mirror of https://github.com/ethereum/go-ethereum
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
560 lines
15 KiB
560 lines
15 KiB
// Copyright 2017 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package bmt provides a binary merkle tree implementation
|
|
package bmt
|
|
|
|
import (
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
)
|
|
|
|
/*
|
|
Binary Merkle Tree Hash is a hash function over arbitrary datachunks of limited size
|
|
It is defined as the root hash of the binary merkle tree built over fixed size segments
|
|
of the underlying chunk using any base hash function (e.g keccak 256 SHA3)
|
|
|
|
It is used as the chunk hash function in swarm which in turn is the basis for the
|
|
128 branching swarm hash http://swarm-guide.readthedocs.io/en/latest/architecture.html#swarm-hash
|
|
|
|
The BMT is optimal for providing compact inclusion proofs, i.e. prove that a
|
|
segment is a substring of a chunk starting at a particular offset
|
|
The size of the underlying segments is fixed at 32 bytes (called the resolution
|
|
of the BMT hash), the EVM word size to optimize for on-chain BMT verification
|
|
as well as the hash size optimal for inclusion proofs in the merkle tree of the swarm hash.
|
|
|
|
Two implementations are provided:
|
|
|
|
* RefHasher is optimized for code simplicity and meant as a reference implementation
|
|
* Hasher is optimized for speed taking advantage of concurrency with minimalistic
|
|
control structure to coordinate the concurrent routines
|
|
It implements the ChunkHash interface as well as the go standard hash.Hash interface
|
|
|
|
*/
|
|
|
|
const (
|
|
// DefaultSegmentCount is the maximum number of segments of the underlying chunk
|
|
DefaultSegmentCount = 128 // Should be equal to storage.DefaultBranches
|
|
// DefaultPoolSize is the maximum number of bmt trees used by the hashers, i.e,
|
|
// the maximum number of concurrent BMT hashing operations performed by the same hasher
|
|
DefaultPoolSize = 8
|
|
)
|
|
|
|
// BaseHasher is a hash.Hash constructor function used for the base hash of the BMT.
|
|
type BaseHasher func() hash.Hash
|
|
|
|
// Hasher a reusable hasher for fixed maximum size chunks representing a BMT
|
|
// implements the hash.Hash interface
|
|
// reuse pool of Tree-s for amortised memory allocation and resource control
|
|
// supports order-agnostic concurrent segment writes
|
|
// as well as sequential read and write
|
|
// can not be called concurrently on more than one chunk
|
|
// can be further appended after Sum
|
|
// Reset gives back the Tree to the pool and guaranteed to leave
|
|
// the tree and itself in a state reusable for hashing a new chunk
|
|
type Hasher struct {
|
|
pool *TreePool // BMT resource pool
|
|
bmt *Tree // prebuilt BMT resource for flowcontrol and proofs
|
|
blocksize int // segment size (size of hash) also for hash.Hash
|
|
count int // segment count
|
|
size int // for hash.Hash same as hashsize
|
|
cur int // cursor position for rightmost currently open chunk
|
|
segment []byte // the rightmost open segment (not complete)
|
|
depth int // index of last level
|
|
result chan []byte // result channel
