|
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
|
|
|
|
|
|
|
|
pragma solidity ^0.8.0;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @dev Standard math utilities missing in the Solidity language.
|
|
|
|
*/
|
|
|
|
library Math {
|
|
|
|
enum Rounding {
|
|
|
|
Down, // Toward negative infinity
|
|
|
|
Up, // Toward infinity
|
|
|
|
Zero // Toward zero
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @dev Returns the largest of two numbers.
|
|
|
|
*/
|
|
|
|
function max(uint256 a, uint256 b) internal pure returns (uint256) {
|
|
|
|
return a >= b ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @dev Returns the smallest of two numbers.
|
|
|
|
*/
|
|
|
|
function min(uint256 a, uint256 b) internal pure returns (uint256) {
|
|
|
|
return a < b ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @dev Returns the average of two numbers. The result is rounded towards
|
|
|
|
* zero.
|
|
|
|
*/
|
|
|
|
function average(uint256 a, uint256 b) internal pure returns (uint256) {
|
|
|
|
// (a + b) / 2 can overflow.
|
|
|
|
return (a & b) + (a ^ b) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @dev Returns the ceiling of the division of two numbers.
|
|
|
|
*
|
|
|
|
* This differs from standard division with `/` in that it rounds up instead
|
|
|
|
* of rounding down.
|
|
|
|
*/
|
|
|
|
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
|
|
|
|
// (a + b - 1) / b can overflow on addition, so we distribute.
|
|
|
|
return a == 0 ? 0 : (a - 1) / b + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
|
|
|
|
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
|
|
|
|
* with further edits by Uniswap Labs also under MIT license.
|
|
|
|
*/
|
|
|
|
function mulDiv(
|
|
|
|
uint256 x,
|
|
|
|
uint256 y,
|
|
|
|
uint256 denominator
|
|
|
|
) internal pure returns (uint256 result) {
|
|
|
|
unchecked {
|
|
|
|
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
|
|
|
|
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
|
|
|
|
// variables such that product = prod1 * 2^256 + prod0.
|
|
|
|
uint256 prod0; // Least significant 256 bits of the product
|
|
|
|
uint256 prod1; // Most significant 256 bits of the product
|
|
|
|
assembly {
|
|
|
|
let mm := mulmod(x, y, not(0))
|
|
|
|
prod0 := mul(x, y)
|
|
|
|
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle non-overflow cases, 256 by 256 division.
|
|
|
|
if (prod1 == 0) {
|
|
|
|
return prod0 / denominator;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure the result is less than 2^256. Also prevents denominator == 0.
|
|
|
|
require(denominator > prod1);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////
|
|
|
|
// 512 by 256 division.
|
|
|
|
///////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Make division exact by subtracting the remainder from [prod1 prod0].
|
|
|
|
uint256 remainder;
|
|
|
|
assembly {
|
|
|
|
// Compute remainder using mulmod.
|
|
|
|
remainder := mulmod(x, y, denominator)
|
|
|
|
|
|
|
|
// Subtract 256 bit number from 512 bit number.
|
|
|
|
prod1 := sub(prod1, gt(remainder, prod0))
|
|
|
|
prod0 := sub(prod0, remainder)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
|
|
|
|
// See https://cs.stackexchange.com/q/138556/92363.
|
|
|
|
|
|
|
|
// Does not overflow because the denominator cannot be zero at this stage in the function.
|
|
|
|
uint256 twos = denominator & (~denominator + 1);
|
|
|
|
assembly {
|
|
|
|
// Divide denominator by twos.
|
|
|
|
denominator := div(denominator, twos)
|
|
|
|
|
|
|
|
// Divide [prod1 prod0] by twos.
|
|
|
|
prod0 := div(prod0, twos)
|
|
|
|
|
|
|
|
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
|
|
|
|
twos := add(div(sub(0, twos), twos), 1)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Shift in bits from prod1 into prod0.
|
|
|
|
prod0 |= prod1 * twos;
|
|
|
|
|
|
|
|
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
|
|
|
|
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
|
|
|
|
// four bits. That is, denominator * inv = 1 mod 2^4.
|
|
|
|
uint256 inverse = (3 * denominator) ^ 2;
|
|
|
|
|
|
|
|
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
|
|
|
|
// in modular arithmetic, doubling the correct bits in each step.
|
|
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2^8
|
|
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2^16
|
|
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2^32
|
|
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2^64
|
|
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2^128
|
|
|
|
inverse *= 2 - denominator * inverse; // inverse mod 2^256
|
|
|
|
|
|
|
|
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
|
|
|
|
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
|
|
|
|
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
|
|
|
|
// is no longer required.
|
|
|
|
result = prod0 * inverse;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
|
|
|
|
*/
|
|
|
|
function mulDiv(
|
|
|
|
uint256 x,
|
|
|
|
uint256 y,
|
|
|
|
uint256 denominator,
|
|
|
|
Rounding rounding
|
|
|
|
) internal pure returns (uint256) {
|
|
|
|
uint256 result = mulDiv(x, y, denominator);
|
|
|
|
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
|
|
|
|
result += 1;
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
|
|
|
|
*
|
|
|
|
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
|
|
|
|
*/
|
|
|
|
function sqrt(uint256 a) internal pure returns (uint256) {
|
|
|
|
if (a == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
|
|
|
|
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
|
|
|
|
// `msb(a) <= a < 2*msb(a)`.
|
|
|
|
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
|
|
|
|
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
|
|
|
|
// Using an algorithm similar to the msb computation, we are able to compute `result = 2**(k/2)` which is a
|
|
|
|
// good first approximation of `sqrt(a)` with at least 1 correct bit.
|
|
|
|
uint256 result = 1;
|
|
|
|
uint256 x = a;
|
|
|
|
if (x >> 128 > 0) {
|
|
|
|
x >>= 128;
|
|
|
|
result <<= 64;
|
|
|
|
}
|
|
|
|
if (x >> 64 > 0) {
|
|
|
|
x >>= 64;
|
|
|
|
result <<= 32;
|
|
|
|
}
|
|
|
|
if (x >> 32 > 0) {
|
|
|
|
x >>= 32;
|
|
|
|
result <<= 16;
|
|
|
|
}
|
|
|
|
if (x >> 16 > 0) {
|
|
|
|
x >>= 16;
|
|
|
|
result <<= 8;
|
|
|
|
}
|
|
|
|
if (x >> 8 > 0) {
|
|
|
|
x >>= 8;
|
|
|
|
result <<= 4;
|
|
|
|
}
|
|
|
|
if (x >> 4 > 0) {
|
|
|
|
x >>= 4;
|
|
|
|
result <<= 2;
|
|
|
|
}
|
|
|
|
if (x >> 2 > 0) {
|
|
|
|
result <<= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
|
|
|
|
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
|
|
|
|
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
|
|
|
|
// into the expected uint128 result.
|
|
|
|
unchecked {
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
result = (result + a / result) >> 1;
|
|
|
|
return min(result, a / result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @notice Calculates sqrt(a), following the selected rounding direction.
|
|
|
|
*/
|
|
|
|
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
|
|
|
|
uint256 result = sqrt(a);
|
|
|
|
if (rounding == Rounding.Up && result * result < a) {
|
|
|
|
result += 1;
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
}
|