
OpenZeppelin

ERC4626

Tokenized Vault

Audit

| security

November 15th, 2022

This security assessment was prepared by

OpenZeppelin.

Table of Contents

Table of Contents __ 2

Summary ___ 3

Scope __ 4

Introduction ___ 5

Findings __ 6

High Severity __ 7

H-01 Vault deposits can be front-run and user funds stolen 7

Low Severity __ 9

L-01 Unclear function 9

L-02 Unsafe ABI encoding 10

Notes & Additional Information __ 11

N-01 EIP inconsistency 11

N-02 Inconsistent formatting 11

N-03 Missing docstrings 12

N-04 Missing error message in require statement 12

N-05 Non-explicit imports are used 12

Conclusions ___ 14

OpenZeppelin ERC4626 Tokenized Vault Audit − Table of Contents − 2

Type Library

Timeline From 2022-10-16

To 2022-10-28

Languages Solidity

Total Issues 8 (2 resolved, 1 partially resolved)

Critical Severity

Issues

0 (0 resolved)

High Severity

Issues

1 (0 resolved)

Medium Severity

Issues

0 (0 resolved)

Low Severity Issues 2 (1 resolved)

Notes & Additional

Information

5 (1 resolved, 1 partially resolved)

Summary

OpenZeppelin ERC4626 Tokenized Vault Audit − Summary − 3

Scope

We audited the OpenZeppelin/openzeppelin-contracts repository at the

14f98dbb581a5365ce3f0c50bd850e499c554f72 commit.

In scope were the following contracts:

contracts

├── token

│ └── ERC20

│ └── extensions

│ └── ERC4626.sol

└── utils

 ├── math

 │ └── Math.sol

OpenZeppelin ERC4626 Tokenized Vault Audit − Scope − 4

Introduction

The OpenZeppelin Contracts team asked us to review their new contract implementation of

EIP4626, namely, the ERC4626 contract.

EIP4626 aims to define a standard way to represent an ERC20 token through shares of a vault

contract. The vault is itself an ERC20 token and its quantities are called shares, while the

underlying token amounts that shares represent are called assets. Through the minting /

burning of shares the vault manages the deposit / withdrawal of assets according to specific

conversion rates. Moreover, specific functions are defined to preview the expected amount of

shares / assets by a deposit / withdrawal operation. Users might decide to directly deposit an

amount of assets or mint an exact amount of shares, and conversely they can decide to

withdraw an amount of assets or redeem an exact amount of shares. How many shares

correspond to a given amount of assets is determined by conversion rates, from asset to

shares and vice versa.

The OpenZeppelin implementation is a vanilla implementation of this EIP where conversion

rates are simply the relative quantities of both assets and shares present in the vault.

The EIP also defines optional fees and slippage mechanism which are not implemented in the

OpenZeppelin contract.

The contract is meant to be a general purpose one. Many of the core functions are overridable

and there are opportunities for developers to implement custom functionalities on top of it.

Because of this, there are some dangerous pitfalls that may not directly affect the current

implementation but that should be correctly brought up to developers trying to come up with a

custom implementation that makes use of this contract.

There's an invariant that is controlled by the _isVaultCollateralized function. This

is stopping users from depositing when totalSupply > 0 and totalAssets = 0

because, in that case, any amount of assets being deposited would represent an

infinite amount of shares. However, this applies only to deposit but not to mint . This

means that if the invariant is broken, users can still mint the maximum number of shares

for 0 amount of assets. Currently, the invariant is unlikely to be broken but one must

consider that ERC4626 is abstract and must be implemented in a custom made

contract. This eventuality must be correctly presented to unaware developers

approaching this contract.

•

OpenZeppelin ERC4626 Tokenized Vault Audit − Introduction − 5

https://eips.ethereum.org/EIPS/eip-4626
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L270
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L270
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186

The underlying asset balance of the vault is used to calculate the ratio of shares to

assets for issuance and redemption. It is important that users understand this, so that

they are very careful if the vault allows transfers of underlying assets for more than one

block. This would imply that there could exist a time window in which the underlying

asset of the vault is out of the vault, and that a malicious user can mint shares at below

true cost, diluting all positions of other existing users. For the same reason, vaults should

also not approve spenders for the underlying asset. Similarly, if the underlying asset is

moved out without accounting for such temporary or permanent decrease through a

burn of shares, malicious actors can artificially dilute every user that holds some shares

at little to no cost. Notice that rebasing tokens might have a similar effect and any use of

them should be correctly analyzed in the context of the vault mechanism.

