require('@openzeppelin/test-helpers'); const { expectRevert } = require('@openzeppelin/test-helpers'); const { MerkleTree } = require('merkletreejs'); const keccak256 = require('keccak256'); const { expect } = require('chai'); const MerkleProofWrapper = artifacts.require('MerkleProofWrapper'); contract('MerkleProof', function (accounts) { beforeEach(async function () { this.merkleProof = await MerkleProofWrapper.new(); }); describe('verify', function () { it('returns true for a valid Merkle proof', async function () { const elements = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='.split(''); const merkleTree = new MerkleTree(elements, keccak256, { hashLeaves: true, sortPairs: true }); const root = merkleTree.getHexRoot(); const leaf = keccak256(elements[0]); const proof = merkleTree.getHexProof(leaf); expect(await this.merkleProof.verify(proof, root, leaf)).to.equal(true); expect(await this.merkleProof.verifyCalldata(proof, root, leaf)).to.equal(true); // For demonstration, it is also possible to create valid proofs for certain 64-byte values *not* in elements: const noSuchLeaf = keccak256( Buffer.concat([keccak256(elements[0]), keccak256(elements[1])].sort(Buffer.compare)), ); expect(await this.merkleProof.verify(proof.slice(1), root, noSuchLeaf)).to.equal(true); expect(await this.merkleProof.verifyCalldata(proof.slice(1), root, noSuchLeaf)).to.equal(true); }); it('returns false for an invalid Merkle proof', async function () { const correctElements = ['a', 'b', 'c']; const correctMerkleTree = new MerkleTree(correctElements, keccak256, { hashLeaves: true, sortPairs: true }); const correctRoot = correctMerkleTree.getHexRoot(); const correctLeaf = keccak256(correctElements[0]); const badElements = ['d', 'e', 'f']; const badMerkleTree = new MerkleTree(badElements); const badProof = badMerkleTree.getHexProof(badElements[0]); expect(await this.merkleProof.verify(badProof, correctRoot, correctLeaf)).to.equal(false); expect(await this.merkleProof.verifyCalldata(badProof, correctRoot, correctLeaf)).to.equal(false); }); it('returns false for a Merkle proof of invalid length', async function () { const elements = ['a', 'b', 'c']; const merkleTree = new MerkleTree(elements, keccak256, { hashLeaves: true, sortPairs: true }); const root = merkleTree.getHexRoot(); const leaf = keccak256(elements[0]); const proof = merkleTree.getHexProof(leaf); const badProof = proof.slice(0, proof.length - 5); expect(await this.merkleProof.verify(badProof, root, leaf)).to.equal(false); expect(await this.merkleProof.verifyCalldata(badProof, root, leaf)).to.equal(false); }); }); describe('multiProofVerify', function () { it('returns true for a valid Merkle multi proof', async function () { const leaves = ['a', 'b', 'c', 'd', 'e', 'f'].map(keccak256).sort(Buffer.compare); const merkleTree = new MerkleTree(leaves, keccak256, { sort: true }); const root = merkleTree.getRoot(); const proofLeaves = ['b', 'f', 'd'].map(keccak256).sort(Buffer.compare); const proof = merkleTree.getMultiProof(proofLeaves); const proofFlags = merkleTree.getProofFlags(proofLeaves, proof); expect(await this.merkleProof.multiProofVerify(proof, proofFlags, root, proofLeaves)).to.equal(true); expect(await this.merkleProof.multiProofVerifyCalldata(proof, proofFlags, root, proofLeaves)).to.equal(true); }); it('returns false for an invalid Merkle multi proof', async function () { const leaves = ['a', 'b', 'c', 'd', 'e', 'f'].map(keccak256).sort(Buffer.compare); const merkleTree = new MerkleTree(leaves, keccak256, { sort: true }); const root = merkleTree.getRoot(); const badProofLeaves = ['g', 'h', 'i'].map(keccak256).sort(Buffer.compare); const badMerkleTree = new MerkleTree(badProofLeaves); const badProof = badMerkleTree.getMultiProof(badProofLeaves); const badProofFlags = badMerkleTree.getProofFlags(badProofLeaves, badProof); expect(await this.merkleProof.multiProofVerify(badProof, badProofFlags, root, badProofLeaves)) .to.equal(false); expect(await this.merkleProof.multiProofVerifyCalldata(badProof, badProofFlags, root, badProofLeaves)) .to.equal(false); }); it('revert with invalid multi proof #1', async function () { const fill = Buffer.alloc(32); // This could be anything, we are reconstructing a fake branch const leaves = ['a', 'b', 'c', 'd'].map(keccak256).sort(Buffer.compare); const badLeaf = keccak256('e'); const merkleTree = new MerkleTree(leaves, keccak256, { sort: true }); const root = merkleTree.getRoot(); await expectRevert( this.merkleProof.multiProofVerify( [ leaves[1], fill, merkleTree.layers[1][1] ], [ false, false, false ], root, [ leaves[0], badLeaf ], // A, E ), 'MerkleProof: invalid multiproof', ); await expectRevert( this.merkleProof.multiProofVerifyCalldata( [ leaves[1], fill, merkleTree.layers[1][1] ], [ false, false, false ], root, [ leaves[0], badLeaf ], // A, E ), 'MerkleProof: invalid multiproof', ); }); it('revert with invalid multi proof #2', async function () { const fill = Buffer.alloc(32); // This could be anything, we are reconstructing a fake branch const leaves = ['a', 'b', 'c', 'd'].map(keccak256).sort(Buffer.compare); const badLeaf = keccak256('e'); const merkleTree = new MerkleTree(leaves, keccak256, { sort: true }); const root = merkleTree.getRoot(); await expectRevert( this.merkleProof.multiProofVerify( [ leaves[1], fill, merkleTree.layers[1][1] ], [ false, false, false, false ], root, [ badLeaf, leaves[0] ], // A, E ), 'reverted with panic code 0x32', ); await expectRevert( this.merkleProof.multiProofVerifyCalldata( [ leaves[1], fill, merkleTree.layers[1][1] ], [ false, false, false, false ], root, [ badLeaf, leaves[0] ], // A, E ), 'reverted with panic code 0x32', ); }); it('limit case: works for tree containing a single leaf', async function () { const leaves = ['a'].map(keccak256).sort(Buffer.compare); const merkleTree = new MerkleTree(leaves, keccak256, { sort: true }); const root = merkleTree.getRoot(); const proofLeaves = ['a'].map(keccak256).sort(Buffer.compare); const proof = merkleTree.getMultiProof(proofLeaves); const proofFlags = merkleTree.getProofFlags(proofLeaves, proof); expect(await this.merkleProof.multiProofVerify(proof, proofFlags, root, proofLeaves)).to.equal(true); expect(await this.merkleProof.multiProofVerifyCalldata(proof, proofFlags, root, proofLeaves)).to.equal(true); }); it('limit case: can prove empty leaves', async function () { const leaves = ['a', 'b', 'c', 'd'].map(keccak256).sort(Buffer.compare); const merkleTree = new MerkleTree(leaves, keccak256, { sort: true }); const root = merkleTree.getRoot(); expect(await this.merkleProof.multiProofVerify([ root ], [], root, [])).to.equal(true); expect(await this.merkleProof.multiProofVerifyCalldata([ root ], [], root, [])).to.equal(true); }); }); });