
OpenZeppelin
Contracts
Release v5.2
Audit

| security

December 4, 2024

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    6
Account Abstraction 6

Cross-Chain Messaging 6

Governance 7

Clones 7

Utils 7

Security Model and Trust Assumptions ___    8

Medium Severity ___    9
M-01 Improper Input Validation Leads to Incorrect Parsing Results 9

M-02 Unbounded Memory Access Within Memory-Safe Assembly 10

Low Severity __    10
L-01 Inconsistent Use of MCOPY Opcode 10

L-02 Possible Incorrect Updates to Voting Units Balance Checkpoints 11

L-03 Different Pragma Directives 12

L-04 Override Votes Do Not Count As Having Voted 12

L-05 Potentially Incorrect Hashing of User Operations 13

L-06 Nonce Key Not Included in InvalidAccountNonce 14

L-07 Inconsistent Format in Returned Nonces 14

L-08 Misleading and Incomplete Documentation 15

L-09 Missing Docstrings 15

L-10 Incomplete Docstrings 16

Notes & Additional Information __    18
N-01 Incomplete Account Utility Libraries 18

N-02 Duplicated Logic 18

N-03 Constant Visibility Not Explicitly Declared 19

N-04 Unused Imports 19

N-05 Typographical Errors 19

N-06 Redundant Code 20

N-07 Code Clarity 20

Client Reported __    21
CR-01 Case-Sensitivity in CAIP-10 Identifiers 21

OpenZeppelin Contracts Release v5.2 Audit − Table of Contents − 2

Conclusion __    22

OpenZeppelin Contracts Release v5.2 Audit − Table of Contents − 3

Type Library

Timeline From 2024-10-21
To 2024-11-06

Languages Solidity

Total Issues 20 (19 resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

0 (0 resolved)

Medium Severity
Issues

2 (2 resolved)

Low Severity Issues 10 (9 resolved)

Notes & Additional
Information

7 (7 resolved)

Client Reported
Issues

1 (1 resolved)

Summary

OpenZeppelin Contracts Release v5.2 Audit − Summary − 4

Scope
We audited the OpenZeppelin/openzeppelin-contracts repository at commit 98d28f9. The

following files were in scope:

contracts/
├── account
│ └── utils
│ ├── draft-ERC4337Utils.sol
│ └── draft-ERC7579Utils.sol
├── governance
│ ├── Governor.sol
│ ├── extensions
│ │ ├── GovernorCountingOverridable.sol
│ │ └── GovernorPreventLateQuorum.sol
│ └── utils
│ └── VotesExtended.sol
├── interfaces
│ ├── draft-IERC4337.sol
│ └── draft-IERC7579.sol
├── proxy
│ └── Clones.sol
├── token
│ └── ERC20
│ ├── extensions
│ │ └── ERC1363.sol
│ └── utils
│ └── ERC1363Utils.sol
└── utils
 ├── Bytes.sol
 ├── CAIP10.sol
 ├── CAIP2.sol
 ├── NoncesKeyed.sol
 └── Strings.sol

OpenZeppelin Contracts Release v5.2 Audit − Scope − 5

https://github.com/OpenZeppelin/openzeppelin-contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5

System Overview
Version 5.2 of the OpenZeppelin Contracts library introduces new utilities designed to facilitate

account abstraction and cross-chain messaging, along with a new counting module in the

governance contracts.

Account Abstraction
This release includes utility functions for ERC-4337 — the most widely adopted standard for

account abstraction — as well as ERC-7579, a newer standard for minimal, modular smart

accounts. The ERC4337Utils library offers functionality for handling the validation data

returned by accounts during signature validation, for hashing user operations, and for

unpacking specific values from the PackedUserOperation struct defined in ERC-4337.

In contrast, the ERC7579Utils library provides functionality for encoding, decoding, and

executing various call types defined in the standard, including single, batch, and delegate calls.

It also includes constants and custom types that simplify working with the packed execution

mode specified in ERC-7579. Additionally, this release includes all interfaces necessary to

integrate with these standards.

Cross-Chain Messaging
Chain Agnostic Improvement Proposals (CAIPs) describe standards for blockchain projects

that are not specific to a single chain. In particular, CAIP-2 defines a way to uniquely identify a

blockchain (e.g., Ethereum, Bitcoin, Cosmos Hub) in a human-readable, developer-friendly and

transaction-friendly way, while CAIP-10 defines a way to identify an account in any blockchain

specified by a CAIP-2 blockchain ID. This is useful for both decentralized applications and

wallets to communicate user accounts or smart contracts across multiple chains using string

identifiers specific to each chain. To parse and format identifiers as defined by these CAIPs,

the CAIP2 and CAIP10 libraries were introduced in this release.