|
|
hash []byte // to record the result
|
|
max int32 // max segments for SegmentWriter interface
|
|
blockLength []byte // The block length that needes to be added in Sum
|
|
}
|
|
|
|
// New creates a reusable Hasher
|
|
// implements the hash.Hash interface
|
|
// pulls a new Tree from a resource pool for hashing each chunk
|
|
func New(p *TreePool) *Hasher {
|
|
return &Hasher{
|
|
pool: p,
|
|
depth: depth(p.SegmentCount),
|
|
size: p.SegmentSize,
|
|
blocksize: p.SegmentSize,
|
|
count: p.SegmentCount,
|
|
result: make(chan []byte),
|
|
}
|
|
}
|
|
|
|
// Node is a reuseable segment hasher representing a node in a BMT
|
|
// it allows for continued writes after a Sum
|
|
// and is left in completely reusable state after Reset
|
|
type Node struct {
|
|
level, index int // position of node for information/logging only
|
|
initial bool // first and last node
|
|
root bool // whether the node is root to a smaller BMT
|
|
isLeft bool // whether it is left side of the parent double segment
|
|
unbalanced bool // indicates if a node has only the left segment
|
|
parent *Node // BMT connections
|
|
state int32 // atomic increment impl concurrent boolean toggle
|
|
left, right []byte
|
|
}
|
|
|
|
// NewNode constructor for segment hasher nodes in the BMT
|
|
func NewNode(level, index int, parent *Node) *Node {
|
|
return &Node{
|
|
parent: parent,
|
|
level: level,
|
|
index: index,
|
|
initial: index == 0,
|
|
isLeft: index%2 == 0,
|
|
}
|
|
}
|
|
|
|
// TreePool provides a pool of Trees used as resources by Hasher
|
|
// a Tree popped from the pool is guaranteed to have clean state
|
|
// for hashing a new chunk
|
|
// Hasher Reset releases the Tree to the pool
|
|
type TreePool struct {
|
|
lock sync.Mutex
|
|
c chan *Tree
|
|
hasher BaseHasher
|
|
SegmentSize int
|
|
SegmentCount int
|
|
Capacity int
|
|
count int
|
|
}
|
|
|
|
// NewTreePool creates a Tree pool with hasher, segment size, segment count and capacity
|
|
// on GetTree it reuses free Trees or creates a new one if size is not reached
|
|
func NewTreePool(hasher BaseHasher, segmentCount, capacity int) *TreePool {
|
|
return &TreePool{
|
|
c: make(chan *Tree, capacity),
|
|
hasher: hasher,
|
|
SegmentSize: hasher().Size(),
|
|
SegmentCount: segmentCount,
|
|
Capacity: capacity,
|
|
}
|
|
}
|
|
|
|
// Drain drains the pool until it has no more than n resources
|
|
func (p *TreePool) Drain(n int) {
|
|
p.lock.Lock()
|
|
defer p.lock.Unlock()
|
|
for len(p.c) > n {
|
|
<-p.c
|
|
p.count--
|
|
}
|
|
}
|
|
|
|
// Reserve is blocking until it returns an available Tree
|
|
// it reuses free Trees or creates a new one if size is not reached
|
|
func (p *TreePool) Reserve() *Tree {
|
|
p.lock.Lock()
|
|
defer p.lock.Unlock()
|
|
var t *Tree
|
|
if p.count == p.Capacity {
|
|
return <-p.c
|
|
}
|
|
select {
|
|
case t = <-p.c:
|
|
default:
|
|
t = NewTree(p.hasher, p.SegmentSize, p.SegmentCount)
|
|
p.count++
|
|
}
|
|
return t
|
|
}
|
|
|
|
// Release gives back a Tree to the pool.
|
|
// This Tree is guaranteed to be in reusable state
|
|
// does not need locking
|
|
func (p *TreePool) Release(t *Tree) {
|
|
p.c <- t // can never fail but...
