Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/eth/catalyst/simulated_beacon.go

336 lines
10 KiB

// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package catalyst
import (
"crypto/rand"
"crypto/sha256"
"errors"
"fmt"
"math/big"
"sync"
"time"
"github.com/ethereum/go-ethereum/beacon/engine"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto/kzg4844"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rpc"
)
const devEpochLength = 32
// withdrawalQueue implements a FIFO queue which holds withdrawals that are
// pending inclusion.
type withdrawalQueue struct {
pending types.Withdrawals
mu sync.Mutex
feed event.Feed
subs event.SubscriptionScope
}
type newWithdrawalsEvent struct{ Withdrawals types.Withdrawals }
// add queues a withdrawal for future inclusion.
func (w *withdrawalQueue) add(withdrawal *types.Withdrawal) error {
w.mu.Lock()
w.pending = append(w.pending, withdrawal)
w.mu.Unlock()
w.feed.Send(newWithdrawalsEvent{types.Withdrawals{withdrawal}})
return nil
}
// pop dequeues the specified number of withdrawals from the queue.
func (w *withdrawalQueue) pop(count int) types.Withdrawals {
w.mu.Lock()
defer w.mu.Unlock()
count = min(count, len(w.pending))
popped := w.pending[0:count]
w.pending = w.pending[count:]
return popped
}
// subscribe allows a listener to be updated when new withdrawals are added to
// the queue.
func (w *withdrawalQueue) subscribe(ch chan<- newWithdrawalsEvent) event.Subscription {
sub := w.feed.Subscribe(ch)
return w.subs.Track(sub)
}
// SimulatedBeacon drives an Ethereum instance as if it were a real beacon
// client. It can run in period mode where it mines a new block every period
// (seconds) or on every transaction via Commit, Fork and AdjustTime.
type SimulatedBeacon struct {
shutdownCh chan struct{}
eth *eth.Ethereum
period uint64
withdrawals withdrawalQueue
feeRecipient common.Address
feeRecipientLock sync.Mutex // lock gates concurrent access to the feeRecipient
engineAPI *ConsensusAPI
curForkchoiceState engine.ForkchoiceStateV1
lastBlockTime uint64
}
// NewSimulatedBeacon constructs a new simulated beacon chain.
func NewSimulatedBeacon(period uint64, eth *eth.Ethereum) (*SimulatedBeacon, error) {
block := eth.BlockChain().CurrentBlock()
current := engine.ForkchoiceStateV1{
HeadBlockHash: block.Hash(),
SafeBlockHash: block.Hash(),
FinalizedBlockHash: block.Hash(),
}
engineAPI := newConsensusAPIWithoutHeartbeat(eth)
// if genesis block, send forkchoiceUpdated to trigger transition to PoS
if block.Number.Sign() == 0 {
if _, err := engineAPI.ForkchoiceUpdatedV3(current, nil); err != nil {
return nil, err
}
}
return &SimulatedBeacon{
eth: eth,
period: period,
shutdownCh: make(chan struct{}),
engineAPI: engineAPI,
lastBlockTime: block.Time,
curForkchoiceState: current,
}, nil
}
func (c *SimulatedBeacon) setFeeRecipient(feeRecipient common.Address) {
c.feeRecipientLock.Lock()
c.feeRecipient = feeRecipient
c.feeRecipientLock.Unlock()
}
// Start invokes the SimulatedBeacon life-cycle function in a goroutine.
func (c *SimulatedBeacon) Start() error {
if c.period == 0 {
// if period is set to 0, do not mine at all
// this is used in the simulated backend where blocks
// are explicitly mined via Commit, AdjustTime and Fork
} else {
go c.loop()
}
return nil
}
// Stop halts the SimulatedBeacon service.
func (c *SimulatedBeacon) Stop() error {
close(c.shutdownCh)
return nil
}
// sealBlock initiates payload building for a new block and creates a new block
// with the completed payload.
func (c *SimulatedBeacon) sealBlock(withdrawals []*types.Withdrawal, timestamp uint64) error {
if timestamp <= c.lastBlockTime {
timestamp = c.lastBlockTime + 1
}
c.feeRecipientLock.Lock()
feeRecipient := c.feeRecipient
c.feeRecipientLock.Unlock()
// Reset to CurrentBlock in case of the chain was rewound
if header := c.eth.BlockChain().CurrentBlock(); c.curForkchoiceState.HeadBlockHash != header.Hash() {
finalizedHash := c.finalizedBlockHash(header.Number.Uint64())
c.setCurrentState(header.Hash(), *finalizedHash)
}
// Because transaction insertion, block insertion, and block production will
// happen without any timing delay between them in simulator mode and the
// transaction pool will be running its internal reset operation on a
// background thread, flaky executions can happen. To avoid the racey
// behavior, the pool will be explicitly blocked on its reset before
// continuing to the block production below.
