Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/cmd/devp2p/internal/ethtest/snap.go

675 lines
23 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethtest
import (
"bytes"
"errors"
"fmt"
"math/rand"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
"github.com/ethereum/go-ethereum/internal/utesting"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/trie"
"golang.org/x/crypto/sha3"
)
func (s *Suite) TestSnapStatus(t *utesting.T) {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err := conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
}
type accRangeTest struct {
nBytes uint64
root common.Hash
origin common.Hash
limit common.Hash
expAccounts int
expFirst common.Hash
expLast common.Hash
}
// TestSnapGetAccountRange various forms of GetAccountRange requests.
func (s *Suite) TestSnapGetAccountRange(t *utesting.T) {
var (
root = s.chain.RootAt(999)
ffHash = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
zero = common.Hash{}
firstKeyMinus1 = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf29")
firstKey = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")
firstKeyPlus1 = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2b")
secondKey = common.HexToHash("0x09e47cd5056a689e708f22fe1f932709a320518e444f5f7d8d46a3da523d6606")
storageRoot = common.HexToHash("0xbe3d75a1729be157e79c3b77f00206db4d54e3ea14375a015451c88ec067c790")
)
for i, tc := range []accRangeTest{
// Tests decreasing the number of bytes
{4000, root, zero, ffHash, 76, firstKey, common.HexToHash("0xd2669dcf3858e7f1eecb8b5fedbf22fbea3e9433848a75035f79d68422c2dcda")},
{3000, root, zero, ffHash, 57, firstKey, common.HexToHash("0x9b63fa753ece5cb90657d02ecb15df4dc1508d8c1d187af1bf7f1a05e747d3c7")},
{2000, root, zero, ffHash, 38, firstKey, common.HexToHash("0x5e6140ecae4354a9e8f47559a8c6209c1e0e69cb077b067b528556c11698b91f")},
{1, root, zero, ffHash, 1, firstKey, firstKey},
// Tests variations of the range
//
// [00b to firstkey]: should return [firstkey, secondkey], where secondkey is out of bounds
{4000, root, common.HexToHash("0x00bf000000000000000000000000000000000000000000000000000000000000"), common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2b"), 2, firstKey, secondKey},
// [00b0 to 0bf0]: where both are before firstkey. Should return firstKey (even though it's out of bounds)
{4000, root, common.HexToHash("0x00b0000000000000000000000000000000000000000000000000000000000000"), common.HexToHash("0x00bf100000000000000000000000000000000000000000000000000000000000"), 1, firstKey, firstKey},
{4000, root, zero, zero, 1, firstKey, firstKey},
{4000, root, firstKey, ffHash, 76, firstKey, common.HexToHash("0xd2669dcf3858e7f1eecb8b5fedbf22fbea3e9433848a75035f79d68422c2dcda")},
{4000, root, firstKeyPlus1, ffHash, 76, secondKey, common.HexToHash("0xd28f55d3b994f16389f36944ad685b48e0fc3f8fbe86c3ca92ebecadf16a783f")},
// Test different root hashes
//
// A stateroot that does not exist
{4000, common.Hash{0x13, 37}, zero, ffHash, 0, zero, zero},
// The genesis stateroot (we expect it to not be served)
{4000, s.chain.RootAt(0), zero, ffHash, 0, zero, zero},
// A 127 block old stateroot, expected to be served
{4000, s.chain.RootAt(999 - 127), zero, ffHash, 77, firstKey, common.HexToHash("0xe4c6fdef5dd4e789a2612390806ee840b8ec0fe52548f8b4efe41abb20c37aac")},
// A root which is not actually an account root, but a storage orot
{4000, storageRoot, zero, ffHash, 0, zero, zero},
// And some non-sensical requests
//
// range from [0xFF to 0x00], wrong order. Expect not to be serviced
{4000, root, ffHash, zero, 0, zero, zero},
// range from [firstkey, firstkey-1], wrong order. Expect to get first key.
{4000, root, firstKey, firstKeyMinus1, 1, firstKey, firstKey},
// range from [firstkey, 0], wrong order. Expect to get first key.
{4000, root, firstKey, zero, 1, firstKey, firstKey},
// Max bytes: 0. Expect to deliver one account.
