce(addr common.Address) uint64 {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.Nonce()
}
return 0
}
// GetStorageRoot retrieves the storage root from the given address or empty
// if object not found.
func (s *StateDB) GetStorageRoot(addr common.Address) common.Hash {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.Root()
}
return common.Hash{}
}
// TxIndex returns the current transaction index set by SetTxContext.
func (s *StateDB) TxIndex() int {
return s.txIndex
}
func (s *StateDB) GetCode(addr common.Address) []byte {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.Code()
}
return nil
}
func (s *StateDB) GetCodeSize(addr common.Address) int {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.CodeSize()
}
return 0
}
func (s *StateDB) GetCodeHash(addr common.Address) common.Hash {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return common.BytesToHash(stateObject.CodeHash())
}
return common.Hash{}
}
// GetState retrieves the value associated with the specific key.
func (s *StateDB) GetState(addr common.Address, hash common.Hash) common.Hash {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.GetState(hash)
}
return common.Hash{}
}
// GetCommittedState retrieves the value associated with the specific key
// without any mutations caused in the current execution.
func (s *StateDB) GetCommittedState(addr common.Address, hash common.Hash) common.Hash {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.GetCommittedState(hash)
}
return common.Hash{}
}
// Database retrieves the low level database supporting the lower level trie ops.
func (s *StateDB) Database() Database {
return s.db
}
func (s *StateDB) HasSelfDestructed(addr common.Address) bool {
stateObject := s.getStateObject(addr)
if stateObject != nil {
return stateObject.selfDestructed
}
return false
}
/*
* SETTERS
*/
// AddBalance adds amount to the account associated with addr.
func (s *StateDB) AddBalance(addr common.Address, amount *uint256.Int, reason tracing.BalanceChangeReason) uint256.Int {
stateObject := s.getOrNewStateObject(addr)
if stateObject == nil {
return uint256.Int{}
}
return stateObject.AddBalance(amount)
}
// SubBalance subtracts amount from the account associated with addr.
func (s *StateDB) SubBalance(addr common.Address, amount *uint256.Int, reason tracing.BalanceChangeReason) uint256.Int {
stateObject := s.getOrNewStateObject(addr)
if stateObject == nil {
return uint256.Int{}
}
if amount.IsZero() {
return *(stateObject.Balance())
}
return stateObject.SetBalance(new(uint256.Int).Sub(stateObject.Balance(), amount))
}
func (s *StateDB) SetBalance(addr common.Address, amount *uint256.Int, reason tracing.BalanceChangeReason) {
stateObject := s.getOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetBalance(amount)
}
}
func (s *StateDB) SetNonce(addr common.Address, nonce uint64) {
stateObject := s.getOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetNonce(nonce)
}
}
func (s *StateDB) SetCode(addr common.Address, code []byte) {
stateObject := s.getOrNewStateObject(addr)
if stateObject != nil {
stateObject.SetCode(crypto.Keccak256Hash(code), code)
}
}
func (s *StateDB) SetState(addr common.Address, key, value common.Hash) common.Hash {
if stateObject := s.getOrNewStateObject(addr); stateObject != nil {
return stateObject.SetState(key, value)
}
return common.Hash{}
}
// SetStorage replaces the entire storage for the specified account with given
// storage. This function should only be used for debugging and the mutations
// must be discarded afterwards.
func (s *StateDB) SetStorage(addr common.Address, storage map[common.Hash]common.Hash) {
// SetStorage needs to wipe the existing storage. We achieve this by marking
// the account as self-destructed in this block. The effect is that storage
// lookups will not hit the disk, as it is assumed that the disk data belongs
// to a previous incarnation of the object.
//
// TODO (rjl493456442): This function should only be supported by 'unwritable'
// state, and all mutations made should be discarded afterward.
obj := s.getStateObject(addr)
if obj != nil {
if _, ok := s.stateObjectsDestruct[addr]; !ok {
s.stateObjectsDestruct[addr] = obj
}
}
newObj := s.createObject(addr)
for k, v := range storage {
newObj.SetState(k, v)
}
// Inherit the metadata of original object if it was existent
if obj != nil {
newObj.SetCode(common.BytesToHash(obj.CodeHash()), obj.code)
newObj.SetNonce(obj.Nonce())
newObj.SetBalance(obj.Balance())
}
}
// SelfDestruct marks the given account as selfdestructed.
// This clears the account balance.
