mirror of openzeppelin-contracts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openzeppelin-contracts/contracts/drafts/ERC20Snapshot.sol

141 lines
5.8 KiB

pragma solidity ^0.5.0;
import "../math/SafeMath.sol";
import "../utils/Arrays.sol";
import "../drafts/Counters.sol";
import "../token/ERC20/ERC20.sol";
/**
* @title ERC20 token with snapshots.
6 years ago
* @dev Inspired by Jordi Baylina's MiniMeToken to record historical balances:
* https://github.com/Giveth/minime/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol
* When a snapshot is made, the balances and totalSupply at the time of the snapshot are recorded for later
* access.
*
* To make a snapshot, call the `snapshot` function, which will emit the `Snapshot` event and return a snapshot id.
* To get the total supply from a snapshot, call the function `totalSupplyAt` with the snapshot id.
* To get the balance of an account from a snapshot, call the `balanceOfAt` function with the snapshot id and the
* account address.
* @author Validity Labs AG <info@validitylabs.org>
*/
contract ERC20Snapshot is ERC20 {
using SafeMath for uint256;
using Arrays for uint256[];
using Counters for Counters.Counter;
// Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
// Snapshot struct, but that would impede usage of functions that work on an array.
struct Snapshots {
uint256[] ids;
uint256[] values;
}
mapping (address => Snapshots) private _accountBalanceSnapshots;
Snapshots private _totalSupplySnapshots;
// Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
Counters.Counter private _currentSnapshotId;
event Snapshot(uint256 id);
// Creates a new snapshot id. Balances are only stored in snapshots on demand: unless a snapshot was taken, a
// balance change will not be recorded. This means the extra added cost of storing snapshotted balances is only paid
// when required, but is also flexible enough that it allows for e.g. daily snapshots.
function snapshot() public returns (uint256) {
_currentSnapshotId.increment();
uint256 currentId = _currentSnapshotId.current();
emit Snapshot(currentId);
return currentId;
}
function balanceOfAt(address account, uint256 snapshotId) public view returns (uint256) {
(bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);
return snapshotted ? value : balanceOf(account);
}
function totalSupplyAt(uint256 snapshotId) public view returns(uint256) {
(bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);
return snapshotted ? value : totalSupply();
}
// _transfer, _mint and _burn are the only functions where the balances are modified, so it is there that the
// snapshots are updated. Note that the update happens _before_ the balance change, with the pre-modified value.
// The same is true for the total supply and _mint and _burn.
function _transfer(address from, address to, uint256 value) internal {
_updateAccountSnapshot(from);
_updateAccountSnapshot(to);
super._transfer(from, to, value);
}
function _mint(address account, uint256 value) internal {
_updateAccountSnapshot(account);
_updateTotalSupplySnapshot();
super._mint(account, value);
}
function _burn(address account, uint256 value) internal {
_updateAccountSnapshot(account);
_updateTotalSupplySnapshot();
super._burn(account, value);
}
// When a valid snapshot is queried, there are three possibilities:
// a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
// created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
// to this id is the current one.
// b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
// requested id, and its value is the one to return.
// c) More snapshots were created after the requested one, and the queried value was later modified. There will be
// no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
// larger than the requested one.
//
// In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
// it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
// exactly this.
function _valueAt(uint256 snapshotId, Snapshots storage snapshots)
private view returns (bool, uint256)
{
require(snapshotId > 0, "ERC20Snapshot: id is 0");
// solhint-disable-next-line max-line-length
require(snapshotId <= _currentSnapshotId.current(), "ERC20Snapshot: nonexistent id");
uint256 index = snapshots.ids.findUpperBound(snapshotId);
if (index == snapshots.ids.length) {
return (false, 0);
} else {
return (true, snapshots.values[index]);
}
}
function _updateAccountSnapshot(address account) private {
_updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
}
function _updateTotalSupplySnapshot() private {
_updateSnapshot(_totalSupplySnapshots, totalSupply());
}
function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
uint256 currentId = _currentSnapshotId.current();
if (_lastSnapshotId(snapshots.ids) < currentId) {
snapshots.ids.push(currentId);
snapshots.values.push(currentValue);
}
}
function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
if (ids.length == 0) {
return 0;
} else {
return ids[ids.length - 1];
}
}
}