
 Formal Verification of OpenZeppelin
(May - June 2022)

Summary

This document describes the specification and verification of OpenZeppelin's contracts
using the Certora Prover. The work was undertaken from May 9th to June 10th. The latest
commit that was reviewed and run through the Certora Prover was commit 109778c .

The scope of our verification was the following contracts:

Initializable.sol (Verification Result)

GovernorPreventLateQuorum.sol (Verification Result)

ERC1155Burnable.sol (Verification Result)

ERC1155Pausable.sol (Verification Result)

ERC1155Supply.sol (Verification Result)

ERC1155Holder.sol (Formal Verification Unnecessary)

ERC1155Receiver.sol (Formal Verification Unnecessary)

The Certora Prover proved the implementation of the OpenZeppelin contracts is correct
with respect to the formal rules written by the OpenZeppelin and the Certora teams. During
the verification process, the Certora Prover discovered bugs in the code listed in the table
below. All issues were promptly corrected, and the fixes were verified to satisfy the
specifications up to the limitations of the Certora Prover. The Certora development team is
currently handling these limitations. The next section formally defines high level
specifications of OpenZeppelin. All the rules are publicly available in a public github.

The OpenZeppelin team is continuously verifying these properties as they develop their
code. You can see the latest results here.

List of Main Issues Discovered

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/certora.png
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://prover.certora.com/output/22971/304a5146df53f0c7e001?anonymousKey=c1f853808841991986fb427b85279e3ab996591d
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://prover.certora.com/output/22971/c5bfa4ddb219ab2832c5?anonymousKey=8c4103f84bec08a245b610dc8fc8156d15fcaa73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://prover.certora.com/output/22971/a3cfaed40191eb6bec32?anonymousKey=6888ecd7dbeac8b3bf6e1df42a4b5bec37567952
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://prover.certora.com/output/22971/80740cdc094361da319e?anonymousKey=a4b621f433d74aabf943f69e3f21f628110bba80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://prover.certora.com/output/93493/86ee10f63e7a4e7beab0/?anonymousKey=6f569ac45430b8378946e72ed0d04ec037898979
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/Certora/openzeppelin-contracts/tree/certora/erc1155ext
https://github.com/OpenZeppelin/openzeppelin-contracts/actions/workflows/formal-verifiation.yml

Issue:
Calling updateQuorumNumerator() can change the output of

quorumReached() for previous proposals, leading to unexpected
outcomes.

Issue:
Calling updateQuorumNumerator() can change the output of

quorumReached() for previous proposals, leading to unexpected
outcomes.

Rules
Broken:

quorumReachedEffect , proposalNotCreatedEffects ,
proposalInOneState , deadlineCantBeUnextended

Description:

High Decreasing the number of votes required for a proposal to
reach quorum can allow proposals which are currently active,
passing, and unexecutable to become immediately executable.
Breaks rules quorumReachedEffect , proposalNotCreatedEffects ,
and proposalInOneState .

Medium Decreasing the number of votes required for a proposal
to reach quorum can allow proposals to reach quorum late without
extending their deadlines. Breaks rules quorumReachedEffect ,
proposalNotCreatedEffects , and proposalInOneState .

Low Increasing the number of votes required for a proposal to
reach quorum can cause proposals which had previously reached
quorum to no longer be in quorum. Breaks rule
deadlineCantBeUnextended .

Response:

We agree that this is a significant issue and will change
GovernorVotesQuorumFraction so that changes to quorum requirements

do not affect past proposals. Additionally, we are looking for affected
instances of this contract on-chain to reach out and notify of the
potential issue.

Severity: Low

Issue:
A governance with a voting token that has 0 total supply will

consider all current and future proposals to have reached
quorum.

Rules
Broken:

quorumReachedEffect , proposalNotCreatedEffects ,
proposalInOneState

Issue:
A governance with a voting token that has 0 total supply will

consider all current and future proposals to have reached
quorum.

Description:

A voting token with 0 token supply will result in all proposals being
considered as having reached quorum. This can be an issue in the
case that the token has not been initialized/minted, but this case is not
as interesting because there will be no tokens to vote with. A more
interesting case can arise if the voting token's totalSupply is
accidentally set to 0. This will allow all proposals to reach quorum and
thus be executable as long as the vote is successful.

Response:

This is an edge case that should never manifest as long as tokens
withhold the invariant that total supply is equal to the sum of all
balances, as in this case no one will be able to vote for a proposal and
the condition for a successful proposal will never be met (more for
votes than against votes).