//
// The account's state object is still available until the state is committed,
// getStateObject will return a non-nil account after SelfDestruct.
func (s *StateDB) SelfDestruct(addr common.Address) uint256.Int {
stateObject := s.getStateObject(addr)
var prevBalance uint256.Int
if stateObject == nil {
return prevBalance
}
prevBalance = *(stateObject.Balance())
// Regardless of whether it is already destructed or not, we do have to
// journal the balance-change, if we set it to zero here.
if !stateObject.Balance().IsZero() {
stateObject.SetBalance(new(uint256.Int))
}
// If it is already marked as self-destructed, we do not need to add it
// for journalling a second time.
if !stateObject.selfDestructed {
s.journal.destruct(addr)
stateObject.markSelfdestructed()
}
return prevBalance
}
func (s *StateDB) SelfDestruct6780(addr common.Address) (uint256.Int, bool) {
stateObject := s.getStateObject(addr)
if stateObject == nil {
return uint256.Int{}, false
}
if stateObject.newContract {
return s.SelfDestruct(addr), true
}
return *(stateObject.Balance()), false
}
// SetTransientState sets transient storage for a given account. It
// adds the change to the journal so that it can be rolled back
// to its previous value if there is a revert.
func (s *StateDB) SetTransientState(addr common.Address, key, value common.Hash) {
prev := s.GetTransientState(addr, key)
if prev == value {
return
}
s.journal.transientStateChange(addr, key, prev)
s.setTransientState(addr, key, value)
}
// setTransientState is a lower level setter for transient storage. It
// is called during a revert to prevent modifications to the journal.
func (s *StateDB) setTransientState(addr common.Address, key, value common.Hash) {
s.transientStorage.Set(addr, key, value)
}
// GetTransientState gets transient storage for a given account.
func (s *StateDB) GetTransientState(addr common.Address, key common.Hash) common.Hash {
return s.transientStorage.Get(addr, key)
}
//
// Setting, updating & deleting state object methods.
//
// updateStateObject writes the given object to the trie.
func (s *StateDB) updateStateObject(obj *stateObject) {
// Encode the account and update the account trie
addr := obj.Address()
if err := s.trie.UpdateAccount(addr, &obj.data, len(obj.code)); err != nil {
s.setError(fmt.Errorf("updateStateObject (%x) error: %v", addr[:], err))
}
if obj.dirtyCode {
s.trie.UpdateContractCode(obj.Address(), common.BytesToHash(obj.CodeHash()), obj.code)
}
}
// deleteStateObject removes the given object from the state trie.
func (s *StateDB) deleteStateObject(addr common.Address) {
if err := s.trie.DeleteAccount(addr); err != nil {
s.setError(fmt.Errorf("deleteStateObject (%x) error: %v", addr[:], err))
}
}
// getStateObject retrieves a state object given by the address, returning nil if
// the object is not found or was deleted in this execution context.
func (s *StateDB) getStateObject(addr common.Address) *stateObject {
// Prefer live objects if any is available
if obj := s.stateObjects[addr]; obj != nil {
return obj
}
// Short circuit if the account is already destructed in this block.
if _, ok := s.stateObjectsDestruct[addr]; ok {
return nil
}
s.AccountLoaded++
start := time.Now()
acct, err := s.reader.Account(addr)
if err != nil {
s.setError(fmt.Errorf("getStateObject (%x) error: %w", addr.Bytes(), err))
return nil
}
s.AccountReads += time.Since(start)
// Short circuit if the account is not found
if acct == nil {
return nil
}
// Schedule the resolved account for prefetching if it's enabled.
if s.prefetcher != nil {
if err = s.prefetcher.prefetch(common.Hash{}, s.originalRoot, common.Address{}, []common.Address{addr}, nil, true); err != nil {
log.Error("Failed to prefetch account", "addr", addr, "err", err)
}
}
// Insert into the live set
obj := newObject(s, addr, acct)
s.setStateObject(obj)
s.AccountLoaded++
return obj
}
func (s *StateDB) setStateObject(object *stateObject) {
s.stateObjects[object.Address()] = object
}
// getOrNewStateObject retrieves a state object or create a new state object if nil.
func (s *StateDB) getOrNewStateObject(addr common.Address) *stateObject {
obj := s.getStateObject(addr)
if obj == nil {
obj = s.createObject(addr)
}
return obj
}
// createObject creates a new state object. The assumption is held there is no
// existing account with the given address, otherwise it will be silently overwritten.
func (s *StateDB) createObject(addr common.Address) *stateObject {
obj := newObject(s, addr, nil)
s.journal.createObject(addr)
s.setStateObject(obj)
return obj
}
// CreateAccount explicitly creates a new state object, assuming that the
// account did not previously exist in the state. If the account already
// exists, this function will silently overwrite it which might lead to a
// consensus bug eventually.
func (s *StateDB) CreateAccount(addr common.Address) {
s.createObject(addr)
}
// CreateContract is used whenever a contract is created. This may be preceded
// by CreateAccount, but that is not required if it already existed in the
// state due to funds sent beforehand.