if err := c.eth.APIBackend.TxPool().Sync(); err != nil {
return fmt.Errorf("failed to sync txpool: %w", err)
}
var random [32]byte
rand.Read(random[:])
fcResponse, err := c.engineAPI.forkchoiceUpdated(c.curForkchoiceState, &engine.PayloadAttributes{
Timestamp: timestamp,
SuggestedFeeRecipient: feeRecipient,
Withdrawals: withdrawals,
Random: random,
BeaconRoot: &common.Hash{},
}, engine.PayloadV3)
if err != nil {
return err
}
if fcResponse == engine.STATUS_SYNCING {
return errors.New("chain rewind prevented invocation of payload creation")
}
envelope, err := c.engineAPI.getPayload(*fcResponse.PayloadID, true)
if err != nil {
return err
}
payload := envelope.ExecutionPayload
var finalizedHash common.Hash
if payload.Number%devEpochLength == 0 {
finalizedHash = payload.BlockHash
} else {
if fh := c.finalizedBlockHash(payload.Number); fh == nil {
return errors.New("chain rewind interrupted calculation of finalized block hash")
} else {
finalizedHash = *fh
}
}
// Independently calculate the blob hashes from sidecars.
blobHashes := make([]common.Hash, 0)
if envelope.BlobsBundle != nil {
hasher := sha256.New()
for _, commit := range envelope.BlobsBundle.Commitments {
var c kzg4844.Commitment
if len(commit) != len(c) {
return errors.New("invalid commitment length")
}
copy(c[:], commit)
blobHashes = append(blobHashes, kzg4844.CalcBlobHashV1(hasher, &c))
}
}
// Mark the payload as canon
if _, err = c.engineAPI.NewPayloadV3(*payload, blobHashes, &common.Hash{}); err != nil {
return err
}
c.setCurrentState(payload.BlockHash, finalizedHash)
// Mark the block containing the payload as canonical
if _, err = c.engineAPI.ForkchoiceUpdatedV3(c.curForkchoiceState, nil); err != nil {
return err
}
c.lastBlockTime = payload.Timestamp
return nil
}
// loop runs the block production loop for non-zero period configuration
func (c *SimulatedBeacon) loop() {
timer := time.NewTimer(0)
for {
select {
case <-c.shutdownCh:
return
case <-timer.C:
if err := c.sealBlock(c.withdrawals.pop(10), uint64(time.Now().Unix())); err != nil {
log.Warn("Error performing sealing work", "err", err)
} else {
timer.Reset(time.Second * time.Duration(c.period))
}
}
}
}
// finalizedBlockHash returns the block hash of the finalized block corresponding
// to the given number or nil if doesn't exist in the chain.
func (c *SimulatedBeacon) finalizedBlockHash(number uint64) *common.Hash {
var finalizedNumber uint64
if number%devEpochLength == 0 {
finalizedNumber = number
} else {
finalizedNumber = (number - 1) / devEpochLength * devEpochLength
}
if finalizedBlock := c.eth.BlockChain().GetBlockByNumber(finalizedNumber); finalizedBlock != nil {
fh := finalizedBlock.Hash()
return &fh
}
return nil
}
// setCurrentState sets the current forkchoice state
func (c *SimulatedBeacon) setCurrentState(headHash, finalizedHash common.Hash) {
c.curForkchoiceState = engine.ForkchoiceStateV1{
HeadBlockHash: headHash,
SafeBlockHash: headHash,
FinalizedBlockHash: finalizedHash,
}
}
// Commit seals a block on demand.
func (c *SimulatedBeacon) Commit() common.Hash {
withdrawals := c.withdrawals.pop(10)
if err := c.sealBlock(withdrawals, uint64(time.Now().Unix())); err != nil {
log.Warn("Error performing sealing work", "err", err)
}
return c.eth.BlockChain().CurrentBlock().Hash()
}
// Rollback un-sends previously added transactions.
func (c *SimulatedBeacon) Rollback() {
// Flush all transactions from the transaction pools
maxUint256 := new(big.Int).Sub(new(big.Int).Lsh(common.Big1, 256), common.Big1)
c.eth.TxPool().SetGasTip(maxUint256)
// Set the gas tip back to accept new transactions
// TODO (Marius van der Wijden): set gas tip to parameter passed by config
c.eth.TxPool().SetGasTip(big.NewInt(params.GWei))
}
// Fork sets the head to the provided hash.
func (c *SimulatedBeacon) Fork(parentHash common.Hash) error {
// Ensure no pending transactions.
c.eth.TxPool().Sync()
if len(c.eth.TxPool().Pending(txpool.PendingFilter{})) != 0 {
return errors.New("pending block dirty")
}
parent := c.eth.BlockChain().GetBlockByHash(parentHash)
if parent == nil {
return errors.New("parent not found")
}
return c.eth.BlockChain().SetHead(parent.NumberU64())
}
// AdjustTime creates a new block with an adjusted timestamp.
func (c *SimulatedBeacon) AdjustTime(adjustment time.Duration) error {
if len(c.eth.TxPool().Pending(txpool.PendingFilter{})) != 0 {
return errors.New("could not adjust time on non-empty block")
}
parent := c.eth.BlockChain().CurrentBlock()
if parent == nil {
return errors.New("parent not found")
}
withdrawals := c.withdrawals.pop(10)
return c.sealBlock(withdrawals, parent.Time+uint64(adjustment/time.Second))
}
// RegisterSimulatedBeaconAPIs registers the simulated beacon's API with the
// stack.
func RegisterSimulatedBeaconAPIs(stack *node.Node, sim *SimulatedBeacon) {
api := newSimulatedBeaconAPI(sim)
stack.RegisterAPIs([]rpc.API{
{
Namespace: "dev",
Service: api,
Version: "1.0",
},
})
}