Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/trie/verkle.go

422 lines
14 KiB

// Copyright 2023 go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"encoding/binary"
"errors"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/utils"
"github.com/ethereum/go-ethereum/triedb/database"
"github.com/ethereum/go-verkle"
"github.com/holiman/uint256"
)
var (
zero [32]byte
errInvalidRootType = errors.New("invalid node type for root")
)
// VerkleTrie is a wrapper around VerkleNode that implements the trie.Trie
// interface so that Verkle trees can be reused verbatim.
type VerkleTrie struct {
root verkle.VerkleNode
cache *utils.PointCache
reader *trieReader
}
// NewVerkleTrie constructs a verkle tree based on the specified root hash.
func NewVerkleTrie(root common.Hash, db database.Database, cache *utils.PointCache) (*VerkleTrie, error) {
reader, err := newTrieReader(root, common.Hash{}, db)
if err != nil {
return nil, err
}
// Parse the root verkle node if it's not empty.
node := verkle.New()
if root != types.EmptyVerkleHash && root != types.EmptyRootHash {
blob, err := reader.node(nil, common.Hash{})
if err != nil {
return nil, err
}
node, err = verkle.ParseNode(blob, 0)
if err != nil {
return nil, err
}
}
return &VerkleTrie{
root: node,
cache: cache,
reader: reader,
}, nil
}
func (t *VerkleTrie) FlatdbNodeResolver(path []byte) ([]byte, error) {
return t.reader.node(path, common.Hash{})
}
// GetKey returns the sha3 preimage of a hashed key that was previously used
// to store a value.
func (t *VerkleTrie) GetKey(key []byte) []byte {
return key
}
// GetAccount implements state.Trie, retrieving the account with the specified
// account address. If the specified account is not in the verkle tree, nil will
// be returned. If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) GetAccount(addr common.Address) (*types.StateAccount, error) {
var (
acc = &types.StateAccount{}
values [][]byte
err error
)
switch n := t.root.(type) {
case *verkle.InternalNode:
values, err = n.GetValuesAtStem(t.cache.GetStem(addr[:]), t.nodeResolver)
if err != nil {
return nil, fmt.Errorf("GetAccount (%x) error: %v", addr, err)
}
default:
return nil, errInvalidRootType
}
if values == nil {
return nil, nil
}
basicData := values[utils.BasicDataLeafKey]
acc.Nonce = binary.BigEndian.Uint64(basicData[utils.BasicDataNonceOffset:])
acc.Balance = new(uint256.Int).SetBytes(basicData[utils.BasicDataBalanceOffset : utils.BasicDataBalanceOffset+16])
acc.CodeHash = values[utils.CodeHashLeafKey]
// TODO account.Root is leave as empty. How should we handle the legacy account?
return acc, nil
}
// GetStorage implements state.Trie, retrieving the storage slot with the specified
// account address and storage key. If the specified slot is not in the verkle tree,
// nil will be returned. If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) GetStorage(addr common.Address, key []byte) ([]byte, error) {
k := utils.StorageSlotKeyWithEvaluatedAddress(t.cache.Get(addr.Bytes()), key)
val, err := t.root.Get(k, t.nodeResolver)
if err != nil {
return nil, err
}
return common.TrimLeftZeroes(val), nil
}
// UpdateAccount implements state.Trie, writing the provided account into the tree.
// If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) UpdateAccount(addr common.Address, acc *types.StateAccount, codeLen int) error {
var (
err error
basicData [32]byte
values = make([][]byte, verkle.NodeWidth)
stem = t.cache.GetStem(addr[:])
)
// Code size is encoded in BasicData as a 3-byte big-endian integer. Spare bytes are present
// before the code size to support bigger integers in the future. PutUint32(...) requires
// 4 bytes, so we need to shift the offset 1 byte to the left.
binary.BigEndian.PutUint32(basicData[utils.BasicDataCodeSizeOffset-1:], uint32(codeLen))
binary.BigEndian.PutUint64(basicData[utils.BasicDataNonceOffset:], acc.Nonce)
if acc.Balance.ByteLen() > 16 {
panic("balance too large")
}
acc.Balance.WriteToSlice(basicData[utils.BasicDataBalanceOffset : utils.BasicDataBalanceOffset+16])
values[utils.BasicDataLeafKey] = basicData[:]
values[utils.CodeHashLeafKey] = acc.CodeHash[:]
switch root := t.root.(type) {
case *verkle.InternalNode:
err = root.InsertValuesAtStem(stem, values, t.nodeResolver)
default:
return errInvalidRootType
}
if err != nil {
return fmt.Errorf("UpdateAccount (%x) error: %v", addr, err)
}
return nil
}
// UpdateStorage implements state.Trie, writing the provided storage slot into
// the tree. If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) UpdateStorage(address common.Address, key, value []byte) error {
// Left padding the slot value to 32 bytes.
var v [32]byte
if len(value) >= 32 {
copy(v[:], value[:32])
} else {
copy(v[32-len(value):], value[:])
}
k := utils.StorageSlotKeyWithEvaluatedAddress(t.cache.Get(address.Bytes()), key)
return t.root.Insert(k, v[:], t.nodeResolver)
}
// DeleteAccount implements state.Trie, deleting the specified account from the
// trie. If the account was not existent in the trie, no error will be returned.
