Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/trie/sync_test.go

1002 lines
32 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"fmt"
"maps"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
"github.com/ethereum/go-ethereum/trie/trienode"
)
// makeTestTrie create a sample test trie to test node-wise reconstruction.
func makeTestTrie(scheme string) (ethdb.Database, *testDb, *StateTrie, map[string][]byte) {
// Create an empty trie
db := rawdb.NewMemoryDatabase()
triedb := newTestDatabase(db, scheme)
trie, _ := NewStateTrie(TrieID(types.EmptyRootHash), triedb)
// Fill it with some arbitrary data
content := make(map[string][]byte)
for i := byte(0); i < 255; i++ {
// Map the same data under multiple keys
key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i}
content[string(key)] = val
trie.MustUpdate(key, val)
key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i}
content[string(key)] = val
trie.MustUpdate(key, val)
// Add some other data to inflate the trie
for j := byte(3); j < 13; j++ {
key, val = common.LeftPadBytes([]byte{j, i}, 32), []byte{j, i}
content[string(key)] = val
trie.MustUpdate(key, val)
}
}
root, nodes := trie.Commit(false)
if err := triedb.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes)); err != nil {
panic(fmt.Errorf("failed to commit db %v", err))
}
if err := triedb.Commit(root); err != nil {
panic(err)
}
// Re-create the trie based on the new state
trie, _ = NewStateTrie(TrieID(root), triedb)
return db, triedb, trie, content
}
// checkTrieContents cross references a reconstructed trie with an expected data
// content map.
func checkTrieContents(t *testing.T, db ethdb.Database, scheme string, root []byte, content map[string][]byte, rawTrie bool) {
// Check root availability and trie contents
ndb := newTestDatabase(db, scheme)
if err := checkTrieConsistency(db, scheme, common.BytesToHash(root), rawTrie); err != nil {
t.Fatalf("inconsistent trie at %x: %v", root, err)
}
type reader interface {
MustGet(key []byte) []byte
}
var r reader
if rawTrie {
trie, err := New(TrieID(common.BytesToHash(root)), ndb)
if err != nil {
t.Fatalf("failed to create trie at %x: %v", root, err)
}
r = trie
} else {
trie, err := NewStateTrie(TrieID(common.BytesToHash(root)), ndb)
if err != nil {
t.Fatalf("failed to create trie at %x: %v", root, err)
}
r = trie
}
for key, val := range content {
if have := r.MustGet([]byte(key)); !bytes.Equal(have, val) {
t.Errorf("entry %x: content mismatch: have %x, want %x", key, have, val)
}
}
}
// checkTrieConsistency checks that all nodes in a trie are indeed present.
func checkTrieConsistency(db ethdb.Database, scheme string, root common.Hash, rawTrie bool) error {
ndb := newTestDatabase(db, scheme)
var it NodeIterator
if rawTrie {
trie, err := New(TrieID(root), ndb)
if err != nil {
return nil // Consider a non existent state consistent
}
it = trie.MustNodeIterator(nil)
} else {
trie, err := NewStateTrie(TrieID(root), ndb)
if err != nil {
return nil // Consider a non existent state consistent
}
it = trie.MustNodeIterator(nil)
}
for it.Next(true) {
}
return it.Error()
}
// trieElement represents the element in the state trie(bytecode or trie node).
type trieElement struct {
path string
hash common.Hash
syncPath SyncPath
}
// Tests that an empty trie is not scheduled for syncing.