// This operation sets the 'newContract'-flag, which is required in order to
// correctly handle EIP-6780 'delete-in-same-transaction' logic.
func (s *StateDB) CreateContract(addr common.Address) {
obj := s.getStateObject(addr)
if !obj.newContract {
obj.newContract = true
s.journal.createContract(addr)
}
}
// Copy creates a deep, independent copy of the state.
// Snapshots of the copied state cannot be applied to the copy.
func (s *StateDB) Copy() *StateDB {
// Copy all the basic fields, initialize the memory ones
state := &StateDB{
db: s.db,
trie: mustCopyTrie(s.trie),
reader: s.reader.Copy(),
originalRoot: s.originalRoot,
stateObjects: make(map[common.Address]*stateObject, len(s.stateObjects)),
stateObjectsDestruct: make(map[common.Address]*stateObject, len(s.stateObjectsDestruct)),
mutations: make(map[common.Address]*mutation, len(s.mutations)),
dbErr: s.dbErr,
refund: s.refund,
thash: s.thash,
txIndex: s.txIndex,
logs: make(map[common.Hash][]*types.Log, len(s.logs)),
logSize: s.logSize,
preimages: maps.Clone(s.preimages),
// Do we need to copy the access list and transient storage?
// In practice: No. At the start of a transaction, these two lists are empty.
// In practice, we only ever copy state _between_ transactions/blocks, never
// in the middle of a transaction. However, it doesn't cost us much to copy
// empty lists, so we do it anyway to not blow up if we ever decide copy them
// in the middle of a transaction.
accessList: s.accessList.Copy(),
transientStorage: s.transientStorage.Copy(),
journal: s.journal.copy(),
}
if s.witness != nil {
state.witness = s.witness.Copy()
}
if s.accessEvents != nil {
state.accessEvents = s.accessEvents.Copy()
}
// Deep copy cached state objects.
for addr, obj := range s.stateObjects {
state.stateObjects[addr] = obj.deepCopy(state)
}
// Deep copy destructed state objects.
for addr, obj := range s.stateObjectsDestruct {
state.stateObjectsDestruct[addr] = obj.deepCopy(state)
}
// Deep copy the object state markers.
for addr, op := range s.mutations {
state.mutations[addr] = op.copy()
}
// Deep copy the logs occurred in the scope of block
for hash, logs := range s.logs {
cpy := make([]*types.Log, len(logs))
for i, l := range logs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
state.logs[hash] = cpy
}
return state
}
// Snapshot returns an identifier for the current revision of the state.
func (s *StateDB) Snapshot() int {
return s.journal.snapshot()
}
// RevertToSnapshot reverts all state changes made since the given revision.
func (s *StateDB) RevertToSnapshot(revid int) {
s.journal.revertToSnapshot(revid, s)
}
// GetRefund returns the current value of the refund counter.
func (s *StateDB) GetRefund() uint64 {
return s.refund
}
// Finalise finalises the state by removing the destructed objects and clears
// the journal as well as the refunds. Finalise, however, will not push any updates
// into the tries just yet. Only IntermediateRoot or Commit will do that.
func (s *StateDB) Finalise(deleteEmptyObjects bool) {
addressesToPrefetch := make([]common.Address, 0, len(s.journal.dirties))
for addr := range s.journal.dirties {
obj, exist := s.stateObjects[addr]
if !exist {
// ripeMD is 'touched' at block 1714175, in tx 0x1237f737031e40bcde4a8b7e717b2d15e3ecadfe49bb1bbc71ee9deb09c6fcf2
// That tx goes out of gas, and although the notion of 'touched' does not exist there, the
// touch-event will still be recorded in the journal. Since ripeMD is a special snowflake,
// it will persist in the journal even though the journal is reverted. In this special circumstance,
// it may exist in `s.journal.dirties` but not in `s.stateObjects`.
// Thus, we can safely ignore it here
continue
}
if obj.selfDestructed || (deleteEmptyObjects && obj.empty()) {
delete(s.stateObjects, obj.address)
s.markDelete(addr)
// We need to maintain account deletions explicitly (will remain
// set indefinitely). Note only the first occurred self-destruct
// event is tracked.
if _, ok := s.stateObjectsDestruct[obj.address]; !ok {
s.stateObjectsDestruct[obj.address] = obj
}
} else {
obj.finalise()
s.markUpdate(addr)
}
// At this point, also ship the address off to the precacher. The precacher
// will start loading tries, and when the change is eventually committed,
// the commit-phase will be a lot faster
addressesToPrefetch = append(addressesToPrefetch, addr) // Copy needed for closure
}
if s.prefetcher != nil && len(addressesToPrefetch) > 0 {
if err := s.prefetcher.prefetch(common.Hash{}, s.originalRoot, common.Address{}, addressesToPrefetch, nil, false); err != nil {
log.Error("Failed to prefetch addresses", "addresses", len(addressesToPrefetch), "err", err)
}
}
// Invalidate journal because reverting across transactions is not allowed.
s.clearJournalAndRefund()
}
// IntermediateRoot computes the current root hash of the state trie.