OpenZeppelin Contracts Release v5.2 Audit − System Overview − 6

https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-7579
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol
https://github.com/ChainAgnostic/CAIPs
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol

Governance
The governance framework has been enhanced with the introduction of the _tallyUpdated

internal virtual hook. This hook is designed to be called whenever a proposal's vote

tally is updated, providing a customizable point for executing additional logic in response to

changes in vote counts. The GovernorPreventLateQuorum contract was slightly

refactored to leverage the _tallyUpdated hook to address scenarios where the quorum is

reached late in the voting period. By detecting when the tally update results in a quorum being

achieved, it can extend the voting deadline, ensuring that all stakeholders have ample

opportunity to participate. This logic was previously placed in a _castVote override.

Motivated by the need to accommodate more complex voting scenarios, the

GovernorCountingOverridable module introduces functionality that allows delegators to

override the votes of their delegates. This module, which necessitated the introduction of the

_tallyUpdated hook, supports two internal count functions to manage both standard

and override votes. To support the override counting module, the VotesExtended contract

extends the Votes contract by adding checkpoints for delegations and voting units over time.

This feature is essential for the GovernorCountingOverridable module, as it relies on

historical data to accurately process vote overrides and ensure the governance system's

integrity.

Clones
The Clones library has been enhanced to support the deployment of minimal proxies with

immutable arguments. These arguments are provided through a bytes array and appended to

the bytecode before deployment through CREATE or CREATE2 . The arguments can be

fetched in the implementation contract using the fetchCloneArgs function, which is a

cheaper alternative to using storage for instance-specific data that can or must be immutable.

Utils
In the Strings library, new functions have been added to parse both signed and unsigned

integers, hex strings, as well as Ethereum addresses. In addition, a Bytes library was created

to support byte-specific operations, such as finding the index of a specific byte within a buffer

or creating slices from a buffer. These byte operations are designed to mimic the behavior of

their JavaScript counterparts, providing developers with a familiar interface.

OpenZeppelin Contracts Release v5.2 Audit − System Overview − 7

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/Governor.sol#L268
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/Governor.sol#L268
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol

The NoncesKeyed contract is an abstract extension of the Nonces contract, designed to

support keyed nonces in accordance with the ERC-4337 semi-abstracted nonce system. It

implements a mapping structure to manage nonces on a per-key basis for each address,

offering functions to retrieve and increment nonces. This contract allows for differentiated

nonce management, accommodating scenarios where transactions might require distinct

nonce spaces identified by keys.

Lastly, the ERC1363 contract has been refactored by moving its post-transfer and post-

approval callback logic into a new ERC1363Utils library.

Security Model and Trust
Assumptions
Auditing libraries requires a shift in focus due to their composability within blockchain

protocols. While the scope of an audit is typically limited to the code itself, the scope expands

when it comes to libraries because of their potential internal and external integrations. Libraries

act as foundational components for many protocols. This means that their security is

influenced not just by their internal robustness, but also by how they are utilized by integrators.

As a result, ensuring a library's security involves reviewing the code as well as anticipating its

various use cases and integration scenarios.

In addition to the above, the complexity grows because, while a library must accommodate a

wide range of potential use cases, the responsibility for secure implementation often falls on

developers who integrate it into their projects. These developers must carefully review the

security considerations when extending contracts from the library. A library's security risks can

multiply depending on how well developers understand and utilize its contracts. Therefore,

extra care is necessary to identify and address all potential threats, both direct and indirect, or

to document them so that developers are fully aware of the associated security risks.

OpenZeppelin Contracts Release v5.2 Audit − Security Model and Trust
Assumptions − 8

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Nonces.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Nonces.sol
https://eips.ethereum.org/EIPS/eip-4337#semi-abstracted-nonce-support
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/utils/ERC1363Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/utils/ERC1363Utils.sol
https://docs.openzeppelin.com/contracts/5.x/extending-contracts#security

Medium Severity

M-01 Improper Input Validation Leads to
Incorrect Parsing Results
The Strings library includes functions to parse integers and addresses from their string

representation. However, some of these functions may produce valid results even when given

invalid inputs. Specifically:

The tryParseAddress function validates the input length using only the begin and

end parameters, without actually checking the length of the input parameter itself.

Combined with the fact that tryParseHexUint succeeds even when the end

parameter is greater than the input length, this might cause addresses shorter than the

expected length to parse successfully, which contradicts the function's intended

specification.

The tryParseUint and tryParseHexUint functions return a success status with a

0 value if the begin parameter is greater than or equal to the end parameter. For

example, empty strings (or 0x hex strings) are successfully parsed as 0 , which

contrasts with the expected behavior in other languages like JavaScript, where

parseInt("") returns NaN .

