Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/internal/ethapi/api.go

2180 lines
79 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethapi
import (
"context"
"encoding/hex"
"errors"
"fmt"
"math/big"
"strings"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/accounts/keystore"
"github.com/ethereum/go-ethereum/accounts/scwallet"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc/eip1559"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth/gasestimator"
"github.com/ethereum/go-ethereum/eth/tracers/logger"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/rpc"
"github.com/ethereum/go-ethereum/trie"
"github.com/holiman/uint256"
"github.com/tyler-smith/go-bip39"
)
// estimateGasErrorRatio is the amount of overestimation eth_estimateGas is
// allowed to produce in order to speed up calculations.
const estimateGasErrorRatio = 0.015
var errBlobTxNotSupported = errors.New("signing blob transactions not supported")
// EthereumAPI provides an API to access Ethereum related information.
type EthereumAPI struct {
b Backend
}
// NewEthereumAPI creates a new Ethereum protocol API.
func NewEthereumAPI(b Backend) *EthereumAPI {
return &EthereumAPI{b}
}
// GasPrice returns a suggestion for a gas price for legacy transactions.
func (api *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
tipcap, err := api.b.SuggestGasTipCap(ctx)
if err != nil {
return nil, err
}
if head := api.b.CurrentHeader(); head.BaseFee != nil {
tipcap.Add(tipcap, head.BaseFee)
}
return (*hexutil.Big)(tipcap), err
}
// MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions.
func (api *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) {
tipcap, err := api.b.SuggestGasTipCap(ctx)
if err != nil {
return nil, err
}
return (*hexutil.Big)(tipcap), err
}
type feeHistoryResult struct {
OldestBlock *hexutil.Big `json:"oldestBlock"`
Reward [][]*hexutil.Big `json:"reward,omitempty"`
BaseFee []*hexutil.Big `json:"baseFeePerGas,omitempty"`
GasUsedRatio []float64 `json:"gasUsedRatio"`
BlobBaseFee []*hexutil.Big `json:"baseFeePerBlobGas,omitempty"`
BlobGasUsedRatio []float64 `json:"blobGasUsedRatio,omitempty"`
}
// FeeHistory returns the fee market history.
func (api *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) {
oldest, reward, baseFee, gasUsed, blobBaseFee, blobGasUsed, err := api.b.FeeHistory(ctx, uint64(blockCount), lastBlock, rewardPercentiles)
if err != nil {
return nil, err
}
results := &feeHistoryResult{
OldestBlock: (*hexutil.Big)(oldest),
GasUsedRatio: gasUsed,
}
if reward != nil {
results.Reward = make([][]*hexutil.Big, len(reward))
for i, w := range reward {
results.Reward[i] = make([]*hexutil.Big, len(w))
for j, v := range w {
results.Reward[i][j] = (*hexutil.Big)(v)
}
}
}
if baseFee != nil {
results.BaseFee = make([]*hexutil.Big, len(baseFee))
for i, v := range baseFee {
results.BaseFee[i] = (*hexutil.Big)(v)
}
}
if blobBaseFee != nil {
results.BlobBaseFee = make([]*hexutil.Big, len(blobBaseFee))
for i, v := range blobBaseFee {
results.BlobBaseFee[i] = (*hexutil.Big)(v)
}
}
if blobGasUsed != nil {
results.BlobGasUsedRatio = blobGasUsed
}
return results, nil
}
// BlobBaseFee returns the base fee for blob gas at the current head.
func (api *EthereumAPI) BlobBaseFee(ctx context.Context) *hexutil.Big {
return (*hexutil.Big)(api.b.BlobBaseFee(ctx))
}
// Syncing returns false in case the node is currently not syncing with the network. It can be up-to-date or has not
// yet received the latest block headers from its peers. In case it is synchronizing:
// - startingBlock: block number this node started to synchronize from
// - currentBlock: block number this node is currently importing
// - highestBlock: block number of the highest block header this node has received from peers
// - pulledStates: number of state entries processed until now
// - knownStates: number of known state entries that still need to be pulled
func (api *EthereumAPI) Syncing() (interface{}, error) {
progress := api.b.SyncProgress()
// Return not syncing if the synchronisation already completed
if progress.Done() {
return false, nil
}
// Otherwise gather the block sync stats
return map[string]interface{}{
"startingBlock": hexutil.Uint64(progress.StartingBlock),
"currentBlock": hexutil.Uint64(progress.CurrentBlock),
"highestBlock": hexutil.Uint64(progress.HighestBlock),
"syncedAccounts": hexutil.Uint64(progress.SyncedAccounts),
"syncedAccountBytes": hexutil.Uint64(progress.SyncedAccountBytes),
"syncedBytecodes": hexutil.Uint64(progress.SyncedBytecodes),
"syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes),
"syncedStorage": hexutil.Uint64(progress.SyncedStorage),
"syncedStorageBytes": hexutil.Uint64(progress.SyncedStorageBytes),
"healedTrienodes": hexutil.Uint64(progress.HealedTrienodes),
"healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes),
"healedBytecodes": hexutil.Uint64(progress.HealedBytecodes),
"healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes),
"healingTrienodes": hexutil.Uint64(progress.HealingTrienodes),
"healingBytecode": hexutil.Uint64(progress.HealingBytecode),
"txIndexFinishedBlocks": hexutil.Uint64(progress.TxIndexFinishedBlocks),
"txIndexRemainingBlocks": hexutil.Uint64(progress.TxIndexRemainingBlocks),
}, nil
}
// TxPoolAPI offers and API for the transaction pool. It only operates on data that is non-confidential.
type TxPoolAPI struct {
b Backend
}
// NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewTxPoolAPI(b Backend) *TxPoolAPI {
return &TxPoolAPI{b}
}
// Content returns the transactions contained within the transaction pool.
func (api *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
content := map[string]map[string]map[string]*RPCTransaction{
"pending": make(map[string]map[string]*RPCTransaction),
"queued": make(map[string]map[string]*RPCTransaction),
}
pending, queue := api.b.TxPoolContent()
curHeader := api.b.CurrentHeader()
// Flatten the pending transactions
for account, txs := range pending {
dump := make(map[string]*RPCTransaction)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, api.b.ChainConfig())
}
content["pending"][account.Hex()] = dump
}
// Flatten the queued transactions
for account, txs := range queue {
dump := make(map[string]*RPCTransaction)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, api.b.ChainConfig())
}
content["queued"][account.Hex()] = dump
}
return content
}
// ContentFrom returns the transactions contained within the transaction pool.
func (api *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction {
content := make(map[string]map[string]*RPCTransaction, 2)
pending, queue := api.b.TxPoolContentFrom(addr)
curHeader := api.b.CurrentHeader()
// Build the pending transactions
dump := make(map[string]*RPCTransaction, len(pending))
for _, tx := range pending {
dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, api.b.ChainConfig())
}
content["pending"] = dump
// Build the queued transactions
dump = make(map[string]*RPCTransaction, len(queue))
for _, tx := range queue {
dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, api.b.ChainConfig())
}
content["queued"] = dump
return content
}
// Status returns the number of pending and queued transaction in the pool.
func (api *TxPoolAPI) Status() map[string]hexutil.Uint {
pending, queue := api.b.Stats()
return map[string]hexutil.Uint{
"pending": hexutil.Uint(pending),
"queued": hexutil.Uint(queue),
}
}
// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
func (api *TxPoolAPI) Inspect() map[string]map[string]map[string]string {
content := map[string]map[string]map[string]string{
"pending": make(map[string]map[string]string),
"queued": make(map[string]map[string]string),
}
pending, queue := api.b.TxPoolContent()
// Define a formatter to flatten a transaction into a string
var format = func(tx *types.Transaction) string {
if to := tx.To(); to != nil {
return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
}
return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
}
// Flatten the pending transactions
for account, txs := range pending {
dump := make(map[string]string)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
}
content["pending"][account.Hex()] = dump
}
// Flatten the queued transactions
for account, txs := range queue {
dump := make(map[string]string)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
}
content["queued"][account.Hex()] = dump
}
return content
}
// EthereumAccountAPI provides an API to access accounts managed by this node.