Severity: Low

Issue:
TimelockController should not have additional executors beside

the governor (GovernorTimelockControl._execute())

Rules
Broken:

None

Description:

An executor can execute a scheduled operation on the
TimelockController by calling TimelockController.execute . If the

operation was queued using GovernorTimelockControl.queue , this will
cause GovernorTimelockControl.execute to revert as the proposal has
already been executed by the TimelockController . (Same issue with
calling TimelockController.cancel)

Response:
Agreed, but probably not any significant consequence. The only
consequence is that if the proposal is executed directly in the timelock,
the "ProposalExecuted" event will never be emitted.

Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that
the contract satisfies the specification in all scenarios. Importantly, the guarantees of the
Certora Prover are scoped to the provided specification, and the Certora Prover does not
check any cases not covered by the specification.

We hope that this information is useful, but provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that
the contract is secure in all dimensions. In no event shall Certora or any of its employees
be liable for any claim, damages or other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with the results reported here.

Notations

 indicates the rule is formally verified on the latest reviewed commit. We write * when
the rule was verified on a simplified version of the code (or under some assumptions).

 indicates the rule was violated under one of the tested versions of the code.

 indicates the rule has not been checked on the current version.

 indicates that some functions cannot be verified because the rules timed out

Footnotes describe any simplifications or assumptions used while verifying the rules
(beyond the general assumptions listed above).

Verification of Initializable

Initializable is a contract used to make constructors for upgradable contracts. This is
accomplished by applying the initializer modifier to any function that serves as a
constructor, which makes this function only callable once. The secondary modifier
reinitializer allows for upgrades that should run at most once after the contract is

upgraded.

Assumptions and Simplifications

We assume initializer() and reinitializer(1) are equivalent if they both guarantee
_initialized to be set to 1 after a successful call. This allows us to use
reinitializer(n) as a general version that also handles the regular initialzer case.

Harnessing

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/failing.png
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/todo.png
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/timeout.png

Two harness versions were implemented, a simple flat contract, and a multi-inheriting
contract. The two versions together help us ensure there are no unexpected results
because of different implementations. Initializable can be used in many different ways
but we believe these 2 cases provide good coverage for all cases. In both harnesses we
use getter functions for _initialized and _initializing and implement initializer
and reinitializer functions that use their respective modifiers. We also implement some
versioned functions that are only callable in specific versions of the contract to mimic
upgrading contracts.

Munging

Variables _initialized and _initializing were changed to have internal visibility to be
harnessable.

Definitions

isUninitialized: A contract's _initialized variable is equal to 0.

isInitialized: A contract's _initialized variable is greater than 0.

isInitializedOnce: A contract's _initialized variable is equal to 1.

isReinitialized: A contract's _initialized variable is greater than 1.

isDisabled: A contract's _initialized variable is equal to 255.

Properties

 Not initializing. A contract must only ever be in an initializing state while in the
middle of a transaction execution. (report)

 Only initialized once. An initializable contract with a function that inherits the
initializer modifier must be initializable only once (report)

 Reinitialize effects. Successfully calling reinitialize() with a version value of 1 must
result in _initialized being set to 1. (report)

 Initialize effects. Successfully calling initialize() must result in _initialized
being set to 1. (report)

 Disabled stays disabled. A disabled initializable contract must always stay
disabled. (report)

 Increasing initialized. The variable _initialized must not decrease. (report)

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284

 Reinitialize increases init . If reinitialize(...) was called successfully, then
the variable _initialized must increase. (report)

 Reinitialize liveness. reinitialize(n) must be callable if the contract is not in an
_initializing state and n is greater than _initialized and less than 255 (report)

 Reinitialize rule. if reinitialize(n) was called successfully then n was greater
than _initialized . (report)

 Reinitialize version check parent. Functions implemented in the parent contract
that require _initialized to be a certain value are only callable when it is that value.
(report)

 Reinitialize version check child. Functions implemented in the child contract that
require _initialized to be a certain value are only callable when it is that value.
(report)

 Reinitialize version check grandchild. Functions implemented in the grandchild
contract that require _initialized to be a certain value are only callable when it is
that value. (report)

 Inheritance check. Calling parent initializer function must initialize all child
contracts. (report)

Verification of ERC1155

ERC1155 establishes base level support EIP1155, a standard interface for contracts that
manage multiple token types. The contract was verified as part of previous work with
OpenZeppelin and is included here for the purposes of increased verification coverage with
respect to token transfer methods.

Assumptions and Simplifications

Internal burn and mint methods are wrapped by functions callable from CVL.