To prevent the parsing of invalid inputs, consider enforcing stricter validation checks on input

lengths and parsing bounds.

Update: Resolved in pull request #5304 at commit d5e388e and pull request #5324 at commit

3fcb9da. The Contracts team stated:

The team decided to fix the tryParseAddress together with M-02 by abstracting the

implementation of the tryParseUint , tryParseInt , and tryParseHexUint into

a private function that does not check for bounds. This way, bounds are checked only

when necessary in other functions.

Regarding the inconsistency with the tryParseUint and tryParseHexUint

functions. We think this behavior is consistent with the way the EVM defaults to 0 when

there is no data, and there is no other representation of a NaN in this context, so we are

keeping this behavior.

•

•

OpenZeppelin Contracts Release v5.2 Audit − Medium Severity − 9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L13
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L13
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L352
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L352
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L361
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L292
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L292
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L349C67-L350C25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L349C67-L350C25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L170
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L170
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L292
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L292
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5304
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5304/commits/d5e388e975427e65feb603cb8a87ff3f8cd30257
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324/commits/3fcb9dafe0df4bdb99ee2b4b1f8b22723cf0be31

M-02 Unbounded Memory Access Within
Memory-Safe Assembly
The _unsafeReadBytesOffset function in the Strings library reads a bytes32 value

from a bytes array. Since it delegates the bound checking to the caller, it does so within a

memory-safe assembly block and without checking bounds. However, none of the other

functions in the library that call _unsafeReadBytesOffset perform any validation of the

offset that is used to read from the bytes array. Specifically, none of the functions validate that

the offset falls inside the length of the array, which can lead to incorrect and undefined

behavior that cannot easily be discovered by testing. Note that some functions use

_unsafeReadBytesOffset to read more than one byte from the array, so that has to be

accounted for as well when validating the offset.

Consider ensuring that _unsafeReadBytesOffset is only called with offsets that fall within

the allocated memory of the buffer .

Update: Resolved in pull request #5304 at commit d5e388e and pull request #5324 at commit

3fcb9da. The Contracts team stated:

The functions using _unsafeReadBytesOffset (tryParseUint , tryParseInt

and tryParseHexUint) were split into a private version that does not check for

bounds, so that it is used when these can be assumed safe.

Low Severity

L-01 Inconsistent Use of MCOPY Opcode
The MCOPY opcode was introduced with the Cancun chain upgrade, enabling the copying of

one memory space to another. However, since the opcode is still relatively new and may not be

supported across all chains, the _cloneCodeWithImmutableArgs function of the Clones

library has been implemented using abi.encodePacked . Yet, despite this effort for

compatibility, the slice function of the Bytes library still utilizes this opcode.

Consider clarifying whether the 5.2 release should use the MCOPY opcode.

Update: Acknowledged, not resolved. The Contracts team stated:

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L394
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L394
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L171-L179
https://docs.soliditylang.org/en/v0.8.28/assembly.html#memory-safety:~:text=this%20will%20lead%20to%20incorrect%20and%20undefined%20behavior%20that%20cannot%20easily%20be%20discovered%20by%20testing
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol#L300
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5304
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5304/commits/d5e388e975427e65feb603cb8a87ff3f8cd30257
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324/commits/3fcb9dafe0df4bdb99ee2b4b1f8b22723cf0be31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L247
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L247
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol#L88

In _cloneCodeWithImmutableArgs , we are building a bytes object. We decided to

use a more "natural" solidity version that the compiler is free to compile to whatever it

wants. The compiler may decide to use mcopy is the targeted EVM version supports it.

Bytes.slice is a bit different because solidity does not provide a high level version of

it. The few choices we have are:

writting a for loop in solidity

writting a for loop in assembly

using the identity precompile

using mcopy

We believe that the first two options are are not optimal. Also, because using the identity

precompile is more expensive than using mcopy, we decided to use mcopy. This indeed

prevents using this code with a target older than Cancun. Having a second version of

the function (that uses the precompile) is not really a possibility because:

a compiler would refuse to compile Bytes.sol with a version before Cancun, even

if slice is not used and only slicePrecompile is called by the user.

we would have to duplicate all implementation that call that function directly or

indirectly.

We believe the impact of this issue is limited. Only the new code uses Bytes.sol, so this

implementation is not breaking anything older. The pragma requires using of the recent

version of the compiler (as referenced in our "documentation"), and the compiler throws

very clear errors if a user tries to compile this code with an older EVM target. Ultimately,

using an unsupported target should be identified by any serious testing done by the

user.