|
|
}
|
|
|
|
// Tree is a reusable control structure representing a BMT
|
|
// organised in a binary tree
|
|
// Hasher uses a TreePool to pick one for each chunk hash
|
|
// the Tree is 'locked' while not in the pool
|
|
type Tree struct {
|
|
leaves []*Node
|
|
}
|
|
|
|
// Draw draws the BMT (badly)
|
|
func (t *Tree) Draw(hash []byte, d int) string {
|
|
var left, right []string
|
|
var anc []*Node
|
|
for i, n := range t.leaves {
|
|
left = append(left, fmt.Sprintf("%v", hashstr(n.left)))
|
|
if i%2 == 0 {
|
|
anc = append(anc, n.parent)
|
|
}
|
|
right = append(right, fmt.Sprintf("%v", hashstr(n.right)))
|
|
}
|
|
anc = t.leaves
|
|
var hashes [][]string
|
|
for l := 0; len(anc) > 0; l++ {
|
|
var nodes []*Node
|
|
hash := []string{""}
|
|
for i, n := range anc {
|
|
hash = append(hash, fmt.Sprintf("%v|%v", hashstr(n.left), hashstr(n.right)))
|
|
if i%2 == 0 && n.parent != nil {
|
|
nodes = append(nodes, n.parent)
|
|
}
|
|
}
|
|
hash = append(hash, "")
|
|
hashes = append(hashes, hash)
|
|
anc = nodes
|
|
}
|
|
hashes = append(hashes, []string{"", fmt.Sprintf("%v", hashstr(hash)), ""})
|
|
total := 60
|
|
del := " "
|
|
var rows []string
|
|
for i := len(hashes) - 1; i >= 0; i-- {
|
|
var textlen int
|
|
hash := hashes[i]
|
|
for _, s := range hash {
|
|
textlen += len(s)
|
|
}
|
|
if total < textlen {
|
|
total = textlen + len(hash)
|
|
}
|
|
delsize := (total - textlen) / (len(hash) - 1)
|
|
if delsize > len(del) {
|
|
delsize = len(del)
|
|
}
|
|
row := fmt.Sprintf("%v: %v", len(hashes)-i-1, strings.Join(hash, del[:delsize]))
|
|
rows = append(rows, row)
|
|
|
|
}
|
|
rows = append(rows, strings.Join(left, " "))
|
|
rows = append(rows, strings.Join(right, " "))
|
|
return strings.Join(rows, "\n") + "\n"
|
|
}
|
|
|
|
// NewTree initialises the Tree by building up the nodes of a BMT
|
|
// segment size is stipulated to be the size of the hash
|
|
// segmentCount needs to be positive integer and does not need to be
|
|
// a power of two and can even be an odd number
|
|
// segmentSize * segmentCount determines the maximum chunk size
|
|
// hashed using the tree
|
|
func NewTree(hasher BaseHasher, segmentSize, segmentCount int) *Tree {
|
|
n := NewNode(0, 0, nil)
|
|
n.root = true
|
|
prevlevel := []*Node{n}
|
|
// iterate over levels and creates 2^level nodes
|
|
level := 1
|
|
count := 2
|
|
for d := 1; d <= depth(segmentCount); d++ {
|
|
nodes := make([]*Node, count)
|
|
for i := 0; i < len(nodes); i++ {
|
|
parent := prevlevel[i/2]
|
|
t := NewNode(level, i, parent)
|
|
nodes[i] = t
|
|
}
|
|
prevlevel = nodes
|
|
level++
|
|
count *= 2
|
|
}
|
|
// the datanode level is the nodes on the last level where
|
|
return &Tree{
|
|
leaves: prevlevel,
|
|
}
|
|
}
|
|
|
|
// methods needed by hash.Hash
|
|
|
|
// Size returns the size
|
|
func (h *Hasher) Size() int {
|
|
return h.size
|
|
}
|
|
|
|
// BlockSize returns the block size
|
|
func (h *Hasher) BlockSize() int {
|
|
return h.blocksize
|
|
}
|
|
|
|
// Sum returns the hash of the buffer
|
|
// hash.Hash interface Sum method appends the byte slice to the underlying
|
|
// data before it calculates and returns the hash of the chunk
|
|
func (h *Hasher) Sum(b []byte) (r []byte) {
