Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/swarm/network/simulation/kademlia_test.go

310 lines
7.9 KiB

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package simulation
import (
"context"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
"github.com/ethereum/go-ethereum/swarm/network"
)
/*
TestWaitTillHealthy tests that we indeed get a healthy network after we wait for it.
For this to be tested, a bit of a snake tail bite needs to happen:
* First we create a first simulation
* Run it as nodes connected in a ring
* Wait until the network is healthy
* Then we create a snapshot
* With this snapshot we create a new simulation
* This simulation is expected to have a healthy configuration, as it uses the snapshot
* Thus we just iterate all nodes and check that their kademlias are healthy
* If all kademlias are healthy, the test succeeded, otherwise it failed
*/
func TestWaitTillHealthy(t *testing.T) {
t.Skip("this test is flaky; disabling till underlying problem is solved")
testNodesNum := 10
// create the first simulation
sim := New(createSimServiceMap(true))
// connect and...
nodeIDs, err := sim.AddNodesAndConnectRing(testNodesNum)
if err != nil {
t.Fatal(err)
}
// array of all overlay addresses
var addrs [][]byte
// iterate once to be able to build the peer map
for _, node := range nodeIDs {
//get the kademlia overlay address from this ID
a := node.Bytes()
//append it to the array of all overlay addresses
addrs = append(addrs, a)
}
// build a PeerPot only once
pp := network.NewPeerPotMap(network.NewKadParams().NeighbourhoodSize, addrs)
ctx, cancel := context.WithTimeout(context.Background(), 120*time.Second)
defer cancel()
// ...wait until healthy
ill, err := sim.WaitTillHealthy(ctx)
if err != nil {
for id, kad := range ill {
t.Log("Node", id)
t.Log(kad.String())
}
t.Fatal(err)
}
// now create a snapshot of this network
snap, err := sim.Net.Snapshot()
if err != nil {
t.Fatal(err)
}
// close the initial simulation
sim.Close()
// create a control simulation
controlSim := New(createSimServiceMap(false))
defer controlSim.Close()
// load the snapshot into this control simulation
err = controlSim.Net.Load(snap)
if err != nil {
t.Fatal(err)
}
_, err = controlSim.WaitTillHealthy(ctx)
if err != nil {
t.Fatal(err)
}
for _, node := range nodeIDs {
// ...get its kademlia
item, ok := controlSim.NodeItem(node, BucketKeyKademlia)
if !ok {
t.Fatal("No kademlia bucket item")
}
kad := item.(*network.Kademlia)
// get its base address
kid := common.Bytes2Hex(kad.BaseAddr())
//get the health info
info := kad.GetHealthInfo(pp[kid])
log.Trace("Health info", "info", info)
// check that it is healthy
healthy := info.Healthy()
if !healthy {
t.Fatalf("Expected node %v of control simulation to be healthy, but it is not, unhealthy kademlias: %v", node, kad.String())
}
}
}
// createSimServiceMap returns the services map
// this function will create the sim services with or without discovery enabled
// based on the flag passed
func createSimServiceMap(discovery bool) map[string]ServiceFunc {
return map[string]ServiceFunc{
"bzz": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
addr := network.NewAddr(ctx.Config.Node())
hp := network.NewHiveParams()
hp.Discovery = discovery
config := &network.BzzConfig{
OverlayAddr: addr.Over(),
UnderlayAddr: addr.Under(),
HiveParams: hp,
}
kad := network.NewKademlia(addr.Over(), network.NewKadParams())
// store kademlia in node's bucket under BucketKeyKademlia
// so that it can be found by WaitTillHealthy method.
b.Store(BucketKeyKademlia, kad)
return network.NewBzz(config, kad, nil, nil, nil), nil, nil
},
}
}
// TestWaitTillSnapshotRecreated tests that we indeed have a network
// configuration specified in the snapshot file, after we wait for it.