// It offers only methods that can retrieve accounts.
type EthereumAccountAPI struct {
am *accounts.Manager
}
// NewEthereumAccountAPI creates a new EthereumAccountAPI.
func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI {
return &EthereumAccountAPI{am: am}
}
// Accounts returns the collection of accounts this node manages.
func (api *EthereumAccountAPI) Accounts() []common.Address {
return api.am.Accounts()
}
// PersonalAccountAPI provides an API to access accounts managed by this node.
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
type PersonalAccountAPI struct {
am *accounts.Manager
nonceLock *AddrLocker
b Backend
}
// NewPersonalAccountAPI creates a new PersonalAccountAPI.
func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI {
return &PersonalAccountAPI{
am: b.AccountManager(),
nonceLock: nonceLock,
b: b,
}
}
// ListAccounts will return a list of addresses for accounts this node manages.
func (api *PersonalAccountAPI) ListAccounts() []common.Address {
return api.am.Accounts()
}
// rawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type rawWallet struct {
URL string `json:"url"`
Status string `json:"status"`
Failure string `json:"failure,omitempty"`
Accounts []accounts.Account `json:"accounts,omitempty"`
}
// ListWallets will return a list of wallets this node manages.
func (api *PersonalAccountAPI) ListWallets() []rawWallet {
wallets := make([]rawWallet, 0) // return [] instead of nil if empty
for _, wallet := range api.am.Wallets() {
status, failure := wallet.Status()
raw := rawWallet{
URL: wallet.URL().String(),
Status: status,
Accounts: wallet.Accounts(),
}
if failure != nil {
raw.Failure = failure.Error()
}
wallets = append(wallets, raw)
}
return wallets
}
// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
func (api *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error {
wallet, err := api.am.Wallet(url)
if err != nil {
return err
}
pass := ""
if passphrase != nil {
pass = *passphrase
}
return wallet.Open(pass)
}
// DeriveAccount requests an HD wallet to derive a new account, optionally pinning
// it for later reuse.
func (api *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
wallet, err := api.am.Wallet(url)
if err != nil {
return accounts.Account{}, err
}
derivPath, err := accounts.ParseDerivationPath(path)
if err != nil {
return accounts.Account{}, err
}
if pin == nil {
pin = new(bool)
}
return wallet.Derive(derivPath, *pin)
}
// NewAccount will create a new account and returns the address for the new account.
func (api *PersonalAccountAPI) NewAccount(password string) (common.AddressEIP55, error) {
ks, err := fetchKeystore(api.am)
if err != nil {
return common.AddressEIP55{}, err
}
acc, err := ks.NewAccount(password)
if err == nil {
addrEIP55 := common.AddressEIP55(acc.Address)
log.Info("Your new key was generated", "address", addrEIP55.String())
log.Warn("Please backup your key file!", "path", acc.URL.Path)
log.Warn("Please remember your password!")
return addrEIP55, nil
}
return common.AddressEIP55{}, err
}
// fetchKeystore retrieves the encrypted keystore from the account manager.
func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
return ks[0].(*keystore.KeyStore), nil
}
return nil, errors.New("local keystore not used")
}
// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
func (api *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
key, err := crypto.HexToECDSA(privkey)
if err != nil {
return common.Address{}, err
}
ks, err := fetchKeystore(api.am)
if err != nil {
return common.Address{}, err
}
acc, err := ks.ImportECDSA(key, password)
return acc.Address, err
}
// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
func (api *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
// When the API is exposed by external RPC(http, ws etc), unless the user
// explicitly specifies to allow the insecure account unlocking, otherwise
// it is disabled.
if api.b.ExtRPCEnabled() && !api.b.AccountManager().Config().InsecureUnlockAllowed {
return false, errors.New("account unlock with HTTP access is forbidden")
}
const max = uint64(time.Duration(math.MaxInt64) / time.Second)
var d time.Duration
if duration == nil {
d = 300 * time.Second
} else if *duration > max {
return false, errors.New("unlock duration too large")
} else {
d = time.Duration(*duration) * time.Second
}
ks, err := fetchKeystore(api.am)
if err != nil {
return false, err
}
err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
if err != nil {
log.Warn("Failed account unlock attempt", "address", addr, "err", err)
}
return err == nil, err
}
// LockAccount will lock the account associated with the given address when it's unlocked.
func (api *PersonalAccountAPI) LockAccount(addr common.Address) bool {
if ks, err := fetchKeystore(api.am); err == nil {
return ks.Lock(addr) == nil
}
return false
}
// signTransaction sets defaults and signs the given transaction
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
func (api *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: args.from()}
wallet, err := api.am.Find(account)
if err != nil {
return nil, err
}
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, api.b, false); err != nil {
return nil, err
}
// Assemble the transaction and sign with the wallet
tx := args.ToTransaction()
return wallet.SignTxWithPassphrase(account, passwd, tx, api.b.ChainConfig().ChainID)
}
// SendTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.From. If the given
// passwd isn't able to decrypt the key it fails.
func (api *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) {
if args.Nonce == nil {
// Hold the mutex around signing to prevent concurrent assignment of
// the same nonce to multiple accounts.
api.nonceLock.LockAddr(args.from())
defer api.nonceLock.UnlockAddr(args.from())
}
if args.IsEIP4844() {
return common.Hash{}, errBlobTxNotSupported
}
signed, err := api.signTransaction(ctx, &args, passwd)
if err != nil {
log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
return common.Hash{}, err
}
return SubmitTransaction(ctx, api.b, signed)
}
// SignTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.From. If the given passwd isn't
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
func (api *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) {
// No need to obtain the noncelock mutex, since we won't be sending this
// tx into the transaction pool, but right back to the user
if args.From == nil {
return nil, errors.New("sender not specified")
}
if args.Gas == nil {
return nil, errors.New("gas not specified")
}
if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) {
return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
}
if args.IsEIP4844() {
return nil, errBlobTxNotSupported
}
if args.Nonce == nil {
return nil, errors.New("nonce not specified")
}
// Before actually signing the transaction, ensure the transaction fee is reasonable.
tx := args.ToTransaction()
if err := checkTxFee(tx.GasPrice(), tx.Gas(), api.b.RPCTxFeeCap()); err != nil {
return nil, err
}
signed, err := api.signTransaction(ctx, &args, passwd)
if err != nil {
log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
return nil, err
}
data, err := signed.MarshalBinary()
if err != nil {
return nil, err
}
return &SignTransactionResult{data, signed}, nil
}
// Sign calculates an Ethereum ECDSA signature for:
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message))
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
// The key used to calculate the signature is decrypted with the given password.
//
// https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-personal#personal-sign
func (api *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr}
wallet, err := api.b.AccountManager().Find(account)
if err != nil {
return nil, err
}
// Assemble sign the data with the wallet
signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
if err != nil {
log.Warn("Failed data sign attempt", "address", addr, "err", err)
return nil, err
}
signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
return signature, nil
}
// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
// the V value must be 27 or 28 for legacy reasons.
