Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/core/rawdb/freezer_memory.go

421 lines
12 KiB

// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
)
// memoryTable is used to store a list of sequential items in memory.
type memoryTable struct {
name string // Table name
items uint64 // Number of stored items in the table, including the deleted ones
offset uint64 // Number of deleted items from the table
data [][]byte // List of rlp-encoded items, sort in order
size uint64 // Total memory size occupied by the table
lock sync.RWMutex
}
// newMemoryTable initializes the memory table.
func newMemoryTable(name string) *memoryTable {
return &memoryTable{name: name}
}
// has returns an indicator whether the specified data exists.
func (t *memoryTable) has(number uint64) bool {
t.lock.RLock()
defer t.lock.RUnlock()
return number >= t.offset && number < t.items
}
// retrieve retrieves multiple items in sequence, starting from the index 'start'.
// It will return:
// - at most 'count' items,
// - if maxBytes is specified: at least 1 item (even if exceeding the maxByteSize),
// but will otherwise return as many items as fit into maxByteSize.
// - if maxBytes is not specified, 'count' items will be returned if they are present
func (t *memoryTable) retrieve(start uint64, count, maxBytes uint64) ([][]byte, error) {
t.lock.RLock()
defer t.lock.RUnlock()
var (
size uint64
batch [][]byte
)
// Ensure the start is written, not deleted from the tail, and that the
// caller actually wants something.
if t.items <= start || t.offset > start || count == 0 {
return nil, errOutOfBounds
}
// Cap the item count if the retrieval is out of bound.
if start+count > t.items {
count = t.items - start
}
for n := start; n < start+count; n++ {
index := n - t.offset
if len(batch) != 0 && maxBytes != 0 && size+uint64(len(t.data[index])) > maxBytes {
return batch, nil
}
batch = append(batch, t.data[index])
size += uint64(len(t.data[index]))
}
return batch, nil
}
// truncateHead discards any recent data above the provided threshold number.
func (t *memoryTable) truncateHead(items uint64) error {
t.lock.Lock()
defer t.lock.Unlock()
// Short circuit if nothing to delete.
if t.items <= items {
return nil
}
if items < t.offset {
return errors.New("truncation below tail")
}
t.data = t.data[:items-t.offset]
t.items = items
return nil
}
// truncateTail discards any recent data before the provided threshold number.
func (t *memoryTable) truncateTail(items uint64) error {
t.lock.Lock()
defer t.lock.Unlock()
// Short circuit if nothing to delete.
if t.offset >= items {
return nil
}
if t.items < items {
return errors.New("truncation above head")
}
t.data = t.data[items-t.offset:]
t.offset = items
return nil
}
// commit merges the given item batch into table. It's presumed that the
// batch is ordered and continuous with table.
func (t *memoryTable) commit(batch [][]byte) error {
t.lock.Lock()
defer t.lock.Unlock()
for _, item := range batch {
t.size += uint64(len(item))
}
t.data = append(t.data, batch...)
t.items += uint64(len(batch))
return nil
}
// memoryBatch is the singleton batch used for ancient write.
type memoryBatch struct {
data map[string][][]byte
next map[string]uint64
size map[string]int64
}
func newMemoryBatch() *memoryBatch {
return &memoryBatch{
data: make(map[string][][]byte),
next: make(map[string]uint64),
size: make(map[string]int64),
}
}
func (b *memoryBatch) reset(freezer *MemoryFreezer) {
b.data = make(map[string][][]byte)
b.next = make(map[string]uint64)
b.size = make(map[string]int64)
for name, table := range freezer.tables {
b.next[name] = table.items
}
}
// Append adds an RLP-encoded item.
func (b *memoryBatch) Append(kind string, number uint64, item interface{}) error {
if b.next[kind] != number {
return errOutOrderInsertion
}
blob, err := rlp.EncodeToBytes(item)
if err != nil {
return err
}
b.data[kind] = append(b.data[kind], blob)
b.next[kind]++
b.size[kind] += int64(len(blob))
return nil
}
// AppendRaw adds an item without RLP-encoding it.
func (b *memoryBatch) AppendRaw(kind string, number uint64, blob []byte) error {
if b.next[kind] != number {
return errOutOrderInsertion
}
b.data[kind] = append(b.data[kind], common.CopyBytes(blob))
b.next[kind]++
b.size[kind] += int64(len(blob))
return nil
}
// commit is called at the end of a write operation and writes all remaining
// data to tables.
func (b *memoryBatch) commit(freezer *MemoryFreezer) (items uint64, writeSize int64, err error) {
// Check that count agrees on all batches.
items = math.MaxUint64
for name, next := range b.next {
if items < math.MaxUint64 && next != items {
return 0, 0, fmt.Errorf("table %s is at item %d, want %d", name, next, items)
}
items = next
}
// Commit all table batches.
for name, batch := range b.data {
table := freezer.tables[name]
if err := table.commit(batch); err != nil {
return 0, 0, err
}
writeSize += b.size[name]
}
return items, writeSize, nil
}
// MemoryFreezer is an ephemeral ancient store. It implements the ethdb.AncientStore
// interface and can be used along with ephemeral key-value store.
type MemoryFreezer struct {
items uint64 // Number of items stored
tail uint64 // Number of the first stored item in the freezer
readonly bool // Flag if the freezer is only for reading
lock sync.RWMutex // Lock to protect fields
tables map[string]*memoryTable // Tables for storing everything
writeBatch *memoryBatch // Pre-allocated write batch
}
// NewMemoryFreezer initializes an in-memory freezer instance.