func TestEmptySync(t *testing.T) {
dbA := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
dbB := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
dbC := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
dbD := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
emptyA := NewEmpty(dbA)
emptyB, _ := New(TrieID(types.EmptyRootHash), dbB)
emptyC := NewEmpty(dbC)
emptyD, _ := New(TrieID(types.EmptyRootHash), dbD)
for i, trie := range []*Trie{emptyA, emptyB, emptyC, emptyD} {
sync := NewSync(trie.Hash(), memorydb.New(), nil, []*testDb{dbA, dbB, dbC, dbD}[i].Scheme())
if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 {
t.Errorf("test %d: content requested for empty trie: %v, %v, %v", i, paths, nodes, codes)
}
}
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeSync(t *testing.T) {
testIterativeSync(t, 1, false, rawdb.HashScheme)
testIterativeSync(t, 100, false, rawdb.HashScheme)
testIterativeSync(t, 1, true, rawdb.HashScheme)
testIterativeSync(t, 100, true, rawdb.HashScheme)
testIterativeSync(t, 1, false, rawdb.PathScheme)
testIterativeSync(t, 100, false, rawdb.PathScheme)
testIterativeSync(t, 1, true, rawdb.PathScheme)
testIterativeSync(t, 100, true, rawdb.PathScheme)
}
func testIterativeSync(t *testing.T, count int, bypath bool, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(count)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
if !bypath {
for i, element := range elements {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
} else {
for i, element := range elements {
data, _, err := srcTrie.GetNode(element.syncPath[len(element.syncPath)-1])
if err != nil {
t.Fatalf("failed to retrieve node data for path %x: %v", element.path, err)
}
results[i] = NodeSyncResult{element.path, data}
}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(count)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedSync(t *testing.T) {
testIterativeDelayedSync(t, rawdb.HashScheme)
testIterativeDelayedSync(t, rawdb.PathScheme)
}
func testIterativeDelayedSync(t *testing.T, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(10000)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
for len(elements) > 0 {
// Sync only half of the scheduled nodes
results := make([]NodeSyncResult, len(elements)/2+1)
for i, element := range elements[:len(results)] {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(10000)
elements = elements[len(results):]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomSyncIndividual(t *testing.T) {
testIterativeRandomSync(t, 1, rawdb.HashScheme)
testIterativeRandomSync(t, 100, rawdb.HashScheme)
testIterativeRandomSync(t, 1, rawdb.PathScheme)
testIterativeRandomSync(t, 100, rawdb.PathScheme)
}
func testIterativeRandomSync(t *testing.T, count int, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(count)
queue := make(map[string]trieElement)
for i, path := range paths {
queue[path] = trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
}
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
for len(queue) > 0 {
// Fetch all the queued nodes in a random order
results := make([]NodeSyncResult, 0, len(queue))
for path, element := range queue {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results = append(results, NodeSyncResult{path, data})
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(count)
queue = make(map[string]trieElement)
for i, path := range paths {
queue[path] = trieElement{
path: path,
hash: nodes[i],
syncPath: NewSyncPath([]byte(path)),
}
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedSync(t *testing.T) {
testIterativeRandomDelayedSync(t, rawdb.HashScheme)
testIterativeRandomDelayedSync(t, rawdb.PathScheme)
}
func testIterativeRandomDelayedSync(t *testing.T, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(10000)
queue := make(map[string]trieElement)
for i, path := range paths {
queue[path] = trieElement{
path: path,
hash: nodes[i],
syncPath: NewSyncPath([]byte(path)),
}
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
for len(queue) > 0 {
// Sync only half of the scheduled nodes, even those in random order
results := make([]NodeSyncResult, 0, len(queue)/2+1)
for path, element := range queue {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results = append(results, NodeSyncResult{path, data})
if len(results) >= cap(results) {
break
}
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
for _, result := range results {
delete(queue, result.Path)
}
paths, nodes, _ = sched.Missing(10000)
for i, path := range paths {
queue[path] = trieElement{
path: path,
hash: nodes[i],
syncPath: NewSyncPath([]byte(path)),
}
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
}
// Tests that a trie sync will not request nodes multiple times, even if they
// have such references.