L-02 Possible Incorrect Updates to Voting Units
Balance Checkpoints
The _transferVotingUnits function of the Votes contract is in charge of transferring,

minting, and burning voting units. It can be used by contracts extending Votes to track

changes in the distribution of these units. For example, _transferVotingUnits is called

within ERC20Votes immediately after a transfer. However, in VotesExtended ,

_transferVotingUnits is overridden to update the _balanceOfCheckpoints mapping

using the _getVotingUnits function to create a new checkpoint. This introduces a key

difference in how _transferVotingUnits should be used in derived contracts compared

to Votes . For instance, if an ERC-20 contract extends VotesExtended ,

•

•

•

•

•

•

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L180
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L180
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC20Votes.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L59
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L250
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L250

_getVotingUnits will produce different values depending on whether it is called before or

after the ERC-20 balance update. Thus, in VotesExtended , _transferVotingUnits

must be called after the balance changes to ensure accurate checkpoint updates, while in

Votes , it can be used before or after without any issue.

To prevent misuse, consider comprehensively documenting the aforementioned distinction,

emphasizing the order of execution of the internal functionalities.

Update: Resolved in pull request #5306 at commit 334b617.

L-03 Different Pragma Directives
In order to clearly identify the Solidity version with which the contracts will be compiled,

pragma directives should be consistent across file imports. Throughout the codebase, multiple

instances of varying pragma directives being used were identified:

CAIP10.sol has the pragma solidity ^0.8.24; pragma directive and imports

Strings.sol , which has a different pragma directive.

CAIP2.sol has the pragma solidity ^0.8.24; pragma directive and imports

Strings.sol , which has a different pragma directive.

Bytes.sol has the pragma solidity ^0.8.24; pragma directive and imports

Math.sol , which has a different pragma directive.

Consider using the same pragma version in all files.

Update: Resolved. The Contracts team stated:

Bytes.sol uses mcopy which is only supported since 0.8.24. This is why

Bytes.sol (and CAIP2.sol and CAIP10.sol that depends on Bytes.sol) all

require ^0.8.24 when other files are less restrictives.

Note that ReentrancyGuardTransient.sol , draft-

ERC20TemporaryApproval.sol and TransientSlot.sol have a similar

requirement because of tstore/tload being introduced in 0.8.24

L-04 Override Votes Do Not Count As Having
Voted
The GovernorCountingOverridable governance module enables users (delegators) who

have delegated their voting units to another account (delegate) to override that account's

•

•

•

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 12

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5306
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5306/commits/334b617fa35604aab3a0a6c8623423c3da1949ef
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/math/Math.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/math/Math.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L14
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L14

decision. This is achieved by tracking voting units and delegates over time for each account.

As a result, the delegator can override the delegate's decision by reallocating their voting

weight, effectively reducing the delegate's voting power based on the proposal's snapshot.

However, when a user casts an override vote, their support is not tracked in the casted field

of the VoteReceipt struct. Hence, when evaluating casted to determine whether the user

has voted, the returned value will be false . This is misleading and can be misinterpreted by

extending contract logic. Furthermore, it is worth noting that the overridenWeight field in

the receipt is not tracked if a delegate has already voted, although this is not a problem as long

as there is no getter and the mapping remains private.

Consider moving the logic of the hasVoted function into a new hasVotedDelegated

function and redefining hasVoted to return the boolean OR of hasVotedDelegated and

hasVotedOverride .

Update: Resolved in pull request #5309 at commit 1c762d8. The hasVoted logic remains,

while documentation was added. The Contracts team stated:

The design of GovernorCountingOverridable purposely separates regular votes

from overridden votes. The rationale is that both workflows are parallel.

For example, Alice may be a delegate for Bob and Charles while Alice herself could

delegate to Daniel. In this scenario, Alice can override Daniel's delegation (Alice own

tokens) regardless of Daniel's vote, whereas Alice could vote with the delegated power

of Bob and Charles.

We are documenting this behavior more thoroughly. However, we consider merging both

delegation votes and overridden votes in the hasVote function may be an issue for off-

chain integrations that may assume that the user already voted after an override, when

they can still cast their vote as in the case of Alice.

L-05 Potentially Incorrect Hashing of User
Operations
The hash function of the ERC4337Utils library is intended to compute the hash of a user

operation using the ERC-4337 entrypoint's address and the chain ID. However, the variant of

this function that only takes the user operation as input uses address(this) for the

entrypoint's address, although the library is not designed to be used only by entrypoint

implementations. As a result, hashes generated by this function will be invalid if generated by

non-entrypoint contracts, leading to accounts rejecting signatures based on such hashes.