func NewMemoryFreezer(readonly bool, tableName map[string]bool) *MemoryFreezer {
tables := make(map[string]*memoryTable)
for name := range tableName {
tables[name] = newMemoryTable(name)
}
return &MemoryFreezer{
writeBatch: newMemoryBatch(),
readonly: readonly,
tables: tables,
}
}
// HasAncient returns an indicator whether the specified data exists.
func (f *MemoryFreezer) HasAncient(kind string, number uint64) (bool, error) {
f.lock.RLock()
defer f.lock.RUnlock()
if table := f.tables[kind]; table != nil {
return table.has(number), nil
}
return false, nil
}
// Ancient retrieves an ancient binary blob from the in-memory freezer.
func (f *MemoryFreezer) Ancient(kind string, number uint64) ([]byte, error) {
f.lock.RLock()
defer f.lock.RUnlock()
t := f.tables[kind]
if t == nil {
return nil, errUnknownTable
}
data, err := t.retrieve(number, 1, 0)
if err != nil {
return nil, err
}
return data[0], nil
}
// AncientRange retrieves multiple items in sequence, starting from the index 'start'.
// It will return
// - at most 'count' items,
// - if maxBytes is specified: at least 1 item (even if exceeding the maxByteSize),
// but will otherwise return as many items as fit into maxByteSize.
// - if maxBytes is not specified, 'count' items will be returned if they are present
func (f *MemoryFreezer) AncientRange(kind string, start, count, maxBytes uint64) ([][]byte, error) {
f.lock.RLock()
defer f.lock.RUnlock()
t := f.tables[kind]
if t == nil {
return nil, errUnknownTable
}
return t.retrieve(start, count, maxBytes)
}
// Ancients returns the ancient item numbers in the freezer.
func (f *MemoryFreezer) Ancients() (uint64, error) {
f.lock.RLock()
defer f.lock.RUnlock()
return f.items, nil
}
// Tail returns the number of first stored item in the freezer.
// This number can also be interpreted as the total deleted item numbers.
func (f *MemoryFreezer) Tail() (uint64, error) {
f.lock.RLock()
defer f.lock.RUnlock()
return f.tail, nil
}
// AncientSize returns the ancient size of the specified category.
func (f *MemoryFreezer) AncientSize(kind string) (uint64, error) {
f.lock.RLock()
defer f.lock.RUnlock()
if table := f.tables[kind]; table != nil {
return table.size, nil
}
return 0, errUnknownTable
}
// ReadAncients runs the given read operation while ensuring that no writes take place
// on the underlying freezer.
func (f *MemoryFreezer) ReadAncients(fn func(ethdb.AncientReaderOp) error) (err error) {
f.lock.RLock()
defer f.lock.RUnlock()
return fn(f)
}
// ModifyAncients runs the given write operation.
func (f *MemoryFreezer) ModifyAncients(fn func(ethdb.AncientWriteOp) error) (writeSize int64, err error) {
f.lock.Lock()
defer f.lock.Unlock()
if f.readonly {
return 0, errReadOnly
}
// Roll back all tables to the starting position in case of error.
defer func(old uint64) {
if err == nil {
return
}
// The write operation has failed. Go back to the previous item position.
for name, table := range f.tables {
err := table.truncateHead(old)
if err != nil {
log.Error("Freezer table roll-back failed", "table", name, "index", old, "err", err)
}
}
}(f.items)
// Modify the ancients in batch.
f.writeBatch.reset(f)
if err := fn(f.writeBatch); err != nil {
return 0, err
}
item, writeSize, err := f.writeBatch.commit(f)
if err != nil {
return 0, err
}
f.items = item
return writeSize, nil
}
// TruncateHead discards any recent data above the provided threshold number.
// It returns the previous head number.
func (f *MemoryFreezer) TruncateHead(items uint64) (uint64, error) {
f.lock.Lock()
defer f.lock.Unlock()
if f.readonly {
return 0, errReadOnly
}
old := f.items
if old <= items {
return old, nil
}
for _, table := range f.tables {
if err := table.truncateHead(items); err != nil {
return 0, err
}
}
f.items = items
return old, nil
}
// TruncateTail discards any recent data below the provided threshold number.
func (f *MemoryFreezer) TruncateTail(tail uint64) (uint64, error) {
f.lock.Lock()
defer f.lock.Unlock()
if f.readonly {
return 0, errReadOnly
}
old := f.tail
if old >= tail {
return old, nil
}
for _, table := range f.tables {
if err := table.truncateTail(tail); err != nil {
return 0, err
}
}
f.tail = tail
return old, nil
}
// Sync flushes all data tables to disk.
func (f *MemoryFreezer) Sync() error {
return nil
}
// Close releases all the sources held by the memory freezer. It will panic if
// any following invocation is made to a closed freezer.
func (f *MemoryFreezer) Close() error {
f.lock.Lock()
defer f.lock.Unlock()
f.tables = nil
f.writeBatch = nil
return nil
}
// Reset drops all the data cached in the memory freezer and reset itself
// back to default state.
func (f *MemoryFreezer) Reset() error {
f.lock.Lock()
defer f.lock.Unlock()
tables := make(map[string]*memoryTable)
for name := range f.tables {
tables[name] = newMemoryTable(name)
}
f.tables = tables
f.items, f.tail = 0, 0
return nil
}