func TestDuplicateAvoidanceSync(t *testing.T) {
testDuplicateAvoidanceSync(t, rawdb.HashScheme)
testDuplicateAvoidanceSync(t, rawdb.PathScheme)
}
func testDuplicateAvoidanceSync(t *testing.T, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(0)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
requested := make(map[common.Hash]struct{})
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
if _, ok := requested[element.hash]; ok {
t.Errorf("hash %x already requested once", element.hash)
}
requested[element.hash] = struct{}{}
results[i] = NodeSyncResult{element.path, data}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(0)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
}
// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteSyncHash(t *testing.T) {
testIncompleteSync(t, rawdb.HashScheme)
testIncompleteSync(t, rawdb.PathScheme)
}
func testIncompleteSync(t *testing.T, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, _ := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
var (
addedKeys []string
addedHashes []common.Hash
elements []trieElement
root = srcTrie.Hash()
)
paths, nodes, _ := sched.Missing(1)
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
for len(elements) > 0 {
// Fetch a batch of trie nodes
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
// Process each of the trie nodes
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
for _, result := range results {
hash := crypto.Keccak256Hash(result.Data)
if hash != root {
addedKeys = append(addedKeys, result.Path)
addedHashes = append(addedHashes, hash)
}
}
// Fetch the next batch to retrieve
paths, nodes, _ = sched.Missing(1)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Sanity check that removing any node from the database is detected
for i, path := range addedKeys {
if rand.Int31n(100) > 5 {
// Only check 5 percent of added keys as a sanity check
continue
}
owner, inner := ResolvePath([]byte(path))
nodeHash := addedHashes[i]
value := rawdb.ReadTrieNode(diskdb, owner, inner, nodeHash, scheme)
rawdb.DeleteTrieNode(diskdb, owner, inner, nodeHash, scheme)
if err := checkTrieConsistency(diskdb, srcDb.Scheme(), root, false); err == nil {
t.Fatalf("trie inconsistency not caught, missing: %x", path)
}
rawdb.WriteTrieNode(diskdb, owner, inner, nodeHash, value, scheme)
}
}
// Tests that trie nodes get scheduled lexicographically when having the same
// depth.
func TestSyncOrdering(t *testing.T) {
testSyncOrdering(t, rawdb.HashScheme)
testSyncOrdering(t, rawdb.PathScheme)
}
func testSyncOrdering(t *testing.T, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler, tracking the requests
diskdb := rawdb.NewMemoryDatabase()
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
var (
reqs []SyncPath
elements []trieElement
)
paths, nodes, _ := sched.Missing(1)
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
reqs = append(reqs, NewSyncPath([]byte(paths[i])))
}
reader, err := srcDb.NodeReader(srcTrie.Hash())
if err != nil {
t.Fatalf("State is not available %x", srcTrie.Hash())
}
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(1)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
reqs = append(reqs, NewSyncPath([]byte(paths[i])))
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
// Check that the trie nodes have been requested path-ordered
for i := 0; i < len(reqs)-1; i++ {
if len(reqs[i]) > 1 || len(reqs[i+1]) > 1 {
// In the case of the trie tests, there's no storage so the tuples
// must always be single items. 2-tuples should be tested in state.
t.Errorf("Invalid request tuples: len(%v) or len(%v) > 1", reqs[i], reqs[i+1])
}
if bytes.Compare(compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) > 0 {
t.Errorf("Invalid request order: %v before %v", compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0]))
}
}
}
func syncWith(t *testing.T, root common.Hash, db ethdb.Database, srcDb *testDb) {
syncWithHookWriter(t, root, db, srcDb, nil)
}
func syncWithHookWriter(t *testing.T, root common.Hash, db ethdb.Database, srcDb *testDb, hookWriter ethdb.KeyValueWriter) {
// Create a destination trie and sync with the scheduler
sched := NewSync(root, db, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(0)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
reader, err := srcDb.NodeReader(root)
if err != nil {
t.Fatalf("State is not available %x", root)
}
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
owner, inner := ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
for index, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result[%d][%v] data %v %v", index, []byte(result.Path), result.Data, err)
}
}
batch := db.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
if hookWriter != nil {
batch.Replay(hookWriter)
} else {
batch.Write()
}
paths, nodes, _ = sched.Missing(0)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
}
// Tests that the syncing target is keeping moving which may overwrite the stale
// states synced in the last cycle.