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 13

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L16-L17
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L124
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L145-L147
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L43
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5309
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5309/commits/1c762d8199f90043a0022f69138e50413ac8224d
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L76C27-L76C40
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L76C27-L76C40

Consider having the entrypoint's address as a parameter in both variants of the hash

function.

Update: Resolved in pull request #5308 at commit 1816bb2. The hash function specifying

address(this) as the entrypoint was removed.

L-06 Nonce Key Not Included in
InvalidAccountNonce
The NoncesKeyed contract extends Nonces to add support for keyed nonces, where each

nonce is composed of a "key" and a "sequence". In the _useCheckedNonce function,

NoncesKeyed reuses the inherited InvalidAccountNonce error. However, this error does

not include details about the specific key causing the revert, thereby hindering code

auditability.

Consider implementing a new InvalidAccountNonce error that includes information about

the key that was responsible for the failure.

Update: Resolved in pull request #5312 at commit d977260. The key is now prepended to the

sequential nonce when reverting with the existing InvalidAccountNonce error.

L-07 Inconsistent Format in Returned Nonces
In the NoncesKeyed contract, both the nonces and _useNonce functions return the next

unused nonce for a given address and key. However, the nonces function prepends the key

to the sequential nonce, while _useNonce does not. The _useNonce function is also

commonly used in EIP-712 type hashes (e.g., ERC20Permit). Using the nonce without

prepending the key would be less intuitive in this context and even raises replayability

concerns.

To improve consistency, consider always returning the nonce with the prepended key.

Update: Resolved in pull request #5312 at commit d977260.

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 14

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308/commits/1816bb2db07dcf8148912163e07f037b1e3061ad
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L50
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L50
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L56
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L56
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5312
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5312/commits/d97726064665db93f52ab58a0ec66230df9816d9
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L15
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L15
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC20Permit.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC20Permit.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5312
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5312/commits/d97726064665db93f52ab58a0ec66230df9816d9

L-08 Misleading and Incomplete Documentation
Throughout the codebase, multiple instances of misleading documentation were identified:

The documentation for the _useCheckedNonce function states that it accepts a nonce

as a single uint256 parameter, with the first 8 bytes representing the key and the

remaining 24 bytes representing the nonce. However, the key is actually 24 bytes long,

while the nonce is 8 bytes.

The documentation for the cloneDeterministicWithImmutableArgs function

states that multiple clones under the same implementation address and salt will revert.

This must not be true because the immutable arguments become part of the bytecode

and thereby influence the deployed address. Thus, it is possible to reuse the same

implementation address and salt provided that the immutable arguments are changed.

Within the PackedUserOperation struct, the maxPriorityFeePerGas is referred

to as maxPriorityFee .

The paymasterAndData field of the PackedUserOperation struct does not

indicate the size of the paymasterVerificationGasLimit and

paymasterPostOpGasLimit data, while the getter functions suggest that they are

encoded with 16 bytes each.

The term "delegatee" should be replaced with "delegator" when referring to users who

delegate their voting power. This is because "delegatee" actually means the recipient (or

delegate) rather than the initiator of delegation. This adjustment should be made in the

docstring for GovernorCountingOverridable and in the

_delegateCheckpoints mapping.

Consider correcting the aforementioned comments to improve the overall clarity and readability

of the codebase.

Update: Resolved in pull request #5310 at commit ff30cd4 and pull request #5324 at commit

737d0e1.

L-09 Missing Docstrings
Throughout the codebase, multiple instances of missing docstrings were identified:

In GovernorCountingOverridable.sol :

The OVERRIDE_BALLOT_TYPEHASH state variable

The VoteReduced event

The OverrideVoteCast event

The GovernorAlreadyOverridenVote error

•

•

•

•

•

•

◦

◦

◦

◦

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L41
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L41
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L165-L167
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L41
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L41
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L141-L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L11C47-L11C57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L11C47-L11C57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5310
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5310/commits/ff30cd42fcb791d62e9a94341495eb82b28f140f
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324/commits/737d0e14e54008ebf05c40775421f588dade933a
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L15-L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L15-L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L41
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L41

In draft-IERC7579.sol :

The IERC7579Module interface

The IERC7579Validator interface

The IERC7579Hook interface

The IERC7579Execution interface

The IERC7579AccountConfig interface

The IERC7579ModuleConfig interface

The ModuleInstalled event

The ModuleUninstalled event

Consider thoroughly documenting all functions (and their parameters) that are part of any

contract's public API. Functions implementing sensitive functionality, even if not public, should

be clearly documented as well. When writing docstrings, consider following the Ethereum

Natural Specification Format (NatSpec).