//
// https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-personal#personal-ecrecover
func (api *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
if len(sig) != crypto.SignatureLength {
return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
}
if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
return common.Address{}, errors.New("invalid Ethereum signature (V is not 27 or 28)")
}
sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1
rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
if err != nil {
return common.Address{}, err
}
return crypto.PubkeyToAddress(*rpk), nil
}
// InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
func (api *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
wallet, err := api.am.Wallet(url)
if err != nil {
return "", err
}
entropy, err := bip39.NewEntropy(256)
if err != nil {
return "", err
}
mnemonic, err := bip39.NewMnemonic(entropy)
if err != nil {
return "", err
}
seed := bip39.NewSeed(mnemonic, "")
switch wallet := wallet.(type) {
case *scwallet.Wallet:
return mnemonic, wallet.Initialize(seed)
default:
return "", errors.New("specified wallet does not support initialization")
}
}
// Unpair deletes a pairing between wallet and geth.
func (api *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
wallet, err := api.am.Wallet(url)
if err != nil {
return err
}
switch wallet := wallet.(type) {
case *scwallet.Wallet:
return wallet.Unpair([]byte(pin))
default:
return errors.New("specified wallet does not support pairing")
}
}
// BlockChainAPI provides an API to access Ethereum blockchain data.
type BlockChainAPI struct {
b Backend
}
// NewBlockChainAPI creates a new Ethereum blockchain API.
func NewBlockChainAPI(b Backend) *BlockChainAPI {
return &BlockChainAPI{b}
}
// ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config.
//
// Note, this method does not conform to EIP-695 because the configured chain ID is always
// returned, regardless of the current head block. We used to return an error when the chain
// wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues
// in CL clients.
func (api *BlockChainAPI) ChainId() *hexutil.Big {
return (*hexutil.Big)(api.b.ChainConfig().ChainID)
}
// BlockNumber returns the block number of the chain head.
func (api *BlockChainAPI) BlockNumber() hexutil.Uint64 {
header, _ := api.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
return hexutil.Uint64(header.Number.Uint64())
}
// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
func (api *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
state, _, err := api.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return nil, err
}
b := state.GetBalance(address).ToBig()
return (*hexutil.Big)(b), state.Error()
}
// AccountResult structs for GetProof
type AccountResult struct {
Address common.Address `json:"address"`
AccountProof []string `json:"accountProof"`
Balance *hexutil.Big `json:"balance"`
CodeHash common.Hash `json:"codeHash"`
Nonce hexutil.Uint64 `json:"nonce"`
StorageHash common.Hash `json:"storageHash"`
StorageProof []StorageResult `json:"storageProof"`
}
type StorageResult struct {
Key string `json:"key"`
Value *hexutil.Big `json:"value"`
Proof []string `json:"proof"`
}
// proofList implements ethdb.KeyValueWriter and collects the proofs as
// hex-strings for delivery to rpc-caller.
type proofList []string
func (n *proofList) Put(key []byte, value []byte) error {
*n = append(*n, hexutil.Encode(value))
return nil
}
func (n *proofList) Delete(key []byte) error {
panic("not supported")
}
// GetProof returns the Merkle-proof for a given account and optionally some storage keys.
func (api *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) {
var (
keys = make([]common.Hash, len(storageKeys))
keyLengths = make([]int, len(storageKeys))
storageProof = make([]StorageResult, len(storageKeys))
)
// Deserialize all keys. This prevents state access on invalid input.
for i, hexKey := range storageKeys {
var err error
keys[i], keyLengths[i], err = decodeHash(hexKey)
if err != nil {
return nil, err
}
}
statedb, header, err := api.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if statedb == nil || err != nil {
return nil, err
}
codeHash := statedb.GetCodeHash(address)
storageRoot := statedb.GetStorageRoot(address)
if len(keys) > 0 {
var storageTrie state.Trie
if storageRoot != types.EmptyRootHash && storageRoot != (common.Hash{}) {
id := trie.StorageTrieID(header.Root, crypto.Keccak256Hash(address.Bytes()), storageRoot)
st, err := trie.NewStateTrie(id, statedb.Database().TrieDB())
if err != nil {
return nil, err
}
storageTrie = st
}
// Create the proofs for the storageKeys.
for i, key := range keys {
// Output key encoding is a bit special: if the input was a 32-byte hash, it is
// returned as such. Otherwise, we apply the QUANTITY encoding mandated by the
// JSON-RPC spec for getProof. This behavior exists to preserve backwards
// compatibility with older client versions.
var outputKey string
if keyLengths[i] != 32 {
outputKey = hexutil.EncodeBig(key.Big())
} else {
outputKey = hexutil.Encode(key[:])
}
if storageTrie == nil {
storageProof[i] = StorageResult{outputKey, &hexutil.Big{}, []string{}}
continue
}
var proof proofList
if err := storageTrie.Prove(crypto.Keccak256(key.Bytes()), &proof); err != nil {
return nil, err
}
value := (*hexutil.Big)(statedb.GetState(address, key).Big())
storageProof[i] = StorageResult{outputKey, value, proof}
}
}
// Create the accountProof.
tr, err := trie.NewStateTrie(trie.StateTrieID(header.Root), statedb.Database().TrieDB())
if err != nil {
return nil, err
}
var accountProof proofList
if err := tr.Prove(crypto.Keccak256(address.Bytes()), &accountProof); err != nil {
return nil, err
}
balance := statedb.GetBalance(address).ToBig()
return &AccountResult{
Address: address,
AccountProof: accountProof,
Balance: (*hexutil.Big)(balance),
CodeHash: codeHash,
Nonce: hexutil.Uint64(statedb.GetNonce(address)),
StorageHash: storageRoot,
StorageProof: storageProof,
}, statedb.Error()
}
// decodeHash parses a hex-encoded 32-byte hash. The input may optionally
// be prefixed by 0x and can have a byte length up to 32.
func decodeHash(s string) (h common.Hash, inputLength int, err error) {
if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") {
s = s[2:]
}
if (len(s) & 1) > 0 {
s = "0" + s
}
b, err := hex.DecodeString(s)
if err != nil {
return common.Hash{}, 0, errors.New("hex string invalid")
}
if len(b) > 32 {
return common.Hash{}, len(b), errors.New("hex string too long, want at most 32 bytes")
}
return common.BytesToHash(b), len(b), nil
}
// GetHeaderByNumber returns the requested canonical block header.
// - When blockNr is -1 the chain pending header is returned.
// - When blockNr is -2 the chain latest header is returned.
// - When blockNr is -3 the chain finalized header is returned.
// - When blockNr is -4 the chain safe header is returned.
func (api *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
header, err := api.b.HeaderByNumber(ctx, number)
if header != nil && err == nil {
response := api.rpcMarshalHeader(ctx, header)
if number == rpc.PendingBlockNumber {
// Pending header need to nil out a few fields
for _, field := range []string{"hash", "nonce", "miner"} {
response[field] = nil
}
}
return response, err
}
return nil, err
}
// GetHeaderByHash returns the requested header by hash.
func (api *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
header, _ := api.b.HeaderByHash(ctx, hash)
if header != nil {
return api.rpcMarshalHeader(ctx, header)
}
return nil
}
// GetBlockByNumber returns the requested canonical block.
// - When blockNr is -1 the chain pending block is returned.
// - When blockNr is -2 the chain latest block is returned.
// - When blockNr is -3 the chain finalized block is returned.
// - When blockNr is -4 the chain safe block is returned.