// It is called in between transactions to get the root hash that
// goes into transaction receipts.
func (s *StateDB) IntermediateRoot(deleteEmptyObjects bool) common.Hash {
// Finalise all the dirty storage states and write them into the tries
s.Finalise(deleteEmptyObjects)
// If there was a trie prefetcher operating, terminate it async so that the
// individual storage tries can be updated as soon as the disk load finishes.
if s.prefetcher != nil {
s.prefetcher.terminate(true)
defer func() {
s.prefetcher.report()
s.prefetcher = nil // Pre-byzantium, unset any used up prefetcher
}()
}
// Process all storage updates concurrently. The state object update root
// method will internally call a blocking trie fetch from the prefetcher,
// so there's no need to explicitly wait for the prefetchers to finish.
var (
start = time.Now()
workers errgroup.Group
)
if s.db.TrieDB().IsVerkle() {
// Whilst MPT storage tries are independent, Verkle has one single trie
// for all the accounts and all the storage slots merged together. The
// former can thus be simply parallelized, but updating the latter will
// need concurrency support within the trie itself. That's a TODO for a
// later time.
workers.SetLimit(1)
}
for addr, op := range s.mutations {
if op.applied || op.isDelete() {
continue
}
obj := s.stateObjects[addr] // closure for the task runner below
workers.Go(func() error {
if s.db.TrieDB().IsVerkle() {
obj.updateTrie()
} else {
obj.updateRoot()
// If witness building is enabled and the state object has a trie,
// gather the witnesses for its specific storage trie
if s.witness != nil && obj.trie != nil {
s.witness.AddState(obj.trie.Witness())
}
}
return nil
})
}
// If witness building is enabled, gather all the read-only accesses.
// Skip witness collection in Verkle mode, they will be gathered
// together at the end.
if s.witness != nil && !s.db.TrieDB().IsVerkle() {
// Pull in anything that has been accessed before destruction
for _, obj := range s.stateObjectsDestruct {
// Skip any objects that haven't touched their storage
if len(obj.originStorage) == 0 {
continue
}
if trie := obj.getPrefetchedTrie(); trie != nil {
s.witness.AddState(trie.Witness())
} else if obj.trie != nil {
s.witness.AddState(obj.trie.Witness())
}
}
// Pull in only-read and non-destructed trie witnesses
for _, obj := range s.stateObjects {
// Skip any objects that have been updated
if _, ok := s.mutations[obj.address]; ok {
continue
}
// Skip any objects that haven't touched their storage
if len(obj.originStorage) == 0 {
continue
}
if trie := obj.getPrefetchedTrie(); trie != nil {
s.witness.AddState(trie.Witness())
} else if obj.trie != nil {
s.witness.AddState(obj.trie.Witness())
}
}
}
workers.Wait()
s.StorageUpdates += time.Since(start)
// Now we're about to start to write changes to the trie. The trie is so far
// _untouched_. We can check with the prefetcher, if it can give us a trie
// which has the same root, but also has some content loaded into it.
//
// Don't check prefetcher if verkle trie has been used. In the context of verkle,
// only a single trie is used for state hashing. Replacing a non-nil verkle tree
// here could result in losing uncommitted changes from storage.
start = time.Now()
if s.prefetcher != nil {
if trie := s.prefetcher.trie(common.Hash{}, s.originalRoot); trie == nil {
log.Error("Failed to retrieve account pre-fetcher trie")
} else {
s.trie = trie
}
}
// Perform updates before deletions. This prevents resolution of unnecessary trie nodes
// in circumstances similar to the following:
//
// Consider nodes `A` and `B` who share the same full node parent `P` and have no other siblings.
// During the execution of a block:
// - `A` self-destructs,
// - `C` is created, and also shares the parent `P`.
// If the self-destruct is handled first, then `P` would be left with only one child, thus collapsed
// into a shortnode. This requires `B` to be resolved from disk.