Update: Resolved in pull request #5311 at commit fa9a059. The Contracts team stated:

We are not adding documentation for OVERRIDE_BALLOT_TYPEHASH , which is

consistent with other typehashes across the library. Similarly, we are not documenting

the GovernorAlreadyOverriddenVote error given its clarity.

L-10 Incomplete Docstrings
Throughout the codebase, multiple instances of incomplete docstrings were identified:

In ERC1363.sol :

In the transferAndCall function, the return value is not documented.

In the transferFromAndCall function, the return value is not documented.

In the approveAndCall function, the return value is not documented.

In GovernorCountingOverridable.sol :

In the proposalVotes function, the proposalId parameter and the return

value are not documented.

In the castOverrideVote function, the proposalId , support , and

reason parameters and the return value are not documented.

In the castOverrideVoteBySig function, the proposalId , support ,

voter , reason , and signature parameters and the return value are not

documented.

•

◦

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L13-L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L13-L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L39-L64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L39-L64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L66-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L66-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L96-L120
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L96-L120
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L122-L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L122-L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L151-L196
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L151-L196
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L153
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L153
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5311
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5311/commits/fa9a059d60c713f8eddfade56f70fd5cca37b15f
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol#L60-L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol#L60-L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol#L87-L89
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol#L87-L89
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol#L119-L121
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/token/ERC20/extensions/ERC1363.sol#L119-L121
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L70-L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L70-L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L172-L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L172-L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L182-L211
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L182-L211

In draft-ERC7579Utils.sol :

In the ERC7579TryExecuteFail event, the batchExecutionIndex and

result parameters are not documented.

In draft-IERC7579.sol :

In the validateUserOp function, the return value is not documented.

In the executeFromExecutor function, the return value is not documented.

In draft-IERC4337.sol :

In the validateUserOpSignature function, the return value is not

documented.

In the handleOps function, the beneficiary parameter is not documented.

In the handleAggregatedOps function, the beneficiary parameter is not

documented.

In the validateUserOp function, the userOp , userOpHash , and

missingAccountFunds parameters and the return value are not documented.

In the validatePaymasterUserOp function, the userOp , userOpHash , and

maxCost parameters and the return values are not documented.

In the postOp function, the mode , context , actualGasCost , and

actualUserOpFeePerGas parameters are not documented.

Consider thoroughly documenting all functions/events (and their parameters or return values)

that are part of a contract's public API. When writing docstrings, consider following the

Ethereum Natural Specification Format (NatSpec).

Update: Resolved in pull request #5315 at commit 2eb856e and pull request #5324 at commit

10c7594.

•

◦

•

◦

◦

•

◦

◦

◦

◦

◦

◦

OpenZeppelin Contracts Release v5.2 Audit − Low Severity − 17

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L40
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L40
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L116-L119
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC7579.sol#L116-L119
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L53-L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L53-L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L147
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L147
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L152-L155
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L152-L155
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L165-L169
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L165-L169
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L200-L204
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L200-L204
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L209-L214
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L209-L214
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5315
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5315/commits/2eb856e34e7dea32e94070fd82b7bb62597f7f8f
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5324/commits/10c7594721c8e2dfd19a89cf143e6508602c831d

Notes & Additional
Information

N-01 Incomplete Account Utility Libraries
The ERC7579Utils and ERC4337Utils libraries appear to be incomplete. The following

opportunities for completion were identified:

The ERC-7579 standard expects call types to execute a call, batch call, static call, or

delegatecall. However, the static call type (0xFE) is not listed among the other call type

constants.

The ERC4337Utils library provides getter functions to extract packed information from

the PackedUserOperation struct. However, there are no functions to extract the

factory address and factoryData from the initCode field, or paymasterData

from the paymasterAndData field.

To improve developer utility, consider adding the aforementioned missing functionality to the

utility libraries.

Update: Resolved in pull request #5313 at commit 2eb1be1. The Contracts team stated:

The use case for the 0xFE call type in ERC-7579 is unclear. This may come in a further

version but we did not want to commit to this in 5.2 version.

The additional ERC4337Utils features were implemented in pull request #5313. This also

included improving the existing paymaster getters in case the paymasterAndData

field is empty.

N-02 Duplicated Logic
In the Votes and VotesExtended contracts, the logic to validate a given timepoint against

the current timepoint is repeated across four functions: getPastVotes ,

getPastTotalSupply , getPastDelegate , and getPastBalanceOf .

Consider consolidating this duplicated logic into a reusable function to improve consistency

and readability.

Update: Resolved in pull request #5314 at commit eb51fbc.