|
|
t := h.bmt
|
|
i := h.cur
|
|
n := t.leaves[i]
|
|
j := i
|
|
// must run strictly before all nodes calculate
|
|
// datanodes are guaranteed to have a parent
|
|
if len(h.segment) > h.size && i > 0 && n.parent != nil {
|
|
n = n.parent
|
|
} else {
|
|
i *= 2
|
|
}
|
|
d := h.finalise(n, i)
|
|
h.writeSegment(j, h.segment, d)
|
|
c := <-h.result
|
|
h.releaseTree()
|
|
|
|
// sha3(length + BMT(pure_chunk))
|
|
if h.blockLength == nil {
|
|
return c
|
|
}
|
|
res := h.pool.hasher()
|
|
res.Reset()
|
|
res.Write(h.blockLength)
|
|
res.Write(c)
|
|
return res.Sum(nil)
|
|
}
|
|
|
|
// Hasher implements the SwarmHash interface
|
|
|
|
// Hash waits for the hasher result and returns it
|
|
// caller must call this on a BMT Hasher being written to
|
|
func (h *Hasher) Hash() []byte {
|
|
return <-h.result
|
|
}
|
|
|
|
// Hasher implements the io.Writer interface
|
|
|
|
// Write fills the buffer to hash
|
|
// with every full segment complete launches a hasher go routine
|
|
// that shoots up the BMT
|
|
func (h *Hasher) Write(b []byte) (int, error) {
|
|
l := len(b)
|
|
if l <= 0 {
|
|
return 0, nil
|
|
}
|
|
s := h.segment
|
|
i := h.cur
|
|
count := (h.count + 1) / 2
|
|
need := h.count*h.size - h.cur*2*h.size
|
|
size := h.size
|
|
if need > size {
|
|
size *= 2
|
|
}
|
|
if l < need {
|
|
need = l
|
|
}
|
|
// calculate missing bit to complete current open segment
|
|
rest := size - len(s)
|
|
if need < rest {
|
|
rest = need
|
|
}
|
|
s = append(s, b[:rest]...)
|
|
need -= rest
|
|
// read full segments and the last possibly partial segment
|
|
for need > 0 && i < count-1 {
|
|
// push all finished chunks we read
|
|
h.writeSegment(i, s, h.depth)
|
|
need -= size
|
|
if need < 0 {
|
|
size += need
|
|
}
|
|
s = b[rest : rest+size]
|
|
rest += size
|
|
i++
|
|
}
|
|
h.segment = s
|
|
h.cur = i
|
|
// otherwise, we can assume len(s) == 0, so all buffer is read and chunk is not yet full
|
|
return l, nil
|
|
}
|
|
|
|
// Hasher implements the io.ReaderFrom interface
|
|
|
|
// ReadFrom reads from io.Reader and appends to the data to hash using Write
|
|
// it reads so that chunk to hash is maximum length or reader reaches EOF
|
|
// caller must Reset the hasher prior to call
|
|
func (h *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
|
|
bufsize := h.size*h.count - h.size*h.cur - len(h.segment)
|
|
buf := make([]byte, bufsize)
|
|
var read int
|
|
for {
|
|
var n int
|
|
n, err = r.Read(buf)
|
|
read += n
|
|
if err == io.EOF || read == len(buf) {
|
|
hash := h.Sum(buf[:n])
|
|
if read == len(buf) {
|
|
err = NewEOC(hash)
|
|
}
|
|
break
|
|
}
|
|
if err != nil {
|
|
break
|
|
}
|
|
n, err = h.Write(buf[:n])
|
|
if err != nil {
|
|
break
|
|
}
|
|
}
|
|
return int64(read), err
|
|
}
|
|
|
|
// Reset needs to be called before writing to the hasher
|
|
func (h *Hasher) Reset() {
|
|
h.getTree()
|
|
h.blockLength = nil
|
|
}
|
|
|
|
// Hasher implements the SwarmHash interface
|
|
|
|
// ResetWithLength needs to be called before writing to the hasher
|
|
// the argument is supposed to be the byte slice binary representation of
|
|
// the length of the data subsumed under the hash
|
|
func (h *Hasher) ResetWithLength(l []byte) {