//
// First we create a first simulation
// Run it as nodes connected in a ring
// Wait until the network is healthy
// Then we create a snapshot
// With this snapshot we create a new simulation
// Call WaitTillSnapshotRecreated() function and wait until it returns
// Iterate the nodes and check if all the connections are successfully recreated
func TestWaitTillSnapshotRecreated(t *testing.T) {
t.Skip("test is flaky. disabling until underlying problem is addressed")
var err error
sim := New(createSimServiceMap(true))
_, err = sim.AddNodesAndConnectRing(16)
if err != nil {
t.Fatal(err)
}
ctx, cancel := context.WithTimeout(context.Background(), 60*time.Second)
defer cancel()
_, err = sim.WaitTillHealthy(ctx)
if err != nil {
t.Fatal(err)
}
originalConnections := sim.getActualConnections()
snap, err := sim.Net.Snapshot()
sim.Close()
if err != nil {
t.Fatal(err)
}
controlSim := New(createSimServiceMap(false))
defer controlSim.Close()
err = controlSim.Net.Load(snap)
if err != nil {
t.Fatal(err)
}
err = controlSim.WaitTillSnapshotRecreated(ctx, snap)
if err != nil {
t.Fatal(err)
}
controlConnections := controlSim.getActualConnections()
for _, c := range originalConnections {
if !exist(controlConnections, c) {
t.Fatal("connection was not recreated")
}
}
}
// exist returns true if val is found in arr
func exist(arr []uint64, val uint64) bool {
for _, c := range arr {
if c == val {
return true
}
}
return false
}
func TestRemoveDuplicatesAndSingletons(t *testing.T) {
singletons := []uint64{
0x3c127c6f6cb026b0,
0x0f45190d72e71fc5,
0xb0184c02449e0bb6,
0xa85c7b84239c54d3,
0xe3b0c44298fc1c14,
0x9afbf4c8996fb924,
0x27ae41e4649b934c,
0xa495991b7852b855,
}
doubles := []uint64{
0x1b879f878de7fc7a,
0xc6791470521bdab4,
0xdd34b0ee39bbccc6,
0x4d904fbf0f31da10,
0x6403c2560432c8f8,
0x18954e33cf3ad847,
0x90db00e98dc7a8a6,
0x92886b0dfcc1809b,
}
var arr []uint64
arr = append(arr, doubles...)
arr = append(arr, singletons...)
arr = append(arr, doubles...)
arr = removeDuplicatesAndSingletons(arr)
for _, i := range singletons {
if exist(arr, i) {
t.Fatalf("singleton not removed: %d", i)
}
}
for _, i := range doubles {
if !exist(arr, i) {
t.Fatalf("wrong value removed: %d", i)
}
}
for j := 0; j < len(doubles); j++ {
v := doubles[j] + singletons[j]
if exist(arr, v) {
t.Fatalf("non-existing value found, index: %d", j)
}
}
}
func TestIsAllDeployed(t *testing.T) {
a := []uint64{
0x3c127c6f6cb026b0,
0x0f45190d72e71fc5,
0xb0184c02449e0bb6,
0xa85c7b84239c54d3,
0xe3b0c44298fc1c14,
0x9afbf4c8996fb924,
0x27ae41e4649b934c,
0xa495991b7852b855,
}
b := []uint64{
0x1b879f878de7fc7a,
0xc6791470521bdab4,
0xdd34b0ee39bbccc6,
0x4d904fbf0f31da10,
0x6403c2560432c8f8,
0x18954e33cf3ad847,
0x90db00e98dc7a8a6,
0x92886b0dfcc1809b,
}
var c []uint64
c = append(c, a...)
c = append(c, b...)
if !isAllDeployed(a, c) {
t.Fatal("isAllDeployed failed")
}
if !isAllDeployed(b, c) {
t.Fatal("isAllDeployed failed")
}
if isAllDeployed(c, a) {
t.Fatal("isAllDeployed failed: false positive")
}
if isAllDeployed(c, b) {
t.Fatal("isAllDeployed failed: false positive")
}
c = c[2:]
if isAllDeployed(a, c) {
t.Fatal("isAllDeployed failed: false positive")
}
if !isAllDeployed(b, c) {
t.Fatal("isAllDeployed failed")
}
}