// - When fullTx is true all transactions in the block are returned, otherwise
// only the transaction hash is returned.
func (api *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
block, err := api.b.BlockByNumber(ctx, number)
if block != nil && err == nil {
response, err := api.rpcMarshalBlock(ctx, block, true, fullTx)
if err == nil && number == rpc.PendingBlockNumber {
// Pending blocks need to nil out a few fields
for _, field := range []string{"hash", "nonce", "miner"} {
response[field] = nil
}
}
return response, err
}
return nil, err
}
// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
func (api *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
block, err := api.b.BlockByHash(ctx, hash)
if block != nil {
return api.rpcMarshalBlock(ctx, block, true, fullTx)
}
return nil, err
}
// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index.
func (api *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
block, err := api.b.BlockByNumber(ctx, blockNr)
if block != nil {
uncles := block.Uncles()
if index >= hexutil.Uint(len(uncles)) {
log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
return nil, nil
}
block = types.NewBlockWithHeader(uncles[index])
return api.rpcMarshalBlock(ctx, block, false, false)
}
return nil, err
}
// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index.
func (api *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
block, err := api.b.BlockByHash(ctx, blockHash)
if block != nil {
uncles := block.Uncles()
if index >= hexutil.Uint(len(uncles)) {
log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
return nil, nil
}
block = types.NewBlockWithHeader(uncles[index])
return api.rpcMarshalBlock(ctx, block, false, false)
}
return nil, err
}
// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
func (api *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
if block, _ := api.b.BlockByNumber(ctx, blockNr); block != nil {
n := hexutil.Uint(len(block.Uncles()))
return &n
}
return nil
}
// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
func (api *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
if block, _ := api.b.BlockByHash(ctx, blockHash); block != nil {
n := hexutil.Uint(len(block.Uncles()))
return &n
}
return nil
}
// GetCode returns the code stored at the given address in the state for the given block number.
func (api *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
state, _, err := api.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return nil, err
}
code := state.GetCode(address)
return code, state.Error()
}
// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
func (api *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
state, _, err := api.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return nil, err
}
key, _, err := decodeHash(hexKey)
if err != nil {
return nil, fmt.Errorf("unable to decode storage key: %s", err)
}
res := state.GetState(address, key)
return res[:], state.Error()
}
// GetBlockReceipts returns the block receipts for the given block hash or number or tag.
func (api *BlockChainAPI) GetBlockReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]map[string]interface{}, error) {
block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
if block == nil || err != nil {
// When the block doesn't exist, the RPC method should return JSON null
// as per specification.
return nil, nil
}
receipts, err := api.b.GetReceipts(ctx, block.Hash())
if err != nil {
return nil, err
}
txs := block.Transactions()
if len(txs) != len(receipts) {
return nil, fmt.Errorf("receipts length mismatch: %d vs %d", len(txs), len(receipts))
}
// Derive the sender.
signer := types.MakeSigner(api.b.ChainConfig(), block.Number(), block.Time())
result := make([]map[string]interface{}, len(receipts))
for i, receipt := range receipts {
result[i] = marshalReceipt(receipt, block.Hash(), block.NumberU64(), signer, txs[i], i)
}
return result, nil
}
// OverrideAccount indicates the overriding fields of account during the execution
// of a message call.
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if stateDiff is set, all diff will be applied first and then execute the call
// message.
type OverrideAccount struct {
Nonce *hexutil.Uint64 `json:"nonce"`
Code *hexutil.Bytes `json:"code"`
Balance *hexutil.Big `json:"balance"`
State map[common.Hash]common.Hash `json:"state"`
StateDiff map[common.Hash]common.Hash `json:"stateDiff"`
}
// StateOverride is the collection of overridden accounts.
type StateOverride map[common.Address]OverrideAccount
// Apply overrides the fields of specified accounts into the given state.
func (diff *StateOverride) Apply(statedb *state.StateDB) error {
if diff == nil {
return nil
}
for addr, account := range *diff {
// Override account nonce.
if account.Nonce != nil {
statedb.SetNonce(addr, uint64(*account.Nonce))
}
// Override account(contract) code.
if account.Code != nil {
statedb.SetCode(addr, *account.Code)
}
// Override account balance.
if account.Balance != nil {
u256Balance, _ := uint256.FromBig((*big.Int)(account.Balance))
statedb.SetBalance(addr, u256Balance, tracing.BalanceChangeUnspecified)
}
if account.State != nil && account.StateDiff != nil {
return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
}
// Replace entire state if caller requires.
if account.State != nil {
statedb.SetStorage(addr, account.State)
}
// Apply state diff into specified accounts.
if account.StateDiff != nil {
for key, value := range account.StateDiff {
statedb.SetState(addr, key, value)
}
}
}
// Now finalize the changes. Finalize is normally performed between transactions.
// By using finalize, the overrides are semantically behaving as
// if they were created in a transaction just before the tracing occur.
statedb.Finalise(false)
return nil
}
// BlockOverrides is a set of header fields to override.
type BlockOverrides struct {
Number *hexutil.Big
Difficulty *hexutil.Big
Time *hexutil.Uint64
GasLimit *hexutil.Uint64
Coinbase *common.Address
Random *common.Hash
BaseFee *hexutil.Big
BlobBaseFee *hexutil.Big
}
// Apply overrides the given header fields into the given block context.
func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) {
if diff == nil {
return
}
if diff.Number != nil {
blockCtx.BlockNumber = diff.Number.ToInt()
}
if diff.Difficulty != nil {
blockCtx.Difficulty = diff.Difficulty.ToInt()
}
if diff.Time != nil {
blockCtx.Time = uint64(*diff.Time)
}
if diff.GasLimit != nil {
blockCtx.GasLimit = uint64(*diff.GasLimit)
}
if diff.Coinbase != nil {
blockCtx.Coinbase = *diff.Coinbase
}
if diff.Random != nil {
blockCtx.Random = diff.Random
}
if diff.BaseFee != nil {
blockCtx.BaseFee = diff.BaseFee.ToInt()
}
if diff.BlobBaseFee != nil {
blockCtx.BlobBaseFee = diff.BlobBaseFee.ToInt()
}
}
// ChainContextBackend provides methods required to implement ChainContext.
type ChainContextBackend interface {
Engine() consensus.Engine
HeaderByNumber(context.Context, rpc.BlockNumber) (*types.Header, error)
}
// ChainContext is an implementation of core.ChainContext. It's main use-case
// is instantiating a vm.BlockContext without having access to the BlockChain object.
type ChainContext struct {
b ChainContextBackend
ctx context.Context
}
// NewChainContext creates a new ChainContext object.
func NewChainContext(ctx context.Context, backend ChainContextBackend) *ChainContext {
return &ChainContext{ctx: ctx, b: backend}
}
func (context *ChainContext) Engine() consensus.Engine {
return context.b.Engine()
}
func (context *ChainContext) GetHeader(hash common.Hash, number uint64) *types.Header {
// This method is called to get the hash for a block number when executing the BLOCKHASH
// opcode. Hence no need to search for non-canonical blocks.
header, err := context.b.HeaderByNumber(context.ctx, rpc.BlockNumber(number))
if err != nil || header.Hash() != hash {
return nil
}
return header
}
func doCall(ctx context.Context, b Backend, args TransactionArgs, state *state.StateDB, header *types.Header, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
if err := overrides.Apply(state); err != nil {
return nil, err
}
// Setup context so it may be cancelled the call has completed
// or, in case of unmetered gas, setup a context with a timeout.