{0, root, zero, ffHash, 1, firstKey, firstKey},
} {
if err := s.snapGetAccountRange(t, &tc); err != nil {
t.Errorf("test %d \n root: %x\n range: %#x - %#x\n bytes: %d\nfailed: %v", i, tc.root, tc.origin, tc.limit, tc.nBytes, err)
}
}
}
type stRangesTest struct {
root common.Hash
accounts []common.Hash
origin []byte
limit []byte
nBytes uint64
expSlots int
}
// TestSnapGetStorageRange various forms of GetStorageRanges requests.
func (s *Suite) TestSnapGetStorageRanges(t *utesting.T) {
var (
ffHash = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
zero = common.Hash{}
firstKey = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")
secondKey = common.HexToHash("0x09e47cd5056a689e708f22fe1f932709a320518e444f5f7d8d46a3da523d6606")
)
for i, tc := range []stRangesTest{
{
root: s.chain.RootAt(999),
accounts: []common.Hash{secondKey, firstKey},
origin: zero[:],
limit: ffHash[:],
nBytes: 500,
expSlots: 0,
},
/*
Some tests against this account:
{
"balance": "0",
"nonce": 1,
"root": "0xbe3d75a1729be157e79c3b77f00206db4d54e3ea14375a015451c88ec067c790",
"codeHash": "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
"storage": {
"0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace": "02",
"0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6": "01",
"0xc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b": "03"
},
"key": "0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844"
}
*/
{ // [:] -> [slot1, slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: zero[:],
limit: ffHash[:],
nBytes: 500,
expSlots: 3,
},
{ // [slot1:] -> [slot1, slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace"),
limit: ffHash[:],
nBytes: 500,
expSlots: 3,
},
{ // [slot1+ :] -> [slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf"),
limit: ffHash[:],
nBytes: 500,
expSlots: 2,
},
{ // [slot1:slot2] -> [slot1, slot2]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace"),
limit: common.FromHex("0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6"),
nBytes: 500,
expSlots: 2,
},
{ // [slot1+:slot2+] -> [slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x4fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
limit: common.FromHex("0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf7"),
nBytes: 500,
expSlots: 2,
},
} {
if err := s.snapGetStorageRanges(t, &tc); err != nil {
t.Errorf("test %d \n root: %x\n range: %#x - %#x\n bytes: %d\n #accounts: %d\nfailed: %v",
i, tc.root, tc.origin, tc.limit, tc.nBytes, len(tc.accounts), err)
}
}
}
type byteCodesTest struct {
nBytes uint64
hashes []common.Hash
expHashes int
}
var (
// emptyRoot is the known root hash of an empty trie.
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyCode is the known hash of the empty EVM bytecode.
emptyCode = common.HexToHash("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470")
)
// TestSnapGetByteCodes various forms of GetByteCodes requests.
func (s *Suite) TestSnapGetByteCodes(t *utesting.T) {
// The halfchain import should yield these bytecodes
var hcBytecodes []common.Hash
for _, s := range []string{
"0x200c90460d8b0063210d5f5b9918e053c8f2c024485e0f1b48be8b1fc71b1317",
"0x20ba67ed4ac6aff626e0d1d4db623e2fada9593daeefc4a6eb4b70e6cff986f3",
"0x24b5b4902cb3d897c1cee9f16be8e897d8fa277c04c6dc8214f18295fca5de44",
"0x320b9d0a2be39b8a1c858f9f8cb96b1df0983071681de07ded3a7c0d05db5fd6",
"0x48cb0d5275936a24632babc7408339f9f7b051274809de565b8b0db76e97e03c",
"0x67c7a6f5cdaa43b4baa0e15b2be63346d1b9ce9f2c3d7e5804e0cacd44ee3b04",
"0x6d8418059bdc8c3fabf445e6bfc662af3b6a4ae45999b953996e42c7ead2ab49",