// Whereas if the created node is handled first, then the collapse is avoided, and `B` is not resolved.
var (
usedAddrs []common.Address
deletedAddrs []common.Address
)
for addr, op := range s.mutations {
if op.applied {
continue
}
op.applied = true
if op.isDelete() {
deletedAddrs = append(deletedAddrs, addr)
} else {
s.updateStateObject(s.stateObjects[addr])
s.AccountUpdated += 1
}
usedAddrs = append(usedAddrs, addr) // Copy needed for closure
}
for _, deletedAddr := range deletedAddrs {
s.deleteStateObject(deletedAddr)
s.AccountDeleted += 1
}
s.AccountUpdates += time.Since(start)
if s.prefetcher != nil {
s.prefetcher.used(common.Hash{}, s.originalRoot, usedAddrs, nil)
}
// Track the amount of time wasted on hashing the account trie
defer func(start time.Time) { s.AccountHashes += time.Since(start) }(time.Now())
hash := s.trie.Hash()
// If witness building is enabled, gather the account trie witness
if s.witness != nil {
s.witness.AddState(s.trie.Witness())
}
return hash
}
// SetTxContext sets the current transaction hash and index which are
// used when the EVM emits new state logs. It should be invoked before
// transaction execution.
func (s *StateDB) SetTxContext(thash common.Hash, ti int) {
s.thash = thash
s.txIndex = ti
}
func (s *StateDB) clearJournalAndRefund() {
s.journal.reset()
s.refund = 0
}
// fastDeleteStorage is the function that efficiently deletes the storage trie
// of a specific account. It leverages the associated state snapshot for fast
// storage iteration and constructs trie node deletion markers by creating
// stack trie with iterated slots.
func (s *StateDB) fastDeleteStorage(snaps *snapshot.Tree, addrHash common.Hash, root common.Hash) (map[common.Hash][]byte, *trienode.NodeSet, error) {
iter, err := snaps.StorageIterator(s.originalRoot, addrHash, common.Hash{})
if err != nil {
return nil, nil, err
}
defer iter.Release()
var (
nodes = trienode.NewNodeSet(addrHash)
slots = make(map[common.Hash][]byte)
)
stack := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
nodes.AddNode(path, trienode.NewDeleted())
})
for iter.Next() {
slot := common.CopyBytes(iter.Slot())
if err := iter.Error(); err != nil { // error might occur after Slot function
return nil, nil, err
}
slots[iter.Hash()] = slot
if err := stack.Update(iter.Hash().Bytes(), slot); err != nil {
return nil, nil, err
}
}
if err := iter.Error(); err != nil { // error might occur during iteration
return nil, nil, err
}
if stack.Hash() != root {
return nil, nil, fmt.Errorf("snapshot is not matched, exp %x, got %x", root, stack.Hash())
}
return slots, nodes, nil
}
// slowDeleteStorage serves as a less-efficient alternative to "fastDeleteStorage,"
// employed when the associated state snapshot is not available. It iterates the
// storage slots along with all internal trie nodes via trie directly.
func (s *StateDB) slowDeleteStorage(addr common.Address, addrHash common.Hash, root common.Hash) (map[common.Hash][]byte, *trienode.NodeSet, error) {
tr, err := s.db.OpenStorageTrie(s.originalRoot, addr, root, s.trie)
if err != nil {
return nil, nil, fmt.Errorf("failed to open storage trie, err: %w", err)
}
it, err := tr.NodeIterator(nil)
if err != nil {
return nil, nil, fmt.Errorf("failed to open storage iterator, err: %w", err)
}
var (
nodes = trienode.NewNodeSet(addrHash)
slots = make(map[common.Hash][]byte)
)
for it.Next(true) {
if it.Leaf() {
slots[common.BytesToHash(it.LeafKey())] = common.CopyBytes(it.LeafBlob())
continue
}
if it.Hash() == (common.Hash{}) {
continue
}
nodes.AddNode(it.Path(), trienode.NewDeleted())
}
if err := it.Error(); err != nil {
return nil, nil, err
}
return slots, nodes, nil
}
// deleteStorage is designed to delete the storage trie of a designated account.
// The function will make an attempt to utilize an efficient strategy if the
// associated state snapshot is reachable; otherwise, it will resort to a less
// efficient approach.
func (s *StateDB) deleteStorage(addr common.Address, addrHash common.Hash, root common.Hash) (map[common.Hash][]byte, *trienode.NodeSet, error) {
var (
err error
slots map[common.Hash][]byte
nodes *trienode.NodeSet
)
// The fast approach can be failed if the snapshot is not fully
// generated, or it's internally corrupted. Fallback to the slow
// one just in case.
snaps := s.db.Snapshot()
if snaps != nil {
slots, nodes, err = s.fastDeleteStorage(snaps, addrHash, root)
}
if snaps == nil || err != nil {
slots, nodes, err = s.slowDeleteStorage(addr, addrHash, root)
}
if err != nil {
return nil, nil, err
}
return slots, nodes, nil
}
// handleDestruction processes all destruction markers and deletes the account
// and associated storage slots if necessary. There are four potential scenarios
// as following:
//
// (a) the account was not existent and be marked as destructed
// (b) the account was not existent and be marked as destructed,
// however, it's resurrected later in the same block.