var cancel context.CancelFunc
if timeout > 0 {
ctx, cancel = context.WithTimeout(ctx, timeout)
} else {
ctx, cancel = context.WithCancel(ctx)
}
// Make sure the context is cancelled when the call has completed
// this makes sure resources are cleaned up.
defer cancel()
// Get a new instance of the EVM.
blockCtx := core.NewEVMBlockContext(header, NewChainContext(ctx, b), nil)
if blockOverrides != nil {
blockOverrides.Apply(&blockCtx)
}
if err := args.CallDefaults(globalGasCap, blockCtx.BaseFee, b.ChainConfig().ChainID); err != nil {
return nil, err
}
msg := args.ToMessage(blockCtx.BaseFee)
evm := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}, &blockCtx)
// Wait for the context to be done and cancel the evm. Even if the
// EVM has finished, cancelling may be done (repeatedly)
go func() {
<-ctx.Done()
evm.Cancel()
}()
// Execute the message.
gp := new(core.GasPool).AddGas(math.MaxUint64)
result, err := core.ApplyMessage(evm, msg, gp)
if err := state.Error(); err != nil {
return nil, err
}
// If the timer caused an abort, return an appropriate error message
if evm.Cancelled() {
return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
}
if err != nil {
return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit)
}
return result, nil
}
func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())
state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return nil, err
}
return doCall(ctx, b, args, state, header, overrides, blockOverrides, timeout, globalGasCap)
}
// Call executes the given transaction on the state for the given block number.
//
// Additionally, the caller can specify a batch of contract for fields overriding.
//
// Note, this function doesn't make and changes in the state/blockchain and is
// useful to execute and retrieve values.
func (api *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides) (hexutil.Bytes, error) {
if blockNrOrHash == nil {
latest := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
blockNrOrHash = &latest
}
result, err := DoCall(ctx, api.b, args, *blockNrOrHash, overrides, blockOverrides, api.b.RPCEVMTimeout(), api.b.RPCGasCap())
if err != nil {
return nil, err
}
// If the result contains a revert reason, try to unpack and return it.
if len(result.Revert()) > 0 {
return nil, newRevertError(result.Revert())
}
return result.Return(), result.Err
}
// DoEstimateGas returns the lowest possible gas limit that allows the transaction to run
// successfully at block `blockNrOrHash`. It returns error if the transaction would revert, or if
// there are unexpected failures. The gas limit is capped by both `args.Gas` (if non-nil &
// non-zero) and `gasCap` (if non-zero).
func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, gasCap uint64) (hexutil.Uint64, error) {
// Retrieve the base state and mutate it with any overrides
state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return 0, err
}
if err = overrides.Apply(state); err != nil {
return 0, err
}
// Construct the gas estimator option from the user input
opts := &gasestimator.Options{
Config: b.ChainConfig(),
Chain: NewChainContext(ctx, b),
Header: header,
State: state,
ErrorRatio: estimateGasErrorRatio,
}
// Set any required transaction default, but make sure the gas cap itself is not messed with
// if it was not specified in the original argument list.
if args.Gas == nil {
args.Gas = new(hexutil.Uint64)
}
if err := args.CallDefaults(gasCap, header.BaseFee, b.ChainConfig().ChainID); err != nil {
return 0, err
}
call := args.ToMessage(header.BaseFee)
// Run the gas estimation and wrap any revertals into a custom return
estimate, revert, err := gasestimator.Estimate(ctx, call, opts, gasCap)
if err != nil {
if len(revert) > 0 {
return 0, newRevertError(revert)
}
return 0, err
}
return hexutil.Uint64(estimate), nil
}
// EstimateGas returns the lowest possible gas limit that allows the transaction to run
// successfully at block `blockNrOrHash`, or the latest block if `blockNrOrHash` is unspecified. It
// returns error if the transaction would revert or if there are unexpected failures. The returned
// value is capped by both `args.Gas` (if non-nil & non-zero) and the backend's RPCGasCap
// configuration (if non-zero).
// Note: Required blob gas is not computed in this method.
func (api *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Uint64, error) {
bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
if blockNrOrHash != nil {
bNrOrHash = *blockNrOrHash
}
return DoEstimateGas(ctx, api.b, args, bNrOrHash, overrides, api.b.RPCGasCap())
}
// RPCMarshalHeader converts the given header to the RPC output .
func RPCMarshalHeader(head *types.Header) map[string]interface{} {
result := map[string]interface{}{
"number": (*hexutil.Big)(head.Number),
"hash": head.Hash(),
"parentHash": head.ParentHash,
"nonce": head.Nonce,
"mixHash": head.MixDigest,
"sha3Uncles": head.UncleHash,
"logsBloom": head.Bloom,
"stateRoot": head.Root,
"miner": head.Coinbase,
"difficulty": (*hexutil.Big)(head.Difficulty),
"extraData": hexutil.Bytes(head.Extra),
"gasLimit": hexutil.Uint64(head.GasLimit),
"gasUsed": hexutil.Uint64(head.GasUsed),
"timestamp": hexutil.Uint64(head.Time),
"transactionsRoot": head.TxHash,
"receiptsRoot": head.ReceiptHash,
}
if head.BaseFee != nil {
result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee)
}
if head.WithdrawalsHash != nil {
result["withdrawalsRoot"] = head.WithdrawalsHash
}
if head.BlobGasUsed != nil {
result["blobGasUsed"] = hexutil.Uint64(*head.BlobGasUsed)
}
if head.ExcessBlobGas != nil {
result["excessBlobGas"] = hexutil.Uint64(*head.ExcessBlobGas)
}
if head.ParentBeaconRoot != nil {
result["parentBeaconBlockRoot"] = head.ParentBeaconRoot
}
return result
}
// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) map[string]interface{} {
fields := RPCMarshalHeader(block.Header())
fields["size"] = hexutil.Uint64(block.Size())
if inclTx {
formatTx := func(idx int, tx *types.Transaction) interface{} {
return tx.Hash()
}
if fullTx {
formatTx = func(idx int, tx *types.Transaction) interface{} {
return newRPCTransactionFromBlockIndex(block, uint64(idx), config)
}
}
txs := block.Transactions()
transactions := make([]interface{}, len(txs))
for i, tx := range txs {
transactions[i] = formatTx(i, tx)
}
fields["transactions"] = transactions
}
uncles := block.Uncles()
uncleHashes := make([]common.Hash, len(uncles))
for i, uncle := range uncles {
uncleHashes[i] = uncle.Hash()
}
fields["uncles"] = uncleHashes
if block.Header().WithdrawalsHash != nil {
fields["withdrawals"] = block.Withdrawals()
}
return fields
}
// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
// a `BlockchainAPI`.
func (api *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
fields := RPCMarshalHeader(header)
fields["totalDifficulty"] = (*hexutil.Big)(api.b.GetTd(ctx, header.Hash()))
return fields
}
// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
// a `BlockchainAPI`.