•

•

OpenZeppelin Contracts Release v5.2 Audit − Notes & Additional Information
− 18

https://eips.ethereum.org/EIPS/eip-7579#:~:text=callType%20(1%20byte)%3A%200x00%20for%20a%20single%20call%2C%200x01%20for%20a%20batch%20call%2C%200xfe%20for%20staticcall%20and%200xff%20for%20delegatecall
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L24-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L24-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L106-L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L34
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5313
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5313/commits/2eb1be16af7ca713b86f81b6d4894756894b10a0
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5313
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L90-L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L90-L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L28-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L28-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L28-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L28-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L44-L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L44-L47
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5314
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5314/commits/eb51fbc6624c7dda9335f97820e28684ab012f11

N-03 Constant Visibility Not Explicitly Declared
Within draft-ERC7579Utils.sol , multiple instances of constants lacking an explicitly

declared visibility were identified:

The CALLTYPE_SINGLE state variable

The CALLTYPE_BATCH state variable

The CALLTYPE_DELEGATECALL state variable

The EXECTYPE_DEFAULT state variable

The EXECTYPE_TRY state variable

For improved code clarity, consider always explicitly declaring the visibility of constants, even

when the default visibility matches the intended visibility.

Update: Resolved in pull request #5308 at commit fa30a20.

N-04 Unused Imports
Throughout the codebase, multiple instances of unused imports were identified:

In draft-ERC4337Utils.sol , the IEntryPoint import is unused.

In the CAIP2 and CAIP10 libraries, the SafeCast library is unnecesarily imported

and used for the uint256 type.

Consider removing unused imports to improve the overall clarity and readability of the

codebase.

Update: Resolved in pull request #5308 at commit 4c5935a.

N-05 Typographical Errors
Throughout the codebase, multiple instances of typographical errors were identified:

In line 79 of ERC4337Utils.sol , "Sames" should be "Same".

In line 7 of NoncesKeyed.sol , "support" should be "supports".

In line 22 of NoncesKeyed.sol , "this functions" should be "this function".

In line 60 and line 166 of Clones.sol , "multiple time" should be "multiple times".

In line 14 of draft-IERC4337.sol , "bunder" should be "bundler".

In line 9 of VotesExtended.sol , either "adds" or "exposes" should be removed.

In line 12 of GovernorCountingOverridable.sol , one "token" should be removed.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

OpenZeppelin Contracts Release v5.2 Audit − Notes & Additional Information
− 19

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L28
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L28
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC7579Utils.sol#L37
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308/commits/fa30a20c52c42b7fdf5b5a1b55f41cbb869b5fef
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L5C9-L5C20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L5C9-L5C20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol#L19
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol#L19
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308/commits/4c5935a2ceb93389e8c9b73664222ad7034603e9
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L79C14-L79C19
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L7C39-L7C46
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L60
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L166
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/interfaces/draft-IERC4337.sol#L14
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L9
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/extensions/GovernorCountingOverridable.sol#L12

Consider fixing the typographical errors to improve the readability of the codebase.

Update: Resolved in pull request #5308 at commit 1fa2532.

N-06 Redundant Code
Throughout the codebase, multiple instances of redundant code were identified:

The unchecked keyword in the indexOf function is redundant. This is because since

Solidity version 0.8.22, the compiler itself optimizes the loop increment.

The Math.ternary operation in the gasPrice function is redundant. This is because

if maxFee and maxPriorityFee are equal, maxFee will be returned by the

Math.min operation anyway.

Consider removing redundant code to enhance the clarity and efficiency of the codebase.

Update: Resolved in pull request #5308 at commit 15a00f5.

N-07 Code Clarity
Throughout the codebase, multiple opportunities for improving code quality were identified:

Using decimal notation instead of hexadecimal would improve the readability and ease

of validation for byte amounts and offsets. For instance:

In the ERC4337Utils library, lines 29, 113, and 123.

In the Clones library, lines 230, 232, and 251. Furthermore, in line 232, the 0x20

constant could be replaced with 32 for consistency.

The SIG_VALIDATION_SUCCESS constant can replace the magic number 0 for

checking validation data.

There is a _delegateCheckpoints mapping in the VotesExtended contract and in

the Votes contracts that is extended. However, this mapping serves two different

purposes: in Votes , it tracks the amount of delegated votes per address over time,

whereas in VotesExtended , it tracks which address delegated to whom over time.

Consider renaming these mappings to _delegateVotesCheckpoints and

_chosenDelegateCheckpoints or similar, respectively, to clarify their distinct roles.