// (c) the account was existent and be marked as destructed
// (d) the account was existent and be marked as destructed,
// however it's resurrected later in the same block.
//
// In case (a), nothing needs be deleted, nil to nil transition can be ignored.
// In case (b), nothing needs be deleted, nil is used as the original value for
// newly created account and storages
// In case (c), **original** account along with its storages should be deleted,
// with their values be tracked as original value.
// In case (d), **original** account along with its storages should be deleted,
// with their values be tracked as original value.
func (s *StateDB) handleDestruction() (map[common.Hash]*accountDelete, []*trienode.NodeSet, error) {
var (
nodes []*trienode.NodeSet
buf = crypto.NewKeccakState()
deletes = make(map[common.Hash]*accountDelete)
)
for addr, prevObj := range s.stateObjectsDestruct {
prev := prevObj.origin
// The account was non-existent, and it's marked as destructed in the scope
// of block. It can be either case (a) or (b) and will be interpreted as
// null->null state transition.
// - for (a), skip it without doing anything
// - for (b), the resurrected account with nil as original will be handled afterwards
if prev == nil {
continue
}
// The account was existent, it can be either case (c) or (d).
addrHash := crypto.HashData(buf, addr.Bytes())
op := &accountDelete{
address: addr,
origin: types.SlimAccountRLP(*prev),
}
deletes[addrHash] = op
// Short circuit if the origin storage was empty.
if prev.Root == types.EmptyRootHash {
continue
}
// Remove storage slots belonging to the account.
slots, set, err := s.deleteStorage(addr, addrHash, prev.Root)
if err != nil {
return nil, nil, fmt.Errorf("failed to delete storage, err: %w", err)
}
op.storagesOrigin = slots
// Aggregate the associated trie node changes.
nodes = append(nodes, set)
}
return deletes, nodes, nil
}
// GetTrie returns the account trie.
func (s *StateDB) GetTrie() Trie {
return s.trie
}
// commit gathers the state mutations accumulated along with the associated
// trie changes, resetting all internal flags with the new state as the base.
func (s *StateDB) commit(deleteEmptyObjects bool) (*stateUpdate, error) {
// Short circuit in case any database failure occurred earlier.
if s.dbErr != nil {
return nil, fmt.Errorf("commit aborted due to earlier error: %v", s.dbErr)
}
// Finalize any pending changes and merge everything into the tries
s.IntermediateRoot(deleteEmptyObjects)
// Short circuit if any error occurs within the IntermediateRoot.
if s.dbErr != nil {
return nil, fmt.Errorf("commit aborted due to database error: %v", s.dbErr)
}
// Commit objects to the trie, measuring the elapsed time
var (
accountTrieNodesUpdated int
accountTrieNodesDeleted int
storageTrieNodesUpdated int
storageTrieNodesDeleted int
lock sync.Mutex // protect two maps below
nodes = trienode.NewMergedNodeSet() // aggregated trie nodes
updates = make(map[common.Hash]*accountUpdate, len(s.mutations)) // aggregated account updates
// merge aggregates the dirty trie nodes into the global set.
//
// Given that some accounts may be destroyed and then recreated within
// the same block, it's possible that a node set with the same owner
// may already exists. In such cases, these two sets are combined, with
// the later one overwriting the previous one if any nodes are modified
// or deleted in both sets.
//
// merge run concurrently across all the state objects and account trie.
merge = func(set *trienode.NodeSet) error {
if set == nil {
return nil
}
lock.Lock()
defer lock.Unlock()
updates, deletes := set.Size()
if set.Owner == (common.Hash{}) {
accountTrieNodesUpdated += updates
accountTrieNodesDeleted += deletes
} else {
storageTrieNodesUpdated += updates
storageTrieNodesDeleted += deletes
}
return nodes.Merge(set)
}
)
// Given that some accounts could be destroyed and then recreated within
// the same block, account deletions must be processed first. This ensures
// that the storage trie nodes deleted during destruction and recreated
// during subsequent resurrection can be combined correctly.
deletes, delNodes, err := s.handleDestruction()
if err != nil {
return nil, err
}
for _, set := range delNodes {
if err := merge(set); err != nil {
return nil, err
}
}
// Handle all state updates afterwards, concurrently to one another to shave
// off some milliseconds from the commit operation. Also accumulate the code
// writes to run in parallel with the computations.
var (
start = time.Now()
root common.Hash
workers errgroup.Group
)
// Schedule the account trie first since that will be the biggest, so give
// it the most time to crunch.