The ERC4626 tokens derived from the vault might be generally added or listed to other

decentralized protocols. This means that any integrations require prior understanding of

the tradeoffs of this token contract when it comes to interacting with other contracts.

One specific topic that must be taken into account is if ERC4626 tokens are made flash-

loanable. In that case, the withdraw and redeem functions might suffer from an

inflation attack where the owner can inflate his own balance to manipulate the outcome

of the withdraw and redeem calls. Specific scenarios where this might be

troublesome, were not identified given the fact that withdraw and redeem will burn

owner's tokens. However, protocols that allow flash-loan repays with different assets, or

whales in general, might still use artificial inflations for yet-unknown purposes.

The commit used for the audit is 14f98db and the code has been audited during the course of

5 days by two auditors. Here we present our findings.

Findings

•

•

OpenZeppelin ERC4626 Tokenized Vault Audit − Findings − 6

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L74
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/14f98dbb581a5365ce3f0c50bd850e499c554f72

High Severity

H-01 Vault deposits can be front-run and user

funds stolen

The current implementation of the ERC4626 contract is susceptible to an underlying asset

balance manipulation attack. When a user performs a deposit , the amount of shares they

will receive is calculated by taking the number of assets provided, multiplying that by the

number of existing shares in circulation, and then dividing the result by all assets owned by the

vault. The result is then rounded down, following the EIP specifications. The problem arises

when the value of totalAssets is manipulated to induce unfavorable rounding for new users

depositing into the vault at the benefit of users who already own shares of the vault. The most

extreme example of this attack is when a user is the first to enter the vault. In the scenarios

that both the shares and underlying assets of a vault use 18 decimals:

The first user deposits a single underlying asset in exchange for a single share of the

vault.

Both the supply and totalAssets are 1 during the calculation for the next deposit.

An innocent user attempts to deposit 1e18 tokens into the vault, expecting 1e18

shares in return.

The first user front runs the innocent user's transaction with a transaction that directly

transfers 1e18 of the underlying asset to the vault

The vault's supply remains 1 while the totalAssets is now in fact 1e18 + 1

The innocent user's deposit call is processed and the amount of shares received is

calculated as 1 * 1e18 / (1e18 + 1) which rounds down to 0 .

The first user now owns 1 share that is worth 2e18 + 1 of the underlying asset and

the second user is out their deposit.

In this scenario, the first user may be able to continue this attack in perpetuity, draining the

funds of any user who attempts to deposit into the vault.

While solving this attack entirely without creating an overly restrictive library is non-trivial,

consider taking steps to reduce the severity of this issue. One such step would be to enforce

that 0 shares will never be minted. While it is true that this only partially solves the problem,

because the underlying balance can still be manipulated to impact rounding (i.e. a user should

have been minted 2 shares but with the balance manipulation attack that became 1.99

•

•

•

•

•

•

•

OpenZeppelin ERC4626 Tokenized Vault Audit − High Severity − 7

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L128
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L128
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186

shares which is rounded down to 1 share), this reduces the risk of a user draining all funds in

perpetuity.

Without the ability to prevent other users from joining the vault, the balance manipulation

attack quickly becomes economically infeasible to continue. Another item to consider and that

is mentioned in the contract docstrings would be to build out an extension of the ERC4626

contract that has protections built-in for standard vault use cases.

We understand that the contract is meant to be a general purpose contract that should be

correctly implemented by developers. However, if actions in limiting such unwanted scenarios

are not actively pursued, consider refactoring the docstrings to be as clear as possible about

all potential outcomes and all the possible solutions, given that the current docstrings don't

highlight the issue in its entirety.

Update: Acknowledged, not resolved. The OpenZeppelin team will implement mitigations for

this issue. Current discussions are happening here and once the final solution is confirmed, the

team will update the contracts accordingly.