"0x7043422e5795d03f17ee0463a37235258e609fdd542247754895d72695e3e142",
"0x727f9e6f0c4bac1ff8d72c2972122d9c8d37ccb37e04edde2339e8da193546f1",
"0x86ccd5e23c78568a8334e0cebaf3e9f48c998307b0bfb1c378cee83b4bfb29cb",
"0x8fc89b00d6deafd4c4279531e743365626dbfa28845ec697919d305c2674302d",
"0x92cfc353bcb9746bb6f9996b6b9df779c88af2e9e0eeac44879ca19887c9b732",
"0x941b4872104f0995a4898fcf0f615ea6bf46bfbdfcf63ea8f2fd45b3f3286b77",
"0xa02fe8f41159bb39d2b704c633c3d6389cf4bfcb61a2539a9155f60786cf815f",
"0xa4b94e0afdffcb0af599677709dac067d3145489ea7aede57672bee43e3b7373",
"0xaf4e64edd3234c1205b725e42963becd1085f013590bd7ed93f8d711c5eb65fb",
"0xb69a18fa855b742031420081999086f6fb56c3930ae8840944e8b8ae9931c51e",
"0xc246c217bc73ce6666c93a93a94faa5250564f50a3fdc27ea74c231c07fe2ca6",
"0xcd6e4ab2c3034df2a8a1dfaaeb1c4baecd162a93d22de35e854ee2945cbe0c35",
"0xe24b692d09d6fc2f3d1a6028c400a27c37d7cbb11511907c013946d6ce263d3b",
"0xe440c5f0e8603fd1ed25976eee261ccee8038cf79d6a4c0eb31b2bf883be737f",
"0xe6eacbc509203d21ac814b350e72934fde686b7f673c19be8cf956b0c70078ce",
"0xe8530de4371467b5be7ea0e69e675ab36832c426d6c1ce9513817c0f0ae1486b",
"0xe85d487abbbc83bf3423cf9731360cf4f5a37220e18e5add54e72ee20861196a",
"0xf195ea389a5eea28db0be93660014275b158963dec44af1dfa7d4743019a9a49",
} {
hcBytecodes = append(hcBytecodes, common.HexToHash(s))
}
for i, tc := range []byteCodesTest{
// A few stateroots
{
nBytes: 10000, hashes: []common.Hash{s.chain.RootAt(0), s.chain.RootAt(999)},
expHashes: 0,
},
{
nBytes: 10000, hashes: []common.Hash{s.chain.RootAt(0), s.chain.RootAt(0)},
expHashes: 0,
},
// Empties
{
nBytes: 10000, hashes: []common.Hash{emptyRoot},
expHashes: 0,
},
{
nBytes: 10000, hashes: []common.Hash{emptyCode},
expHashes: 1,
},
{
nBytes: 10000, hashes: []common.Hash{emptyCode, emptyCode, emptyCode},
expHashes: 3,
},
// The existing bytecodes
{
nBytes: 10000, hashes: hcBytecodes,
expHashes: len(hcBytecodes),
},
// The existing, with limited byte arg
{
nBytes: 1, hashes: hcBytecodes,
expHashes: 1,
},
{
nBytes: 0, hashes: hcBytecodes,
expHashes: 1,
},
{
nBytes: 1000, hashes: []common.Hash{hcBytecodes[0], hcBytecodes[0], hcBytecodes[0], hcBytecodes[0]},
expHashes: 4,
},
} {
if err := s.snapGetByteCodes(t, &tc); err != nil {
t.Errorf("test %d \n bytes: %d\n #hashes: %d\nfailed: %v", i, tc.nBytes, len(tc.hashes), err)
}
}
}
type trieNodesTest struct {
root common.Hash
paths []snap.TrieNodePathSet
nBytes uint64
expHashes []common.Hash
expReject bool
}
func decodeNibbles(nibbles []byte, bytes []byte) {
for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
}
}
// hasTerm returns whether a hex key has the terminator flag.
func hasTerm(s []byte) bool {
return len(s) > 0 && s[len(s)-1] == 16
}
func keybytesToHex(str []byte) []byte {
l := len(str)*2 + 1
var nibbles = make([]byte, l)
for i, b := range str {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
}
nibbles[l-1] = 16
return nibbles
}
func hexToCompact(hex []byte) []byte {
terminator := byte(0)
if hasTerm(hex) {
terminator = 1
hex = hex[:len(hex)-1]
}
buf := make([]byte, len(hex)/2+1)
buf[0] = terminator << 5 // the flag byte
if len(hex)&1 == 1 {
buf[0] |= 1 << 4 // odd flag
buf[0] |= hex[0] // first nibble is contained in the first byte
hex = hex[1:]
}
decodeNibbles(hex, buf[1:])
return buf
}
// TestSnapTrieNodes various forms of GetTrieNodes requests.
func (s *Suite) TestSnapTrieNodes(t *utesting.T) {
key := common.FromHex("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")
// helper function to iterate the key, and generate the compact-encoded
// trie paths along the way.