//
// TODO(karalabe): This account trie commit is *very* heavy. 5-6ms at chain
// heads, which seems excessive given that it doesn't do hashing, it just
// shuffles some data. For comparison, the *hashing* at chain head is 2-3ms.
// We need to investigate what's happening as it seems something's wonky.
// Obviously it's not an end of the world issue, just something the original
// code didn't anticipate for.
workers.Go(func() error {
// Write the account trie changes, measuring the amount of wasted time
newroot, set := s.trie.Commit(true)
root = newroot
if err := merge(set); err != nil {
return err
}
s.AccountCommits = time.Since(start)
return nil
})
// Schedule each of the storage tries that need to be updated, so they can
// run concurrently to one another.
//
// TODO(karalabe): Experimentally, the account commit takes approximately the
// same time as all the storage commits combined, so we could maybe only have
// 2 threads in total. But that kind of depends on the account commit being
// more expensive than it should be, so let's fix that and revisit this todo.
for addr, op := range s.mutations {
if op.isDelete() {
continue
}
// Write any contract code associated with the state object
obj := s.stateObjects[addr]
if obj == nil {
return nil, errors.New("missing state object")
}
// Run the storage updates concurrently to one another
workers.Go(func() error {
// Write any storage changes in the state object to its storage trie
update, set, err := obj.commit()
if err != nil {
return err
}
if err := merge(set); err != nil {
return err
}
lock.Lock()
updates[obj.addrHash] = update
s.StorageCommits = time.Since(start) // overwrite with the longest storage commit runtime
lock.Unlock()
return nil
})
}
// Wait for everything to finish and update the metrics
if err := workers.Wait(); err != nil {
return nil, err
}
accountReadMeters.Mark(int64(s.AccountLoaded))
storageReadMeters.Mark(int64(s.StorageLoaded))
accountUpdatedMeter.Mark(int64(s.AccountUpdated))
storageUpdatedMeter.Mark(s.StorageUpdated.Load())
accountDeletedMeter.Mark(int64(s.AccountDeleted))
storageDeletedMeter.Mark(s.StorageDeleted.Load())
accountTrieUpdatedMeter.Mark(int64(accountTrieNodesUpdated))
accountTrieDeletedMeter.Mark(int64(accountTrieNodesDeleted))
storageTriesUpdatedMeter.Mark(int64(storageTrieNodesUpdated))
storageTriesDeletedMeter.Mark(int64(storageTrieNodesDeleted))
// Clear the metric markers
s.AccountLoaded, s.AccountUpdated, s.AccountDeleted = 0, 0, 0
s.StorageLoaded = 0
s.StorageUpdated.Store(0)
s.StorageDeleted.Store(0)
// Clear all internal flags and update state root at the end.
s.mutations = make(map[common.Address]*mutation)
s.stateObjectsDestruct = make(map[common.Address]*stateObject)
origin := s.originalRoot
s.originalRoot = root
return newStateUpdate(origin, root, deletes, updates, nodes), nil
}
// commitAndFlush is a wrapper of commit which also commits the state mutations
// to the configured data stores.
func (s *StateDB) commitAndFlush(block uint64, deleteEmptyObjects bool) (*stateUpdate, error) {
ret, err := s.commit(deleteEmptyObjects)
if err != nil {
return nil, err
}
// Commit dirty contract code if any exists
if db := s.db.TrieDB().Disk(); db != nil && len(ret.codes) > 0 {
batch := db.NewBatch()
for _, code := range ret.codes {
rawdb.WriteCode(batch, code.hash, code.blob)
}
if err := batch.Write(); err != nil {
return nil, err
}
}
if !ret.empty() {
// If snapshotting is enabled, update the snapshot tree with this new version
if snap := s.db.Snapshot(); snap != nil && snap.Snapshot(ret.originRoot) != nil {
start := time.Now()
if err := snap.Update(ret.root, ret.originRoot, ret.destructs, ret.accounts, ret.storages); err != nil {
log.Warn("Failed to update snapshot tree", "from", ret.originRoot, "to", ret.root, "err", err)
}
// Keep 128 diff layers in the memory, persistent layer is 129th.