|
|
h.Reset()
|
|
h.blockLength = l
|
|
}
|
|
|
|
// Release gives back the Tree to the pool whereby it unlocks
|
|
// it resets tree, segment and index
|
|
func (h *Hasher) releaseTree() {
|
|
if h.bmt != nil {
|
|
n := h.bmt.leaves[h.cur]
|
|
for ; n != nil; n = n.parent {
|
|
n.unbalanced = false
|
|
if n.parent != nil {
|
|
n.root = false
|
|
}
|
|
}
|
|
h.pool.Release(h.bmt)
|
|
h.bmt = nil
|
|
|
|
}
|
|
h.cur = 0
|
|
h.segment = nil
|
|
}
|
|
|
|
func (h *Hasher) writeSegment(i int, s []byte, d int) {
|
|
hash := h.pool.hasher()
|
|
n := h.bmt.leaves[i]
|
|
|
|
if len(s) > h.size && n.parent != nil {
|
|
go func() {
|
|
hash.Reset()
|
|
hash.Write(s)
|
|
s = hash.Sum(nil)
|
|
|
|
if n.root {
|
|
h.result <- s
|
|
return
|
|
}
|
|
h.run(n.parent, hash, d, n.index, s)
|
|
}()
|
|
return
|
|
}
|
|
go h.run(n, hash, d, i*2, s)
|
|
}
|
|
|
|
func (h *Hasher) run(n *Node, hash hash.Hash, d int, i int, s []byte) {
|
|
isLeft := i%2 == 0
|
|
for {
|
|
if isLeft {
|
|
n.left = s
|
|
} else {
|
|
n.right = s
|
|
}
|
|
if !n.unbalanced && n.toggle() {
|
|
return
|
|
}
|
|
if !n.unbalanced || !isLeft || i == 0 && d == 0 {
|
|
hash.Reset()
|
|
hash.Write(n.left)
|
|
hash.Write(n.right)
|
|
s = hash.Sum(nil)
|
|
|
|
} else {
|
|
s = append(n.left, n.right...)
|
|
}
|
|
|
|
h.hash = s
|
|
if n.root {
|
|
h.result <- s
|
|
return
|
|
}
|
|
|
|
isLeft = n.isLeft
|
|
n = n.parent
|
|
i++
|
|
}
|
|
}
|
|
|
|
// getTree obtains a BMT resource by reserving one from the pool
|
|
func (h *Hasher) getTree() *Tree {
|
|
if h.bmt != nil {
|
|
return h.bmt
|
|
}
|
|
t := h.pool.Reserve()
|
|
h.bmt = t
|
|
return t
|
|
}
|
|
|
|
// atomic bool toggle implementing a concurrent reusable 2-state object
|
|
// atomic addint with %2 implements atomic bool toggle
|
|
// it returns true if the toggler just put it in the active/waiting state
|
|
func (n *Node) toggle() bool {
|
|
return atomic.AddInt32(&n.state, 1)%2 == 1
|
|
}
|
|
|
|
func hashstr(b []byte) string {
|
|
end := len(b)
|
|
if end > 4 {
|
|
end = 4
|
|
}
|
|
return fmt.Sprintf("%x", b[:end])
|
|
}
|
|
|
|
func depth(n int) (d int) {
|
|
for l := (n - 1) / 2; l > 0; l /= 2 {
|
|
d++
|
|
}
|
|
return d
|
|
}
|
|
|
|
// finalise is following the zigzags on the tree belonging
|
|
// to the final datasegment
|
|
func (h *Hasher) finalise(n *Node, i int) (d int) {
|
|
isLeft := i%2 == 0
|
|
for {
|
|
// when the final segment's path is going via left segments
|
|
// the incoming data is pushed to the parent upon pulling the left
|
|
// we do not need toggle the state since this condition is
|
|
// detectable
|
|
n.unbalanced = isLeft
|
|
n.right = nil
|
|
if n.initial {
|
|
n.root = true
|
|
return d
|
|
}
|
|
isLeft = n.isLeft
|
|
n = n.parent
|
|
d++
|
|
}
|
|
}
|
|
|
|
// EOC (end of chunk) implements the error interface
|
|
type EOC struct {
|
|
Hash []byte // read the hash of the chunk off the error
|
|
}
|
|
|
|
// Error returns the error string
|
|
func (e *EOC) Error() string {
|
|
return fmt.Sprintf("hasher limit reached, chunk hash: %x", e.Hash)
|
|
}
|
|
|
|
// NewEOC creates new end of chunk error with the hash
|
|
func NewEOC(hash []byte) *EOC {
|
|
return &EOC{hash}
|
|
}
|
|
|