func (api *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
fields := RPCMarshalBlock(b, inclTx, fullTx, api.b.ChainConfig())
if inclTx {
fields["totalDifficulty"] = (*hexutil.Big)(api.b.GetTd(ctx, b.Hash()))
}
return fields, nil
}
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
BlockHash *common.Hash `json:"blockHash"`
BlockNumber *hexutil.Big `json:"blockNumber"`
From common.Address `json:"from"`
Gas hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice"`
GasFeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"`
GasTipCap *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"`
MaxFeePerBlobGas *hexutil.Big `json:"maxFeePerBlobGas,omitempty"`
Hash common.Hash `json:"hash"`
Input hexutil.Bytes `json:"input"`
Nonce hexutil.Uint64 `json:"nonce"`
To *common.Address `json:"to"`
TransactionIndex *hexutil.Uint64 `json:"transactionIndex"`
Value *hexutil.Big `json:"value"`
Type hexutil.Uint64 `json:"type"`
Accesses *types.AccessList `json:"accessList,omitempty"`
ChainID *hexutil.Big `json:"chainId,omitempty"`
BlobVersionedHashes []common.Hash `json:"blobVersionedHashes,omitempty"`
V *hexutil.Big `json:"v"`
R *hexutil.Big `json:"r"`
S *hexutil.Big `json:"s"`
YParity *hexutil.Uint64 `json:"yParity,omitempty"`
}
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, blockTime uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction {
signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber), blockTime)
from, _ := types.Sender(signer, tx)
v, r, s := tx.RawSignatureValues()
result := &RPCTransaction{
Type: hexutil.Uint64(tx.Type()),
From: from,
Gas: hexutil.Uint64(tx.Gas()),
GasPrice: (*hexutil.Big)(tx.GasPrice()),
Hash: tx.Hash(),
Input: hexutil.Bytes(tx.Data()),
Nonce: hexutil.Uint64(tx.Nonce()),
To: tx.To(),
Value: (*hexutil.Big)(tx.Value()),
V: (*hexutil.Big)(v),
R: (*hexutil.Big)(r),
S: (*hexutil.Big)(s),
}
if blockHash != (common.Hash{}) {
result.BlockHash = &blockHash
result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
result.TransactionIndex = (*hexutil.Uint64)(&index)
}
switch tx.Type() {
case types.LegacyTxType:
// if a legacy transaction has an EIP-155 chain id, include it explicitly
if id := tx.ChainId(); id.Sign() != 0 {
result.ChainID = (*hexutil.Big)(id)
}
case types.AccessListTxType:
al := tx.AccessList()
yparity := hexutil.Uint64(v.Sign())
result.Accesses = &al
result.ChainID = (*hexutil.Big)(tx.ChainId())
result.YParity = &yparity
case types.DynamicFeeTxType:
al := tx.AccessList()
yparity := hexutil.Uint64(v.Sign())
result.Accesses = &al
result.ChainID = (*hexutil.Big)(tx.ChainId())
result.YParity = &yparity
result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
// if the transaction has been mined, compute the effective gas price
if baseFee != nil && blockHash != (common.Hash{}) {
// price = min(gasTipCap + baseFee, gasFeeCap)
result.GasPrice = (*hexutil.Big)(effectiveGasPrice(tx, baseFee))
} else {
result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
}
case types.BlobTxType:
al := tx.AccessList()
yparity := hexutil.Uint64(v.Sign())
result.Accesses = &al
result.ChainID = (*hexutil.Big)(tx.ChainId())
result.YParity = &yparity
result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
// if the transaction has been mined, compute the effective gas price
if baseFee != nil && blockHash != (common.Hash{}) {
result.GasPrice = (*hexutil.Big)(effectiveGasPrice(tx, baseFee))
} else {
result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
}
result.MaxFeePerBlobGas = (*hexutil.Big)(tx.BlobGasFeeCap())
result.BlobVersionedHashes = tx.BlobHashes()
}
return result
}
// effectiveGasPrice computes the transaction gas fee, based on the given basefee value.
//
// price = min(gasTipCap + baseFee, gasFeeCap)
func effectiveGasPrice(tx *types.Transaction, baseFee *big.Int) *big.Int {
fee := tx.GasTipCap()
fee = fee.Add(fee, baseFee)
if tx.GasFeeCapIntCmp(fee) < 0 {
return tx.GasFeeCap()
}
return fee
}
// NewRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func NewRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction {
var (
baseFee *big.Int
blockNumber = uint64(0)
blockTime = uint64(0)
)
if current != nil {
baseFee = eip1559.CalcBaseFee(config, current)
blockNumber = current.Number.Uint64()
blockTime = current.Time
}
return newRPCTransaction(tx, common.Hash{}, blockNumber, blockTime, 0, baseFee, config)
}
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction {
txs := b.Transactions()
if index >= uint64(len(txs)) {
return nil
}
return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), b.Time(), index, b.BaseFee(), config)
}
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
txs := b.Transactions()
if index >= uint64(len(txs)) {
return nil
}
blob, _ := txs[index].MarshalBinary()
return blob
}
// accessListResult returns an optional accesslist
// It's the result of the `debug_createAccessList` RPC call.
// It contains an error if the transaction itself failed.
type accessListResult struct {
Accesslist *types.AccessList `json:"accessList"`
Error string `json:"error,omitempty"`
GasUsed hexutil.Uint64 `json:"gasUsed"`
}
// CreateAccessList creates an EIP-2930 type AccessList for the given transaction.
// Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state.
func (api *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) {
bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
if blockNrOrHash != nil {
bNrOrHash = *blockNrOrHash
}
acl, gasUsed, vmerr, err := AccessList(ctx, api.b, bNrOrHash, args)
if err != nil {
return nil, err
}
result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)}
if vmerr != nil {
result.Error = vmerr.Error()
}
return result, nil
}
// AccessList creates an access list for the given transaction.
// If the accesslist creation fails an error is returned.
// If the transaction itself fails, an vmErr is returned.
func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) {
// Retrieve the execution context
db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if db == nil || err != nil {
return nil, 0, nil, err
}
// Ensure any missing fields are filled, extract the recipient and input data
if err := args.setDefaults(ctx, b, true); err != nil {
return nil, 0, nil, err
}
var to common.Address
if args.To != nil {
to = *args.To
} else {
to = crypto.CreateAddress(args.from(), uint64(*args.Nonce))
}
isPostMerge := header.Difficulty.Sign() == 0
// Retrieve the precompiles since they don't need to be added to the access list
precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge, header.Time))
// Create an initial tracer
prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles)
if args.AccessList != nil {
prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles)
}
for {
if err := ctx.Err(); err != nil {
return nil, 0, nil, err
}
// Retrieve the current access list to expand
accessList := prevTracer.AccessList()
log.Trace("Creating access list", "input", accessList)
// Copy the original db so we don't modify it
statedb := db.Copy()
// Set the accesslist to the last al
args.AccessList = &accessList
msg := args.ToMessage(header.BaseFee)
// Apply the transaction with the access list tracer
tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles)
config := vm.Config{Tracer: tracer.Hooks(), NoBaseFee: true}
vmenv := b.GetEVM(ctx, msg, statedb, header, &config, nil)
res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit))
if err != nil {
return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.ToTransaction().Hash(), err)
}
if tracer.Equal(prevTracer) {
return accessList, res.UsedGas, res.Err, nil
}
prevTracer = tracer
}
}
// TransactionAPI exposes methods for reading and creating transaction data.
type TransactionAPI struct {
b Backend
nonceLock *AddrLocker
signer types.Signer
}
// NewTransactionAPI creates a new RPC service with methods for interacting with transactions.
func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI {
// The signer used by the API should always be the 'latest' known one because we expect
// signers to be backwards-compatible with old transactions.