func TestSyncMovingTarget(t *testing.T) {
testSyncMovingTarget(t, rawdb.HashScheme)
testSyncMovingTarget(t, rawdb.PathScheme)
}
func testSyncMovingTarget(t *testing.T, scheme string) {
// Create a random trie to copy
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
syncWith(t, srcTrie.Hash(), diskdb, srcDb)
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData, false)
// Push more modifications into the src trie, to see if dest trie can still
// sync with it(overwrite stale states)
var (
preRoot = srcTrie.Hash()
diff = make(map[string][]byte)
)
for i := byte(0); i < 10; i++ {
key, val := randBytes(32), randBytes(32)
srcTrie.MustUpdate(key, val)
diff[string(key)] = val
}
root, nodes := srcTrie.Commit(false)
if err := srcDb.Update(root, preRoot, trienode.NewWithNodeSet(nodes)); err != nil {
panic(err)
}
if err := srcDb.Commit(root); err != nil {
panic(err)
}
preRoot = root
srcTrie, _ = NewStateTrie(TrieID(root), srcDb)
syncWith(t, srcTrie.Hash(), diskdb, srcDb)
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), diff, false)
// Revert added modifications from the src trie, to see if dest trie can still
// sync with it(overwrite reverted states)
var reverted = make(map[string][]byte)
for k := range diff {
srcTrie.MustDelete([]byte(k))
reverted[k] = nil
}
for k := range srcData {
val := randBytes(32)
srcTrie.MustUpdate([]byte(k), val)
reverted[k] = val
}
root, nodes = srcTrie.Commit(false)
if err := srcDb.Update(root, preRoot, trienode.NewWithNodeSet(nodes)); err != nil {
panic(err)
}
if err := srcDb.Commit(root); err != nil {
panic(err)
}
srcTrie, _ = NewStateTrie(TrieID(root), srcDb)
syncWith(t, srcTrie.Hash(), diskdb, srcDb)
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), reverted, false)
}
// Tests if state syncer can correctly catch up the pivot move.
func TestPivotMove(t *testing.T) {
testPivotMove(t, rawdb.HashScheme, true)
testPivotMove(t, rawdb.HashScheme, false)
testPivotMove(t, rawdb.PathScheme, true)
testPivotMove(t, rawdb.PathScheme, false)
}
func testPivotMove(t *testing.T, scheme string, tiny bool) {
var (
srcDisk = rawdb.NewMemoryDatabase()
srcTrieDB = newTestDatabase(srcDisk, scheme)
srcTrie, _ = New(TrieID(types.EmptyRootHash), srcTrieDB)
deleteFn = func(key []byte, tr *Trie, states map[string][]byte) {
tr.Delete(key)
delete(states, string(key))
}
writeFn = func(key []byte, val []byte, tr *Trie, states map[string][]byte) {
if val == nil {
if tiny {
val = randBytes(4)
} else {
val = randBytes(32)
}
}
tr.Update(key, val)
states[string(key)] = common.CopyBytes(val)
}
)
stateA := make(map[string][]byte)
writeFn([]byte{0x01, 0x23}, nil, srcTrie, stateA)
writeFn([]byte{0x01, 0x24}, nil, srcTrie, stateA)
writeFn([]byte{0x12, 0x33}, nil, srcTrie, stateA)
writeFn([]byte{0x12, 0x34}, nil, srcTrie, stateA)
writeFn([]byte{0x02, 0x34}, nil, srcTrie, stateA)
writeFn([]byte{0x13, 0x44}, nil, srcTrie, stateA)
rootA, nodesA := srcTrie.Commit(false)
if err := srcTrieDB.Update(rootA, types.EmptyRootHash, trienode.NewWithNodeSet(nodesA)); err != nil {
panic(err)
}
if err := srcTrieDB.Commit(rootA); err != nil {
panic(err)
}
// Create a destination trie and sync with the scheduler
destDisk := rawdb.NewMemoryDatabase()
syncWith(t, rootA, destDisk, srcTrieDB)
checkTrieContents(t, destDisk, scheme, srcTrie.Hash().Bytes(), stateA, true)
// Delete element to collapse trie
stateB := maps.Clone(stateA)
srcTrie, _ = New(TrieID(rootA), srcTrieDB)
deleteFn([]byte{0x02, 0x34}, srcTrie, stateB)
deleteFn([]byte{0x13, 0x44}, srcTrie, stateB)
writeFn([]byte{0x01, 0x24}, nil, srcTrie, stateB)
rootB, nodesB := srcTrie.Commit(false)
if err := srcTrieDB.Update(rootB, rootA, trienode.NewWithNodeSet(nodesB)); err != nil {
panic(err)
}
if err := srcTrieDB.Commit(rootB); err != nil {
panic(err)
}
syncWith(t, rootB, destDisk, srcTrieDB)
checkTrieContents(t, destDisk, scheme, srcTrie.Hash().Bytes(), stateB, true)
// Add elements to expand trie
stateC := maps.Clone(stateB)
srcTrie, _ = New(TrieID(rootB), srcTrieDB)
writeFn([]byte{0x01, 0x24}, stateA[string([]byte{0x01, 0x24})], srcTrie, stateC)
writeFn([]byte{0x02, 0x34}, nil, srcTrie, stateC)
writeFn([]byte{0x13, 0x44}, nil, srcTrie, stateC)
rootC, nodesC := srcTrie.Commit(false)
if err := srcTrieDB.Update(rootC, rootB, trienode.NewWithNodeSet(nodesC)); err != nil {
panic(err)
}
if err := srcTrieDB.Commit(rootC); err != nil {
panic(err)
}
syncWith(t, rootC, destDisk, srcTrieDB)
checkTrieContents(t, destDisk, scheme, srcTrie.Hash().Bytes(), stateC, true)
}
func TestSyncAbort(t *testing.T) {
testSyncAbort(t, rawdb.PathScheme)
testSyncAbort(t, rawdb.HashScheme)
}
type hookWriter struct {
db ethdb.KeyValueStore
filter func(key []byte, value []byte) bool
}
// Put inserts the given value into the key-value data store.