// - head layer is paired with HEAD state
// - head-1 layer is paired with HEAD-1 state
// - head-127 layer(bottom-most diff layer) is paired with HEAD-127 state
if err := snap.Cap(ret.root, TriesInMemory); err != nil {
log.Warn("Failed to cap snapshot tree", "root", ret.root, "layers", TriesInMemory, "err", err)
}
s.SnapshotCommits += time.Since(start)
}
// If trie database is enabled, commit the state update as a new layer
if db := s.db.TrieDB(); db != nil {
start := time.Now()
if err := db.Update(ret.root, ret.originRoot, block, ret.nodes, ret.stateSet()); err != nil {
return nil, err
}
s.TrieDBCommits += time.Since(start)
}
}
s.reader, _ = s.db.Reader(s.originalRoot)
return ret, err
}
// Commit writes the state mutations into the configured data stores.
//
// Once the state is committed, tries cached in stateDB (including account
// trie, storage tries) will no longer be functional. A new state instance
// must be created with new root and updated database for accessing post-
// commit states.
//
// The associated block number of the state transition is also provided
// for more chain context.
func (s *StateDB) Commit(block uint64, deleteEmptyObjects bool) (common.Hash, error) {
ret, err := s.commitAndFlush(block, deleteEmptyObjects)
if err != nil {
return common.Hash{}, err
}
return ret.root, nil
}
// Prepare handles the preparatory steps for executing a state transition with.
// This method must be invoked before state transition.
//
// Berlin fork:
// - Add sender to access list (2929)
// - Add destination to access list (2929)
// - Add precompiles to access list (2929)
// - Add the contents of the optional tx access list (2930)
//
// Potential EIPs:
// - Reset access list (Berlin)
// - Add coinbase to access list (EIP-3651)
// - Reset transient storage (EIP-1153)
func (s *StateDB) Prepare(rules params.Rules, sender, coinbase common.Address, dst *common.Address, precompiles []common.Address, list types.AccessList) {
if rules.IsEIP2929 && rules.IsEIP4762 {
panic("eip2929 and eip4762 are both activated")
}
if rules.IsEIP2929 {
// Clear out any leftover from previous executions
al := newAccessList()
s.accessList = al
al.AddAddress(sender)
if dst != nil {
al.AddAddress(*dst)
// If it's a create-tx, the destination will be added inside evm.create
}
for _, addr := range precompiles {
al.AddAddress(addr)
}
for _, el := range list {
al.AddAddress(el.Address)
for _, key := range el.StorageKeys {
al.AddSlot(el.Address, key)
}
}
if rules.IsShanghai { // EIP-3651: warm coinbase
al.AddAddress(coinbase)
}
}
// Reset transient storage at the beginning of transaction execution
s.transientStorage = newTransientStorage()
}
// AddAddressToAccessList adds the given address to the access list
func (s *StateDB) AddAddressToAccessList(addr common.Address) {
if s.accessList.AddAddress(addr) {
s.journal.accessListAddAccount(addr)
}
}
// AddSlotToAccessList adds the given (address, slot)-tuple to the access list
func (s *StateDB) AddSlotToAccessList(addr common.Address, slot common.Hash) {
addrMod, slotMod := s.accessList.AddSlot(addr, slot)
if addrMod {
// In practice, this should not happen, since there is no way to enter the
// scope of 'address' without having the 'address' become already added
// to the access list (via call-variant, create, etc).
// Better safe than sorry, though
s.journal.accessListAddAccount(addr)
}
if slotMod {
s.journal.accessListAddSlot(addr, slot)
}
}
// AddressInAccessList returns true if the given address is in the access list.
func (s *StateDB) AddressInAccessList(addr common.Address) bool {
return s.accessList.ContainsAddress(addr)
}
// SlotInAccessList returns true if the given (address, slot)-tuple is in the access list.
func (s *StateDB) SlotInAccessList(addr common.Address, slot common.Hash) (addressPresent bool, slotPresent bool) {
return s.accessList.Contains(addr, slot)
}
// markDelete is invoked when an account is deleted but the deletion is
// not yet committed. The pending mutation is cached and will be applied
// all together
func (s *StateDB) markDelete(addr common.Address) {
if _, ok := s.mutations[addr]; !ok {
s.mutations[addr] = &mutation{}
}
s.mutations[addr].applied = false
s.mutations[addr].typ = deletion
}
func (s *StateDB) markUpdate(addr common.Address) {
if _, ok := s.mutations[addr]; !ok {
s.mutations[addr] = &mutation{}
}
s.mutations[addr].applied = false
s.mutations[addr].typ = update
}
// PointCache returns the point cache used by verkle tree.
func (s *StateDB) PointCache() *utils.PointCache {
return s.db.PointCache()
}
// Witness retrieves the current state witness being collected.
func (s *StateDB) Witness() *stateless.Witness {
return s.witness
}
func (s *StateDB) AccessEvents() *AccessEvents {
return s.accessEvents
}