OpenZeppelin ERC4626 Tokenized Vault Audit − High Severity − 8

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706#

Low Severity

L-01 Unclear function

The _isVaultCollateralized function of the ERC4626 contract is used to guarantee

deposits cannot be made in the unwanted scenario where the vault's balance of the underlying

token is zero and the total supply of minted shares is more than zero.

In this scenario, shares are worth zero underlying assets and because of this, any asset

deposited would correspond to an infinite number of shares. Even though it would not be

possible to deposit under these circumstances because the mulDiv function would revert,

the team decided to add this function to follow EIP specifications and to assure that the

problem is noticed early and in a clear way.

However, the name of the function is inconvenient, since a collateralized status often refers to

an asset balance being lower or equal to that of the underlying asset. Even if the function is

checking that the underlying asset balance is greater than zero, this is a necessary but

insufficient condition to determine collateralized status as the vault's shares balance is not

considered in this check.

Moreover, the function returns true even in the case that both the shares and the underlying

balances are zero, but in this case, the vault state is more properly described as in a null or

uninitialized state instead of a collateralized one.

Notice that the mint function has the same effect of minting new shares and depositing

assets inside the contract, but it doesn't make use of the _isVaultCollateralized

function. In the scenario where shares are worth zero assets, users can therefore mint shares

for free. Whether this scenario is to be avoided or allowed depends on the final implementation

of the vault but should be properly documented.

Since the function is meant to alert the depositor of the health status of the vault, consider

renaming this function to something more appropriate. Some suggestions might be:

_isVaultHealthy

_isShareWorthZero

_areSharesWorthless

•

•

•

OpenZeppelin ERC4626 Tokenized Vault Audit − Low Severity − 9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L270
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L270
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L186
https://eips.ethereum.org/EIPS/eip-4626#deposit
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L138
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L138

Update: Resolved in commit b189e6a. Moreover, docstrings into the mint functions have

been added in commit 8bc307f.

L-02 Unsafe ABI encoding

It is not an uncommon practice to use abi.encodeWithSignature or

abi.encodeWithSelector to generate call data for a low-level call. However, the first

option is not typo-safe and the second option is not type-safe. The result is that both of these

methods are error prone and should be considered unsafe.

Throughout the ERC4626 and, in general, the entire OpenZeppelin contracts library, there are

several occurrences of unsafe ABI encodings being used. The encodeCall functionality

requires a Solidity version greater or equal than the 0.8.11 and this might be a breaking change

for developers working previous versions. However, in future versions, we strongly recommend

to the team to take into consideration replacing all the occurrences of unsafe ABI encodings

with abi.encodeCall , which checks whether the supplied values actually match the types

expected by the called function and also avoids errors caused by typos.

Update: Acknowledged, not resolved. The OpenZeppelin team stated:

We plan to make this change in the next major version. As mentioned in the report, we

can’t adopt it in the current version due to backwards compatibility. For reference,

check #3693.

OpenZeppelin ERC4626 Tokenized Vault Audit − Low Severity − 10

https://github.com/OpenZeppelin/openzeppelin-contracts/commit/b189e6abf3c7467203f8db0a657f8ea1867406a8
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/8bc307fddfe7b9fee9cedbc3fc39294853d0e84f
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3693

Notes & Additional

Information

N-01 EIP inconsistency

The ERC4626 contract intends to implement a tokenized vault contract that strictly adheres to

EIP-4626 and its definitions. However we detected some mismatches within the use of named

and unnamed return parameters. Specifically, the asset , totalAssets , mint , deposit ,

withdraw and redeem functions return unnamed parameters while the EIP defines named

return parameters for these functions.

In order to perfectly match the EIP standard and follow its definition, consider refactoring the

code and fixing the discrepancies.

Update: Acknowledged, not resolved. The OpenZeppelin team stated:

We consider variable names in EIPs as non-normative guidelines, and we occasionally

do things differently to keep consistency within the library. Return parameters in

particular are not named throughout the library, save for a few exceptions.

N-02 Inconsistent formatting

The Deposit and Withdraw events are similar in length and location, but they are

presented differently in the IERC4626 contract. Consider matching the formatting for these

two events to improve consistency and readability within the codebase.