// If the trie is corrupted, an error will be returned.
func (t *VerkleTrie) DeleteAccount(addr common.Address) error {
var (
err error
values = make([][]byte, verkle.NodeWidth)
)
for i := 0; i < verkle.NodeWidth; i++ {
values[i] = zero[:]
}
switch n := t.root.(type) {
case *verkle.InternalNode:
err = n.InsertValuesAtStem(t.cache.GetStem(addr.Bytes()), values, t.nodeResolver)
if err != nil {
return fmt.Errorf("DeleteAccount (%x) error: %v", addr, err)
}
default:
return errInvalidRootType
}
return nil
}
// RollBackAccount removes the account info + code from the tree, unlike DeleteAccount
// that will overwrite it with 0s. The first 64 storage slots are also removed.
func (t *VerkleTrie) RollBackAccount(addr common.Address) error {
var (
evaluatedAddr = t.cache.Get(addr.Bytes())
basicDataKey = utils.BasicDataKeyWithEvaluatedAddress(evaluatedAddr)
)
basicDataBytes, err := t.root.Get(basicDataKey, t.nodeResolver)
if err != nil {
return fmt.Errorf("rollback: error finding code size: %w", err)
}
if len(basicDataBytes) == 0 {
return errors.New("rollback: basic data is not existent")
}
// The code size is encoded in BasicData as a 3-byte big-endian integer. Spare bytes are present
// before the code size to support bigger integers in the future.
// LittleEndian.Uint32(...) expects 4-bytes, so we need to shift the offset 1-byte to the left.
codeSize := binary.BigEndian.Uint32(basicDataBytes[utils.BasicDataCodeSizeOffset-1:])
// Delete the account header + first 64 slots + first 128 code chunks
_, err = t.root.(*verkle.InternalNode).DeleteAtStem(basicDataKey[:31], t.nodeResolver)
if err != nil {
return fmt.Errorf("error rolling back account header: %w", err)
}
// Delete all further code
for i, chunknr := uint64(31*128), uint64(128); i < uint64(codeSize); i, chunknr = i+31*256, chunknr+256 {
// evaluate group key at the start of a new group
offset := uint256.NewInt(chunknr)
key := utils.CodeChunkKeyWithEvaluatedAddress(evaluatedAddr, offset)
if _, err = t.root.(*verkle.InternalNode).DeleteAtStem(key[:], t.nodeResolver); err != nil {
return fmt.Errorf("error deleting code chunk stem (addr=%x, offset=%d) error: %w", addr[:], offset, err)
}
}
return nil
}
// DeleteStorage implements state.Trie, deleting the specified storage slot from
// the trie. If the storage slot was not existent in the trie, no error will be
// returned. If the trie is corrupted, an error will be returned.
func (t *VerkleTrie) DeleteStorage(addr common.Address, key []byte) error {
var zero [32]byte
k := utils.StorageSlotKeyWithEvaluatedAddress(t.cache.Get(addr.Bytes()), key)
return t.root.Insert(k, zero[:], t.nodeResolver)
}
// Hash returns the root hash of the tree. It does not write to the database and
// can be used even if the tree doesn't have one.
func (t *VerkleTrie) Hash() common.Hash {
return t.root.Commit().Bytes()
}
// Commit writes all nodes to the tree's memory database.
func (t *VerkleTrie) Commit(_ bool) (common.Hash, *trienode.NodeSet) {
root := t.root.(*verkle.InternalNode)
nodes, err := root.BatchSerialize()
if err != nil {
// Error return from this function indicates error in the code logic
// of BatchSerialize, and we fail catastrophically if this is the case.
panic(fmt.Errorf("BatchSerialize failed: %v", err))
}
nodeset := trienode.NewNodeSet(common.Hash{})
for _, node := range nodes {
// Hash parameter is not used in pathdb
nodeset.AddNode(node.Path, trienode.New(common.Hash{}, node.SerializedBytes))
}
// Serialize root commitment form
return t.Hash(), nodeset
}
// NodeIterator implements state.Trie, returning an iterator that returns
// nodes of the trie. Iteration starts at the key after the given start key.
//
// TODO(gballet, rjl493456442) implement it.
func (t *VerkleTrie) NodeIterator(startKey []byte) (NodeIterator, error) {
panic("not implemented")
}
// Prove implements state.Trie, constructing a Merkle proof for key. The result
// contains all encoded nodes on the path to the value at key. The value itself
// is also included in the last node and can be retrieved by verifying the proof.