signer := types.LatestSigner(b.ChainConfig())
return &TransactionAPI{b, nonceLock, signer}
}
// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
func (api *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
if block, _ := api.b.BlockByNumber(ctx, blockNr); block != nil {
n := hexutil.Uint(len(block.Transactions()))
return &n
}
return nil
}
// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
func (api *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
if block, _ := api.b.BlockByHash(ctx, blockHash); block != nil {
n := hexutil.Uint(len(block.Transactions()))
return &n
}
return nil
}
// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
func (api *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
if block, _ := api.b.BlockByNumber(ctx, blockNr); block != nil {
return newRPCTransactionFromBlockIndex(block, uint64(index), api.b.ChainConfig())
}
return nil
}
// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
func (api *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
if block, _ := api.b.BlockByHash(ctx, blockHash); block != nil {
return newRPCTransactionFromBlockIndex(block, uint64(index), api.b.ChainConfig())
}
return nil
}
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
func (api *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
if block, _ := api.b.BlockByNumber(ctx, blockNr); block != nil {
return newRPCRawTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
func (api *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
if block, _ := api.b.BlockByHash(ctx, blockHash); block != nil {
return newRPCRawTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
func (api *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
// Ask transaction pool for the nonce which includes pending transactions
if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
nonce, err := api.b.GetPoolNonce(ctx, address)
if err != nil {
return nil, err
}
return (*hexutil.Uint64)(&nonce), nil
}
// Resolve block number and use its state to ask for the nonce
state, _, err := api.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return nil, err
}
nonce := state.GetNonce(address)
return (*hexutil.Uint64)(&nonce), state.Error()
}
// GetTransactionByHash returns the transaction for the given hash
func (api *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
// Try to return an already finalized transaction
found, tx, blockHash, blockNumber, index, err := api.b.GetTransaction(ctx, hash)
if !found {
// No finalized transaction, try to retrieve it from the pool
if tx := api.b.GetPoolTransaction(hash); tx != nil {
return NewRPCPendingTransaction(tx, api.b.CurrentHeader(), api.b.ChainConfig()), nil
}
if err == nil {
return nil, nil
}
return nil, NewTxIndexingError()
}
header, err := api.b.HeaderByHash(ctx, blockHash)
if err != nil {
return nil, err
}
return newRPCTransaction(tx, blockHash, blockNumber, header.Time, index, header.BaseFee, api.b.ChainConfig()), nil
}
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
func (api *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
// Retrieve a finalized transaction, or a pooled otherwise
found, tx, _, _, _, err := api.b.GetTransaction(ctx, hash)
if !found {
if tx = api.b.GetPoolTransaction(hash); tx != nil {
return tx.MarshalBinary()
}
if err == nil {
return nil, nil
}
return nil, NewTxIndexingError()
}
return tx.MarshalBinary()
}
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
func (api *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
found, tx, blockHash, blockNumber, index, err := api.b.GetTransaction(ctx, hash)
if err != nil {
return nil, NewTxIndexingError() // transaction is not fully indexed
}
if !found {
return nil, nil // transaction is not existent or reachable
}
header, err := api.b.HeaderByHash(ctx, blockHash)
if err != nil {
return nil, err
}
receipts, err := api.b.GetReceipts(ctx, blockHash)
if err != nil {
return nil, err
}
if uint64(len(receipts)) <= index {
return nil, nil
}
receipt := receipts[index]
// Derive the sender.
signer := types.MakeSigner(api.b.ChainConfig(), header.Number, header.Time)
return marshalReceipt(receipt, blockHash, blockNumber, signer, tx, int(index)), nil
}
// marshalReceipt marshals a transaction receipt into a JSON object.
func marshalReceipt(receipt *types.Receipt, blockHash common.Hash, blockNumber uint64, signer types.Signer, tx *types.Transaction, txIndex int) map[string]interface{} {
from, _ := types.Sender(signer, tx)
fields := map[string]interface{}{
"blockHash": blockHash,
"blockNumber": hexutil.Uint64(blockNumber),
"transactionHash": tx.Hash(),
"transactionIndex": hexutil.Uint64(txIndex),
"from": from,
"to": tx.To(),
"gasUsed": hexutil.Uint64(receipt.GasUsed),
"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
"contractAddress": nil,
"logs": receipt.Logs,
"logsBloom": receipt.Bloom,
"type": hexutil.Uint(tx.Type()),
"effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice),
}
// Assign receipt status or post state.
if len(receipt.PostState) > 0 {
fields["root"] = hexutil.Bytes(receipt.PostState)
} else {
fields["status"] = hexutil.Uint(receipt.Status)
}
if receipt.Logs == nil {
fields["logs"] = []*types.Log{}
}
if tx.Type() == types.BlobTxType {
fields["blobGasUsed"] = hexutil.Uint64(receipt.BlobGasUsed)
fields["blobGasPrice"] = (*hexutil.Big)(receipt.BlobGasPrice)
}
// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
if receipt.ContractAddress != (common.Address{}) {
fields["contractAddress"] = receipt.ContractAddress
}
return fields
}
// sign is a helper function that signs a transaction with the private key of the given address.
func (api *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr}
wallet, err := api.b.AccountManager().Find(account)
if err != nil {
return nil, err
}
// Request the wallet to sign the transaction
return wallet.SignTx(account, tx, api.b.ChainConfig().ChainID)
}
// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
// If the transaction fee cap is already specified, ensure the
// fee of the given transaction is _reasonable_.
if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
return common.Hash{}, err
}
if !b.UnprotectedAllowed() && !tx.Protected() {
// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
}
if err := b.SendTx(ctx, tx); err != nil {
return common.Hash{}, err
}
// Print a log with full tx details for manual investigations and interventions
head := b.CurrentBlock()
signer := types.MakeSigner(b.ChainConfig(), head.Number, head.Time)
from, err := types.Sender(signer, tx)
if err != nil {
return common.Hash{}, err
}
if tx.To() == nil {
addr := crypto.CreateAddress(from, tx.Nonce())
log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value())
} else {
log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value())
}
return tx.Hash(), nil
}
// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
func (api *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: args.from()}
wallet, err := api.b.AccountManager().Find(account)
if err != nil {
return common.Hash{}, err
}
if args.Nonce == nil {
// Hold the mutex around signing to prevent concurrent assignment of
// the same nonce to multiple accounts.
api.nonceLock.LockAddr(args.from())
defer api.nonceLock.UnlockAddr(args.from())
}
if args.IsEIP4844() {
return common.Hash{}, errBlobTxNotSupported
}
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, api.b, false); err != nil {
return common.Hash{}, err
}
// Assemble the transaction and sign with the wallet
tx := args.ToTransaction()
signed, err := wallet.SignTx(account, tx, api.b.ChainConfig().ChainID)
if err != nil {
return common.Hash{}, err
}
return SubmitTransaction(ctx, api.b, signed)
}
// FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields)
// on a given unsigned transaction, and returns it to the caller for further
// processing (signing + broadcast).
func (api *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
args.blobSidecarAllowed = true
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, api.b, false); err != nil {
return nil, err
}
// Assemble the transaction and obtain rlp
tx := args.ToTransaction()
data, err := tx.MarshalBinary()
if err != nil {
return nil, err
}
return &SignTransactionResult{data, tx}, nil
}
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
func (api *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
tx := new(types.Transaction)
if err := tx.UnmarshalBinary(input); err != nil {
return common.Hash{}, err
}
return SubmitTransaction(ctx, api.b, tx)
}
// Sign calculates an ECDSA signature for:
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message).