func (w *hookWriter) Put(key []byte, value []byte) error {
if w.filter != nil && w.filter(key, value) {
return nil
}
return w.db.Put(key, value)
}
// Delete removes the key from the key-value data store.
func (w *hookWriter) Delete(key []byte) error {
return w.db.Delete(key)
}
func testSyncAbort(t *testing.T, scheme string) {
var (
srcDisk = rawdb.NewMemoryDatabase()
srcTrieDB = newTestDatabase(srcDisk, scheme)
srcTrie, _ = New(TrieID(types.EmptyRootHash), srcTrieDB)
deleteFn = func(key []byte, tr *Trie, states map[string][]byte) {
tr.Delete(key)
delete(states, string(key))
}
writeFn = func(key []byte, val []byte, tr *Trie, states map[string][]byte) {
if val == nil {
val = randBytes(32)
}
tr.Update(key, val)
states[string(key)] = common.CopyBytes(val)
}
)
var (
stateA = make(map[string][]byte)
key = randBytes(32)
val = randBytes(32)
)
for i := 0; i < 256; i++ {
writeFn(randBytes(32), nil, srcTrie, stateA)
}
writeFn(key, val, srcTrie, stateA)
rootA, nodesA := srcTrie.Commit(false)
if err := srcTrieDB.Update(rootA, types.EmptyRootHash, trienode.NewWithNodeSet(nodesA)); err != nil {
panic(err)
}
if err := srcTrieDB.Commit(rootA); err != nil {
panic(err)
}
// Create a destination trie and sync with the scheduler
destDisk := rawdb.NewMemoryDatabase()
syncWith(t, rootA, destDisk, srcTrieDB)
checkTrieContents(t, destDisk, scheme, srcTrie.Hash().Bytes(), stateA, true)
// Delete the element from the trie
stateB := maps.Clone(stateA)
srcTrie, _ = New(TrieID(rootA), srcTrieDB)
deleteFn(key, srcTrie, stateB)
rootB, nodesB := srcTrie.Commit(false)
if err := srcTrieDB.Update(rootB, rootA, trienode.NewWithNodeSet(nodesB)); err != nil {
panic(err)
}
if err := srcTrieDB.Commit(rootB); err != nil {
panic(err)
}
// Sync the new state, but never persist the new root node. Before the
// fix #28595, the original old root node will still be left in database
// which breaks the next healing cycle.
syncWithHookWriter(t, rootB, destDisk, srcTrieDB, &hookWriter{db: destDisk, filter: func(key []byte, value []byte) bool {
if scheme == rawdb.HashScheme {
return false
}
if len(value) == 0 {
return false
}
ok, path := rawdb.ResolveAccountTrieNodeKey(key)
return ok && len(path) == 0
}})
// Add elements to expand trie
stateC := maps.Clone(stateB)
srcTrie, _ = New(TrieID(rootB), srcTrieDB)
writeFn(key, val, srcTrie, stateC)
rootC, nodesC := srcTrie.Commit(false)
if err := srcTrieDB.Update(rootC, rootB, trienode.NewWithNodeSet(nodesC)); err != nil {
panic(err)
}
if err := srcTrieDB.Commit(rootC); err != nil {
panic(err)
}
syncWith(t, rootC, destDisk, srcTrieDB)
checkTrieContents(t, destDisk, scheme, srcTrie.Hash().Bytes(), stateC, true)
}