//
// If the trie does not contain a value for key, the returned proof contains all
// nodes of the longest existing prefix of the key (at least the root), ending
// with the node that proves the absence of the key.
//
// TODO(gballet, rjl493456442) implement it.
func (t *VerkleTrie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error {
panic("not implemented")
}
// Copy returns a deep-copied verkle tree.
func (t *VerkleTrie) Copy() *VerkleTrie {
return &VerkleTrie{
root: t.root.Copy(),
cache: t.cache,
reader: t.reader,
}
}
// IsVerkle indicates if the trie is a Verkle trie.
func (t *VerkleTrie) IsVerkle() bool {
return true
}
// Proof builds and returns the verkle multiproof for keys, built against
// the pre tree. The post tree is passed in order to add the post values
// to that proof.
func (t *VerkleTrie) Proof(posttrie *VerkleTrie, keys [][]byte, resolver verkle.NodeResolverFn) (*verkle.VerkleProof, verkle.StateDiff, error) {
var postroot verkle.VerkleNode
if posttrie != nil {
postroot = posttrie.root
}
proof, _, _, _, err := verkle.MakeVerkleMultiProof(t.root, postroot, keys, resolver)
if err != nil {
return nil, nil, err
}
p, kvps, err := verkle.SerializeProof(proof)
if err != nil {
return nil, nil, err
}
return p, kvps, nil
}
// ChunkedCode represents a sequence of 32-bytes chunks of code (31 bytes of which
// are actual code, and 1 byte is the pushdata offset).
type ChunkedCode []byte
// Copy the values here so as to avoid an import cycle
const (
PUSH1 = byte(0x60)
PUSH32 = byte(0x7f)
)
// ChunkifyCode generates the chunked version of an array representing EVM bytecode
func ChunkifyCode(code []byte) ChunkedCode {
var (
chunkOffset = 0 // offset in the chunk
chunkCount = len(code) / 31
codeOffset = 0 // offset in the code
)
if len(code)%31 != 0 {
chunkCount++
}
chunks := make([]byte, chunkCount*32)
for i := 0; i < chunkCount; i++ {
// number of bytes to copy, 31 unless the end of the code has been reached.
end := 31 * (i + 1)
if len(code) < end {
end = len(code)
}
copy(chunks[i*32+1:], code[31*i:end]) // copy the code itself
// chunk offset = taken from the last chunk.
if chunkOffset > 31 {
// skip offset calculation if push data covers the whole chunk
chunks[i*32] = 31
chunkOffset = 1
continue
}
chunks[32*i] = byte(chunkOffset)
chunkOffset = 0
// Check each instruction and update the offset it should be 0 unless
// a PUSH-N overflows.
for ; codeOffset < end; codeOffset++ {
if code[codeOffset] >= PUSH1 && code[codeOffset] <= PUSH32 {
codeOffset += int(code[codeOffset] - PUSH1 + 1)
if codeOffset+1 >= 31*(i+1) {
codeOffset++
chunkOffset = codeOffset - 31*(i+1)
break
}
}
}
}
return chunks
}
// UpdateContractCode implements state.Trie, writing the provided contract code
// into the trie.
// Note that the code-size *must* be already saved by a previous UpdateAccount call.
func (t *VerkleTrie) UpdateContractCode(addr common.Address, codeHash common.Hash, code []byte) error {
var (
chunks = ChunkifyCode(code)
values [][]byte
key []byte
err error
)
for i, chunknr := 0, uint64(0); i < len(chunks); i, chunknr = i+32, chunknr+1 {
groupOffset := (chunknr + 128) % 256
if groupOffset == 0 /* start of new group */ || chunknr == 0 /* first chunk in header group */ {
values = make([][]byte, verkle.NodeWidth)
key = utils.CodeChunkKeyWithEvaluatedAddress(t.cache.Get(addr.Bytes()), uint256.NewInt(chunknr))
}
values[groupOffset] = chunks[i : i+32]
if groupOffset == 255 || len(chunks)-i <= 32 {
switch root := t.root.(type) {
case *verkle.InternalNode:
err = root.InsertValuesAtStem(key[:31], values, t.nodeResolver)
if err != nil {
return fmt.Errorf("UpdateContractCode (addr=%x) error: %w", addr[:], err)
}
default:
return errInvalidRootType
}
}
}
return nil
}
func (t *VerkleTrie) ToDot() string {
return verkle.ToDot(t.root)
}
func (t *VerkleTrie) nodeResolver(path []byte) ([]byte, error) {
return t.reader.node(path, common.Hash{})
}
// Witness returns a set containing all trie nodes that have been accessed.
func (t *VerkleTrie) Witness() map[string]struct{} {
panic("not implemented")
}