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
func (api *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr}
wallet, err := api.b.AccountManager().Find(account)
if err != nil {
return nil, err
}
// Sign the requested hash with the wallet
signature, err := wallet.SignText(account, data)
if err == nil {
signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
}
return signature, err
}
// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
Raw hexutil.Bytes `json:"raw"`
Tx *types.Transaction `json:"tx"`
}
// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
func (api *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
args.blobSidecarAllowed = true
if args.Gas == nil {
return nil, errors.New("gas not specified")
}
if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) {
return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
}
if args.Nonce == nil {
return nil, errors.New("nonce not specified")
}
if err := args.setDefaults(ctx, api.b, false); err != nil {
return nil, err
}
// Before actually sign the transaction, ensure the transaction fee is reasonable.
tx := args.ToTransaction()
if err := checkTxFee(tx.GasPrice(), tx.Gas(), api.b.RPCTxFeeCap()); err != nil {
return nil, err
}
signed, err := api.sign(args.from(), tx)
if err != nil {
return nil, err
}
// If the transaction-to-sign was a blob transaction, then the signed one
// no longer retains the blobs, only the blob hashes. In this step, we need
// to put back the blob(s).
if args.IsEIP4844() {
signed = signed.WithBlobTxSidecar(&types.BlobTxSidecar{
Blobs: args.Blobs,
Commitments: args.Commitments,
Proofs: args.Proofs,
})
}
data, err := signed.MarshalBinary()
if err != nil {
return nil, err
}
return &SignTransactionResult{data, signed}, nil
}
// PendingTransactions returns the transactions that are in the transaction pool
// and have a from address that is one of the accounts this node manages.
func (api *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) {
pending, err := api.b.GetPoolTransactions()
if err != nil {
return nil, err
}
accounts := make(map[common.Address]struct{})
for _, wallet := range api.b.AccountManager().Wallets() {
for _, account := range wallet.Accounts() {
accounts[account.Address] = struct{}{}
}
}
curHeader := api.b.CurrentHeader()
transactions := make([]*RPCTransaction, 0, len(pending))
for _, tx := range pending {
from, _ := types.Sender(api.signer, tx)
if _, exists := accounts[from]; exists {
transactions = append(transactions, NewRPCPendingTransaction(tx, curHeader, api.b.ChainConfig()))
}
}
return transactions, nil
}
// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
func (api *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
if sendArgs.Nonce == nil {
return common.Hash{}, errors.New("missing transaction nonce in transaction spec")
}
if err := sendArgs.setDefaults(ctx, api.b, false); err != nil {
return common.Hash{}, err
}
matchTx := sendArgs.ToTransaction()
// Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
var price = matchTx.GasPrice()
if gasPrice != nil {
price = gasPrice.ToInt()
}
var gas = matchTx.Gas()
if gasLimit != nil {
gas = uint64(*gasLimit)
}
if err := checkTxFee(price, gas, api.b.RPCTxFeeCap()); err != nil {
return common.Hash{}, err
}
// Iterate the pending list for replacement
pending, err := api.b.GetPoolTransactions()
if err != nil {
return common.Hash{}, err
}
for _, p := range pending {
wantSigHash := api.signer.Hash(matchTx)
pFrom, err := types.Sender(api.signer, p)
if err == nil && pFrom == sendArgs.from() && api.signer.Hash(p) == wantSigHash {
// Match. Re-sign and send the transaction.
if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
sendArgs.GasPrice = gasPrice
}
if gasLimit != nil && *gasLimit != 0 {
sendArgs.Gas = gasLimit
}
signedTx, err := api.sign(sendArgs.from(), sendArgs.ToTransaction())
if err != nil {
return common.Hash{}, err
}
if err = api.b.SendTx(ctx, signedTx); err != nil {
return common.Hash{}, err
}
return signedTx.Hash(), nil
}
}
return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
}
// DebugAPI is the collection of Ethereum APIs exposed over the debugging
// namespace.
type DebugAPI struct {
b Backend
}
// NewDebugAPI creates a new instance of DebugAPI.
func NewDebugAPI(b Backend) *DebugAPI {
return &DebugAPI{b: b}
}
// GetRawHeader retrieves the RLP encoding for a single header.
func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
var hash common.Hash
if h, ok := blockNrOrHash.Hash(); ok {
hash = h
} else {
block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
if err != nil {
return nil, err
}
hash = block.Hash()
}
header, _ := api.b.HeaderByHash(ctx, hash)
if header == nil {
return nil, fmt.Errorf("header #%d not found", hash)
}
return rlp.EncodeToBytes(header)
}
// GetRawBlock retrieves the RLP encoded for a single block.
func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
var hash common.Hash
if h, ok := blockNrOrHash.Hash(); ok {
hash = h
} else {
block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
if err != nil {
return nil, err
}
hash = block.Hash()
}
block, _ := api.b.BlockByHash(ctx, hash)
if block == nil {
return nil, fmt.Errorf("block #%d not found", hash)
}
return rlp.EncodeToBytes(block)
}
// GetRawReceipts retrieves the binary-encoded receipts of a single block.
func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) {
var hash common.Hash
if h, ok := blockNrOrHash.Hash(); ok {
hash = h
} else {
block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
if err != nil {
return nil, err
}
hash = block.Hash()
}
receipts, err := api.b.GetReceipts(ctx, hash)
if err != nil {
return nil, err
}
result := make([]hexutil.Bytes, len(receipts))
for i, receipt := range receipts {
b, err := receipt.MarshalBinary()
if err != nil {
return nil, err
}
result[i] = b
}
return result, nil
}
// GetRawTransaction returns the bytes of the transaction for the given hash.
func (api *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
// Retrieve a finalized transaction, or a pooled otherwise
found, tx, _, _, _, err := api.b.GetTransaction(ctx, hash)
if !found {
if tx = api.b.GetPoolTransaction(hash); tx != nil {
return tx.MarshalBinary()
}
if err == nil {
return nil, nil
}
return nil, NewTxIndexingError()
}
return tx.MarshalBinary()
}
// PrintBlock retrieves a block and returns its pretty printed form.
func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
return spew.Sdump(block), nil
}
// ChaindbProperty returns leveldb properties of the key-value database.
func (api *DebugAPI) ChaindbProperty() (string, error) {
return api.b.ChainDb().Stat()
}
// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
func (api *DebugAPI) ChaindbCompact() error {
cstart := time.Now()
for b := 0; b <= 255; b++ {
var (
start = []byte{byte(b)}
end = []byte{byte(b + 1)}
)
if b == 255 {
end = nil
}
log.Info("Compacting database", "range", fmt.Sprintf("%#X-%#X", start, end), "elapsed", common.PrettyDuration(time.Since(cstart)))
if err := api.b.ChainDb().Compact(start, end); err != nil {
log.Error("Database compaction failed", "err", err)
return err
}
}
return nil
}
// SetHead rewinds the head of the blockchain to a previous block.
func (api *DebugAPI) SetHead(number hexutil.Uint64) {
api.b.SetHead(uint64(number))
}
// NetAPI offers network related RPC methods
type NetAPI struct {
net *p2p.Server
networkVersion uint64
}
// NewNetAPI creates a new net API instance.
func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI {
return &NetAPI{net, networkVersion}
}
// Listening returns an indication if the node is listening for network connections.
func (api *NetAPI) Listening() bool {
return true // always listening
}
// PeerCount returns the number of connected peers
func (api *NetAPI) PeerCount() hexutil.Uint {
return hexutil.Uint(api.net.PeerCount())
}
// Version returns the current ethereum protocol version.
func (api *NetAPI) Version() string {
return fmt.Sprintf("%d", api.networkVersion)
}
// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
// Short circuit if there is no cap for transaction fee at all.
if cap == 0 {
return nil
}
feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
feeFloat, _ := feeEth.Float64()
if feeFloat > cap {
return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
}
return nil
}