Properties

These properties are additions to the previous ERC1155 verification. Please see the file
ERC1155.spec for earlier contract properties verified.

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/7875b47fa166f027cf3e?anonymousKey=88505469fcd813bca1d7c5b7e5cd710cdbb1d284
https://eips.ethereum.org/EIPS/eip-1155

 Single token safe transfer from safe batch transfer from equivalence. The
result of transferring a single token must be equivalent whether done via
safeTransferFrom or safeBatchTransferFrom . (report)

 Multiple token safe transfer from safe batch transfer from equivalence. The
results of transferring multiple tokens must be equivalent whether done separately via
safeTransferFrom or together via safeBatchTransferFrom . (report)

 Transfers have same length input arrays. If transfer methods do not revert, the
input arrays must be the same length. (report)

Verification of ERC1155Burnable

ERC1155Burnable extends the ERC1155 functionality by wrapping the internal methods
_burn and _burnBatch in the public methods burn and burnBatch , adding a requirement

that the caller of either method be the account holding the tokens or approved to act on
that account's behalf.

Assumptions and Simplifications

No changes made using the harness

Properties

 Only holder or approved can reduce balance. If a method call reduces account
balances, the caller must be either the holder of the account or approved to act on the
holder's behalf. (report)

 Burn amount proportional to balance reduction. Burning a larger amount of a
token must reduce that token's balance more than burning a smaller amount. n.b. This
rule holds for burnBatch as well due to rules establishing appropriate equivalence
between burn and burnBatch methods. (report)

 Sequential burns equivalent to single burn of sum. Two sequential burns must
be equivalent to a single burn of the sum of their amounts. This rule holds for
burnBatch as well due to rules establishing appropriate equivalence between burn

and burnBatch methods. (report)

 Single token burn / burnBatch equivalence. The result of burning a single token
must be equivalent whether done via burn or burnBatch . (report)

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/d78f629fa998cafef336?anonymousKey=93ea1c28ae4373a1c4555b413557c8ece5a18254
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/d78f629fa998cafef336?anonymousKey=93ea1c28ae4373a1c4555b413557c8ece5a18254
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/d78f629fa998cafef336?anonymousKey=93ea1c28ae4373a1c4555b413557c8ece5a18254
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/a9e067e2c31baf77fc31?anonymousKey=b8c33db93ff7b697831bc94ef78b643bbc123850
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/a9e067e2c31baf77fc31?anonymousKey=b8c33db93ff7b697831bc94ef78b643bbc123850
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/a9e067e2c31baf77fc31?anonymousKey=b8c33db93ff7b697831bc94ef78b643bbc123850
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/a9e067e2c31baf77fc31?anonymousKey=b8c33db93ff7b697831bc94ef78b643bbc123850

 Multiple token burn / burnBatch equivalence. The results of burning multiple
tokens must be equivalent whether done separately via burn or together via
burnBatch . (report)

 Burn batch on empty arrays changes nothing. If passed empty token and burn
amount arrays, burnBatch must not change token balances or address permissions.
(report)

Verification of ERC1155Pausable

ERC1155Pausable extends existing Pausable functionality by requiring that a contract not
be in a paused state prior to a token transfer.

Assumptions and Simplifications

Internal methods _pause and _unpause wrapped by functions callable from CVL

Dummy functions created to verify whenPaused and whenNotPaused modifiers

Properties

 Balances unchanged when paused. When a contract is in a paused state, the
token balance for a given user and token must not change. (report)

 Transfer methods revert when paused. When a contract is in a paused state,
transfer methods must revert. (report)

 Pause method pauses contract. When a contract is in an unpaused state, calling
pause() must pause. (report)

 Unpause method unpauses contract. When a contract is in a paused state,
calling unpause() must unpause. (report)

 Cannot pause while paused. When a contract is in a paused state, calling
pause() must revert. (report)

 Cannot unpause while unpaused. When a contract is in an unpaused state,
calling unpause() must revert. (report)

 whenNotPaused modifier causes revert if paused. When a contract is in a paused
state, functions with the whenNotPaused modifier must revert. (report)

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/a9e067e2c31baf77fc31?anonymousKey=b8c33db93ff7b697831bc94ef78b643bbc123850
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/a9e067e2c31baf77fc31?anonymousKey=b8c33db93ff7b697831bc94ef78b643bbc123850
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200

 whenPaused modifier causes revert if unpaused. When a contract is in an
unpaused state, functions with the whenPaused modifier must revert. (report)

Verification of ERC1155Supply

ERC1155Supply extends the ERC1155 functionality. The contract creates a publicly callable
totalSupply wrapper for the private _totalSupply method, a public exists method to

check for a positive balance of a given token, and updates _beforeTokenTransfer to
appropriately change the mapping _totalSupply in the context of minting and burning
tokens.