The _balanceOfCheckpoints mapping in VotesExtended is misleading as it does

not track token balances per account. Instead, it tracks the voting units defined by

_getVotingUnits . Since balance and voting units do not necessarily have a 1:1

•

•

•

◦

◦

•

•

•

OpenZeppelin Contracts Release v5.2 Audit − Notes & Additional Information
− 20

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308/commits/1fa253262d6bdd541a978d077dc8101b4f17bd38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol#L30-L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Bytes.sol#L30-L38
https://docs.soliditylang.org/en/v0.8.28/internals/optimizer.html#unchecked-loop-increment
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L132
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L132
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5308/commits/15a00f50cd43c30fedc2d3320e04c66eda16bd32
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L113
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L123
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L230C64-L230C68
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L232C54-L232C58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L251C27-L251C33
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/proxy/Clones.sol#L232C47-L232C51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/account/utils/draft-ERC4337Utils.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L40
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/Votes.sol#L40
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L17
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L17
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/governance/utils/VotesExtended.sol#L63-L66

relationship, consider renaming the mapping to _votingUnitsCheckpoints or a

similar term.

The rationale for deriving NoncesKeyed from Nonces and using the inherited

functionality to handle key 0 should be clarified.

Consider incorporating the above-listed changes into the codebase to enhance code clarity

and readability.

Update: Resolved in pull request #5317 at commit 7a3707f.

Client Reported

CR-01 Case-Sensitivity in CAIP-10 Identifiers
During the audit, the contracts team raised concerns about the ambiguity in CAIP-10 identifiers

when it comes to the case sensitivity of Ethereum addresses, as introduced in EIP-55. The

Canonicalization section of the standard states that, to date, this canonicalization is not

required and remains at the developers' discretion. However, case sensitivity in CAIP-10

strings can create issues in contexts like hashing, where they may serve as mapping keys. In

such cases, lowercase and checksummed addresses are semantically equivalent but produce

different slot values.

Consider documenting a warning about the implications of case sensitivity in the CAIP2 and

CAIP10 libraries. In addition, consider adding a toLowercase function to the Strings

library to provide developers with a tool to manage this ambiguity.

Update: Resolved in pull request #5319 at commit 133adf8. The Contracts team stated:

We are documenting the issues that may arise from the lack of canonicalization of the

identifiers. For a consistent representation, we recommend using the

toChecksumHexString function.

•

OpenZeppelin Contracts Release v5.2 Audit − Client Reported − 21

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/NoncesKeyed.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5317
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5317/commits/7a3707f0f1cc7dbf4b1ed0d9411642739cd0638f
https://github.com/ChainAgnostic/CAIPs/blob/main/CAIPs/caip-10.md
https://eips.ethereum.org/EIPS/eip-55
https://github.com/ChainAgnostic/CAIPs/blob/main/CAIPs/caip-10.md#canonicalization
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/CAIP10.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/98d28f926121b2d7cfa4b375fd859b44c8d9a6d5/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5319
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5319/commits/133adf8fbdb5c37525165f5b1e9502a11f5f0283

Conclusion
The v5.2 release of OpenZeppelin Contracts introduces several utility libraries, primarily

focused on supporting account abstraction and cross-chain messaging. In addition, a new

governance module has been developed, empowering users to override the voting power of

their delegates. We commend the Solidity Contracts team for addressing user needs and

enhancing existing features while introducing valuable new utilities.

During the audit, particular care was taken to document edge cases, ensuring that integrators

are informed of potential risks when interacting with these contracts. Such efforts aim to create

a more resilient codebase, recognizing the library’s critical role as a foundational component

within the blockchain ecosystem. The Contracts team has demonstrated a strong commitment

to maximizing the library's security and we are glad to have collaborated with the Contracts

team on this milestone.

OpenZeppelin Contracts Release v5.2 Audit − Conclusion − 22

	OpenZeppelin Contracts Release v5.2 Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Account Abstraction
	Cross-Chain Messaging
	Governance
	Clones
	Utils

	Security Model and Trust Assumptions
	Medium Severity
	Improper Input Validation Leads to Incorrect Parsing Results
	Unbounded Memory Access Within Memory-Safe Assembly

	Low Severity
	Inconsistent Use of MCOPY Opcode
	Possible Incorrect Updates to Voting Units Balance Checkpoints
	Different Pragma Directives
	Override Votes Do Not Count As Having Voted
	Potentially Incorrect Hashing of User Operations
	Nonce Key Not Included in InvalidAccountNonce
	Inconsistent Format in Returned Nonces
	Misleading and Incomplete Documentation
	Missing Docstrings
	Incomplete Docstrings

	Notes & Additional Information
	Incomplete Account Utility Libraries
	Duplicated Logic
	Constant Visibility Not Explicitly Declared
	Unused Imports
	Typographical Errors
	Redundant Code
	Code Clarity

	Client Reported
	Case-Sensitivity in CAIP-10 Identifiers

	Conclusion