pathTo := func(length int) snap.TrieNodePathSet {
hex := keybytesToHex(key)[:length]
hex[len(hex)-1] = 0 // remove term flag
hKey := hexToCompact(hex)
return snap.TrieNodePathSet{hKey}
}
var accPaths []snap.TrieNodePathSet
for i := 1; i <= 65; i++ {
accPaths = append(accPaths, pathTo(i))
}
empty := emptyCode
for i, tc := range []trieNodesTest{
{
root: s.chain.RootAt(999),
paths: nil,
nBytes: 500,
expHashes: nil,
},
{
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{}, // zero-length pathset should 'abort' and kick us off
{[]byte{0}},
},
nBytes: 5000,
expHashes: []common.Hash{},
expReject: true,
},
{
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{[]byte{0}},
{[]byte{1}, []byte{0}},
},
nBytes: 5000,
//0x6b3724a41b8c38b46d4d02fba2bb2074c47a507eb16a9a4b978f91d32e406faf
expHashes: []common.Hash{s.chain.RootAt(999)},
},
{ // nonsensically long path
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{[]byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8,
0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8}},
},
nBytes: 5000,
expHashes: []common.Hash{common.HexToHash("0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470")},
},
{
root: s.chain.RootAt(0),
paths: []snap.TrieNodePathSet{
{[]byte{0}},
{[]byte{1}, []byte{0}},
},
nBytes: 5000,
expHashes: []common.Hash{},
},
{
// The leaf is only a couple of levels down, so the continued trie traversal causes lookup failures.
root: s.chain.RootAt(999),
paths: accPaths,
nBytes: 5000,
expHashes: []common.Hash{
common.HexToHash("0xbcefee69b37cca1f5bf3a48aebe08b35f2ea1864fa958bb0723d909a0e0d28d8"),
common.HexToHash("0x4fb1e4e2391e4b4da471d59641319b8fa25d76c973d4bec594d7b00a69ae5135"),
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty},
},
{
// Basically the same as above, with different ordering
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
accPaths[10], accPaths[1], accPaths[0],
},
nBytes: 5000,
expHashes: []common.Hash{
empty,
common.HexToHash("0x4fb1e4e2391e4b4da471d59641319b8fa25d76c973d4bec594d7b00a69ae5135"),
common.HexToHash("0xbcefee69b37cca1f5bf3a48aebe08b35f2ea1864fa958bb0723d909a0e0d28d8"),
},
},
} {
if err := s.snapGetTrieNodes(t, &tc); err != nil {
t.Errorf("test %d \n #hashes %x\n root: %#x\n bytes: %d\nfailed: %v", i, len(tc.expHashes), tc.root, tc.nBytes, err)
}
}
}
func (s *Suite) snapGetAccountRange(t *utesting.T, tc *accRangeTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetAccountRange{
ID: uint64(rand.Int63()),
Root: tc.root,
Origin: tc.origin,
Limit: tc.limit,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
return fmt.Errorf("account range request failed: %v", err)
}
var res *snap.AccountRangePacket
if r, ok := resp.(*AccountRange); !ok {
return fmt.Errorf("account range response wrong: %T %v", resp, resp)
} else {
res = (*snap.AccountRangePacket)(r)
}
if exp, got := tc.expAccounts, len(res.Accounts); exp != got {
return fmt.Errorf("expected %d accounts, got %d", exp, got)
}
// Check that the encoding order is correct
for i := 1; i < len(res.Accounts); i++ {
if bytes.Compare(res.Accounts[i-1].Hash[:], res.Accounts[i].Hash[:]) >= 0 {
return fmt.Errorf("accounts not monotonically increasing: #%d [%x] vs #%d [%x]", i-1, res.Accounts[i-1].Hash[:], i, res.Accounts[i].Hash[:])
}
}
var (
hashes []common.Hash
accounts [][]byte
proof = res.Proof
)
hashes, accounts, err = res.Unpack()
if err != nil {
return err
}
if len(hashes) == 0 && len(accounts) == 0 && len(proof) == 0 {
return nil
}
if len(hashes) > 0 {
if exp, got := tc.expFirst, res.Accounts[0].Hash; exp != got {
return fmt.Errorf("expected first account 0x%x, got 0x%x", exp, got)
}
if exp, got := tc.expLast, res.Accounts[len(res.Accounts)-1].Hash; exp != got {
return fmt.Errorf("expected last account 0x%x, got 0x%x", exp, got)
}
}
// Reconstruct a partial trie from the response and verify it
keys := make([][]byte, len(hashes))
for i, key := range hashes {