Update: Acknowledged, not resolved. The OpenZeppelin team stated:

Formatting is done automatically by Prettier, and in this case one of the events is over

the line length limit while the other isn’t. In this case there is no way to make formatting

consistent while using the autoformatter.

OpenZeppelin ERC4626 Tokenized Vault Audit − Notes & Additional

Information − 11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L68
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L68
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L138
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L138
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L128
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L128
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L148
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L148
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L162
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L162
https://eips.ethereum.org/EIPS/eip-4626#methods
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/interfaces/IERC4626.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/interfaces/IERC4626.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/interfaces/IERC4626.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/interfaces/IERC4626.sol#L18

N-03 Missing docstrings

Throughout the ERC4626 contract, there are several parts that do not have docstrings. For

instance:

The contract docstrings are missing information on the functions and actions needed for

the abstract contract to be implemented. It should be pointed out that the constructor of

the ERC20 contract, from which it extends, should be called in the implementation

contract, defining name and symbol .

The _isVaultCollateralized function is missing any sort of docstring.

In order to improve clarity and understandability, consider improving the contract docstrings.

Update: Partially resolved in commit 12fa301. The first reported case has not been resolved.

For that, the OpenZeppelin team stated:

The suggestion about contract-level docstrings was not addressed because the pattern

of inheriting a contract but not calling the constructor is used widely throughout the

library. It isn’t specific to this contract, so addressing it requires a larger effort to see

how we communicate it in the documentation, but we do note that so far it hasn’t been

an issue for our users (we never get support requests about it).

N-04 Missing error message in require statement

Within Math.sol there is a require statement on line 78 that lacks an error message.

Consider including specific, informative error messages in require statements to improve

overall code clarity and to facilitate troubleshooting whenever a requirement is not satisfied.

Update: Resolved in commit 827c8cc.

N-05 Non-explicit imports are used

Non-explicit imports are used inside the ERC4626 contract, which reduces code readability

and could lead to conflicts between names defined locally and the ones imported. This is

especially important if many contracts are defined within the same Solidity files or the

inheritance chains are long.

We know that the OpenZeppelin contracts library has not leveraged explicit, named imports to

date which would create inconsistencies with what has been done in the past. However,

•

•

OpenZeppelin ERC4626 Tokenized Vault Audit − Notes & Additional

Information − 12

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L11-L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L270
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/token/ERC20/extensions/ERC4626.sol#L270
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/12fa3013f2d43d8877e7ef58009c1a98bafe7795
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/utils/math/Math.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/utils/math/Math.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/14f98dbb581a5365ce3f0c50bd850e499c554f72/contracts/utils/math/Math.sol#L78
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/827c8cc12dd45d0c72ee4086716b486405691d99

following the principle that clearer code is better code, consider using named import syntax

(import {A, B, C} from "X") to explicitly declare which contracts are being imported.

Update: Acknowledged, not resolved. The OpenZeppelin team stated:

We will consider this for the next major version as this is a relatively large change and

potentially breaking if users are assuming something to be indirectly in scope.

OpenZeppelin ERC4626 Tokenized Vault Audit − Notes & Additional

Information − 13

Conclusions

One (1) high and one (1) medium severity issues were found along with a couple of low severity

issues and notes. Recommendations have been given to improve the current state of the

codebase. We are happy to see the OpenZeppelin Contract team going the extra mile in

implementing EIP-4626 with complex designs in an effort to provide the community with a

ready and safe to use implementation that can be adopted as it is out of the box.

However, given the complexities and the potential issues that can arise from an incorrect

custom implementation of such a contract, we strongly suggest improving and raising more

awareness in the docstrings, with the final goal of correctly educating the community toward

potential dangers that can result from it's incorrect use.

OpenZeppelin ERC4626 Tokenized Vault Audit − Conclusions − 14

	OpenZeppelin ERC4626 Tokenized Vault Audit
	Table of Contents
	Summary
	Scope
	Introduction
	Findings
	High Severity
	Vault deposits can be front-run and user funds stolen

	Low Severity
	Unclear function
	Unsafe ABI encoding

	Notes & Additional Information
	EIP inconsistency
	Inconsistent formatting
	Missing docstrings
	Missing error message in require statement
	Non-explicit imports are used

	Conclusions