Assumptions and Simplifications

The exists method was wrapped in the exists_wrapper method because exists is
a keyword in CVL.

The public functions burn , burnBatch , mint , and mintBatch were implemented in
the harnessing contract make their respective internal functions callable by the CVL.
This was used to test the increase and decrease of totalSupply when tokens are
minted and burned.

We created the onlyOwner modifier to be used in the above functions so that they are
not called in unrelated rules.

Properties

 Token total supply independence. Given two different token ids, if total supply for
one changes, then total supply for other must not. (report)

 Total supply is sum of balances. The sum of the balances over all users must
equal the total supply for a given token. (report)

 Balance of zero address is zero. The balance of a token for the zero address
must be zero. (report)

 Held tokens should exist. If a user has a token, then the token should exist.
(report)

Verification of GovernorPreventLateQuorum

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/67d7cbeaa396fefdf1c7?anonymousKey=a772b90d134d8dab846e8785feca5610e9476200
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/2655883fbf18e7ceb9df?anonymousKey=0140ce61ff17003f355203c35e006718345186d2
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/2655883fbf18e7ceb9df?anonymousKey=0140ce61ff17003f355203c35e006718345186d2
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/2655883fbf18e7ceb9df?anonymousKey=0140ce61ff17003f355203c35e006718345186d2
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/6554/2655883fbf18e7ceb9df?anonymousKey=0140ce61ff17003f355203c35e006718345186d2

GovernorPreventLateQuorum extends the Governor group of contracts to add the feature of
giving voters more time to vote in the case that a proposal reaches quorum with less than
voteExtension amount of time left to vote.

Assumptions and Simplifications

None

Harnessing

The contract that the specification was verified against is
GovernorPreventLateQuorumHarness , which inherits from all of the Governor contracts

— excluding Compound variations — and implements a number of view functions to
gain access to values that are impossible/difficult to access in CVL. It also implements
all of the required functions not implemented in the abstract contracts it inherits from.

_castVote was overridden to add an additional flag before calling the parent version.
This flag stores the block.number in a variable latestCastVoteCall and is used as a
way to check when any of variations of castVote are called.

Munging

Various variables' visibility was changed from private to internal or from internal to
public throughout the Governor contracts in order to make them accessible in the
spec.

Arbitrary low level calls are assumed to change nothing and thus the function
_execute is changed to do nothing. The tool normally havocs in this situation,

assuming all storage can change due to possible reentrancy. We assume, however,
there is no risk of reentrancy because _execute is a protected call locked behind the
timelocked governance vote. All other governance functions are verified separately.

Definitions

deadlineExtendible: A proposal is defined to be deadlineExtendible if its respective
extendedDeadline variable is unset and quorum on that proposal has not been reached.

deadlineExtended: A proposal is defined to be deadlineExtended if its respective
extendedDeadline variable is set and quorum on that proposal has been reached.

proposalNotCreated: A proposal is defined to be proposalNotCreated if its snapshot
(block.number at which voting started), deadline, and totalVotes all equal 0.

Properties

 Quorum reached effect. If a proposal has reached quorum then the proposal
snapshot (start block.number) must be non-zero (report)

 Proposal not created effects. A non-existent proposal must meet the definition of
one. (report)

 Proposal in one state. A created proposal must be in state deadlineExtendable
or deadlineExtended . (report)

first set of rules

The rules deadlineChangeEffects and deadlineCantBeUnextended are assumed in rule
canExtendDeadlineOnce , so we prove them first.

 Deadline change effects. If deadline increases then we are in deadlineExtended
state and castVote was called. (report)

 Deadline can't be unextended. A proposal can't leave deadlineExtended state.
(report)

 Can extend deadline once. A proposal's deadline can't change in
deadlineExtended state. (report)

second set of rules

The main rule in this section is the deadline can only be extended if quorum reached with
<= timeOfExtension left to vote The other rules of this section are assumed in the proof, so
we prove them first.