keys[i] = common.CopyBytes(key[:])
}
nodes := make(light.NodeList, len(proof))
for i, node := range proof {
nodes[i] = node
}
proofdb := nodes.NodeSet()
var end []byte
if len(keys) > 0 {
end = keys[len(keys)-1]
}
_, err = trie.VerifyRangeProof(tc.root, tc.origin[:], end, keys, accounts, proofdb)
return err
}
func (s *Suite) snapGetStorageRanges(t *utesting.T, tc *stRangesTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetStorageRanges{
ID: uint64(rand.Int63()),
Root: tc.root,
Accounts: tc.accounts,
Origin: tc.origin,
Limit: tc.limit,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
return fmt.Errorf("account range request failed: %v", err)
}
var res *snap.StorageRangesPacket
if r, ok := resp.(*StorageRanges); !ok {
return fmt.Errorf("account range response wrong: %T %v", resp, resp)
} else {
res = (*snap.StorageRangesPacket)(r)
}
gotSlots := 0
// Ensure the ranges are monotonically increasing
for i, slots := range res.Slots {
gotSlots += len(slots)
for j := 1; j < len(slots); j++ {
if bytes.Compare(slots[j-1].Hash[:], slots[j].Hash[:]) >= 0 {
return fmt.Errorf("storage slots not monotonically increasing for account #%d: #%d [%x] vs #%d [%x]", i, j-1, slots[j-1].Hash[:], j, slots[j].Hash[:])
}
}
}
if exp, got := tc.expSlots, gotSlots; exp != got {
return fmt.Errorf("expected %d slots, got %d", exp, got)
}
return nil
}
func (s *Suite) snapGetByteCodes(t *utesting.T, tc *byteCodesTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetByteCodes{
ID: uint64(rand.Int63()),
Hashes: tc.hashes,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
return fmt.Errorf("getBytecodes request failed: %v", err)
}
var res *snap.ByteCodesPacket
if r, ok := resp.(*ByteCodes); !ok {
return fmt.Errorf("bytecodes response wrong: %T %v", resp, resp)
} else {
res = (*snap.ByteCodesPacket)(r)
}
if exp, got := tc.expHashes, len(res.Codes); exp != got {
for i, c := range res.Codes {
fmt.Printf("%d. %#x\n", i, c)
}
return fmt.Errorf("expected %d bytecodes, got %d", exp, got)
}
// Cross reference the requested bytecodes with the response to find gaps
// that the serving node is missing
var (
bytecodes = res.Codes
hasher = sha3.NewLegacyKeccak256().(crypto.KeccakState)
hash = make([]byte, 32)
codes = make([][]byte, len(req.Hashes))
)
for i, j := 0, 0; i < len(bytecodes); i++ {
// Find the next hash that we've been served, leaving misses with nils
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Read(hash)
for j < len(req.Hashes) && !bytes.Equal(hash, req.Hashes[j][:]) {
j++
}
if j < len(req.Hashes) {
codes[j] = bytecodes[i]
j++
continue
}
// We've either ran out of hashes, or got unrequested data
return errors.New("unexpected bytecode")
}
return nil
}
func (s *Suite) snapGetTrieNodes(t *utesting.T, tc *trieNodesTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetTrieNodes{
ID: uint64(rand.Int63()),
Root: tc.root,
Paths: tc.paths,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
if tc.expReject {
return nil
}
return fmt.Errorf("trienodes request failed: %v", err)
}
var res *snap.TrieNodesPacket
if r, ok := resp.(*TrieNodes); !ok {
return fmt.Errorf("trienodes response wrong: %T %v", resp, resp)
} else {
res = (*snap.TrieNodesPacket)(r)
}
// Check the correctness
// Cross reference the requested trienodes with the response to find gaps
// that the serving node is missing
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
hash := make([]byte, 32)
trienodes := res.Nodes
if got, want := len(trienodes), len(tc.expHashes); got != want {
return fmt.Errorf("wrong trienode count, got %d, want %d\n", got, want)
}
for i, trienode := range trienodes {
hasher.Reset()
hasher.Write(trienode)
hasher.Read(hash)
if got, want := hash, tc.expHashes[i]; !bytes.Equal(got, want[:]) {
fmt.Printf("hash %d wrong, got %#x, want %#x\n", i, got, want)
err = fmt.Errorf("hash %d wrong, got %#x, want %#x", i, got, want)
}
}
return err
}