 Has voted correlation nonzero. A change in hasVoted must be correlated with
an increasing of the vote supports, i.e. casting a vote increases the total number of
votes. (report)

 Against votes don't count. An against vote does not make a proposal reach
quorum. (report)

 Extended deadline value set if quorum reached. extendedDeadlineField is set if
and only if _castVote is called and quorum is reached. (report)

 Deadline never reduced. Deadline can never be reduced. (report)

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/failing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/failing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/failing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/failing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/a2a792fa85744bcaa715/

Bug Injection Test

In this section we intentionally create bugs to check if we have coverage for those type of
bugs. We do this to make sure that even if an attacker managed to get into such a situation
he would not be able to harm the system.

() Bug 1: mutate _castVote function in GovernorPreventLateQuorum.sol : catching
rule(s): extendedDeadlineValueSetIfQuorumReached [Tool Output] : This change will cause
the deadline be equal to the block time instead expanding it:

- uint64 extendedDeadlineValue = block.number.toUint64() +
lateQuorumVoteExtension();
+ uint64 extendedDeadlineValue = block.number.toUint64();

() Bug 2: mutate _beforeTokenTransfer function in ERC1155Pausable.sol : catching
rule(s): balancesUnchangedWhenPaused , transferMethodsRevertWhenPaused [Tool Output] :
This lack of require will allow transfer while paused:

- require(!paused(), "ERC1155Pausable: token transfer while paused");
+ // require(!paused(), "ERC1155Pausable: token transfer while paused");

() Bug 3: mutate _castVote function in GovernorPreventLateQuorum.sol : catching
rule(s): deadlineChangeEffects [Tool Output] : This change will allow a proposal to extend
the deadline even if it doesn’t reach quorum:

- if (extendedDeadline.isUnset() && _quorumReached(proposalId)) {
+ // if (extendedDeadline.isUnset() && _quorumReached(proposalId)) {
+ if (extendedDeadline.isUnset()) {

() Bug 4: mutate burn function in ERC1155Burnable.sol : catching rule(s):
onlyHolderOrApprovedCanReduceBalance [Tool Output] : This lack of require will allow

anyone to burn tokens for an account:

- require(account == _msgSender() || isApprovedForAll(account,
_msgSender()),"ERC1155: caller is not owner nor approved");
+ // require(account == _msgSender() || isApprovedForAll(account,
_msgSender()),"ERC1155: caller is not owner nor approved"//);

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/7595d774877e05724a00/?anonymousKey=25bcf9d7a2b820076799a4e2545eef0a8c416b6a
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/6603baa744391a373aa9/?anonymousKey=4a4ca23cbba9c2a12fea01b9bcd7448d28953ea3
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/90a88d6e617a0e3ce82c/?anonymousKey=794e42395231b59725af5195d55e5c28bdefff1a
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/110864b6c4e603e6bfa9?anonymousKey=4c4c2ef11e192b91ca098a793ead288bf8bea92c

() Bug 5: mutate _beforeTokenTransfer function in ERC1155Supply.sol : catching
rule(s): total_supply_is_sum_of_balances [Tool Output] : This change will cause the total
supply not to increase when a token is transferred (or minted):

- _totalSupply[ids[i]] += amounts[i];
+ // _totalSupply[ids[i]] += amounts[i];

() Bug 6: mutate _beforeTokenTransfer function in ERC1155Supply.sol : catching
rule(s): total_supply_is_sum_of_balances [Tool Output] : This change will cause total
supply to increase upon token transfer only for the account at i = 0 instead of for all
appropriate accounts:

- _totalSupply[ids[i]] += amounts[i];
+ // _totalSupply[ids[i]] += amounts[i];
+ _totalSupply[ids[0]] += amounts[i];

() Bug 7: mutate burn function in ERC1155Burnable.sol : catching rule(s):
burnAmountProportionalToBalanceReduction ,
sequentialBurnsEquivalentToSingleBurnOfSum , singleTokenBurnBurnBatchEquivalence ,
multipleTokenBurnBurnBatchEquivalence [Tool Output] : This change will cause

msg.sender's token balance to decrease by value instead of the appropriate account's
balance:

- _burn(account, id, value);
+ _burn(msg.sender, id, value);

file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/de3be8addac126ce324f/?anonymousKey=1c1639b7abcad4c3f13c52b69b25bef45231147c
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/0bb293fb65306dc568ad/?anonymousKey=c3e1409bc2b4b58532b789bedbacd1ff5c3cd902
file:///home/mdgeorge/certora/Reports/OpenZeppelin/ERC1155Ext/tools/passing.png
https://prover.certora.com/output/93493/4120349b7bd20fcf56d3/?anonymousKey=bdf9c65a25aa5ce4e13fd545bb5573b8b270502b

