// SPDX-License-Identifier: MIT // This file was procedurally generated from scripts/generate/templates/Heap.js. pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; import {Comparators} from "../Comparators.sol"; import {Panic} from "../Panic.sol"; /** * @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as * https://en.wikipedia.org/wiki/Priority_queue[priority queue]. * * Heaps are represented as an array of Node objects. This array stores two overlapping structures: * * A tree structure where the first element (index 0) is the root, and where the node at index i is the child of the * node at index (i-1)/2 and the father of nodes at index 2*i+1 and 2*i+2. Each node stores the index (in the array) * where the corresponding value is stored. * * A list of payloads values where each index contains a value and a lookup index. The type of the value depends on * the variant being used. The lookup is the index of the node (in the tree) that points to this value. * * Some invariants: * ``` * i == heap.data[heap.data[i].index].lookup // for all indices i * i == heap.data[heap.data[i].lookup].index // for all indices i * ``` * * The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the * highest priority value is the one at the root. This value can be looked up in constant time (O(1)) at * `heap.data[heap.data[0].index].value` * * The structure is designed to perform the following operations with the corresponding complexities: * * * peek (get the highest priority value): O(1) * * insert (insert a value): O(log(n)) * * pop (remove the highest priority value): O(log(n)) * * replace (replace the highest priority value with a new value): O(log(n)) * * length (get the number of elements): O(1) * * clear (remove all elements): O(1) */ library Heap { using Math for *; using SafeCast for *; /** * @dev Binary heap that support values of type uint256. * * Each element of that structure uses 2 storage slots. */ struct Uint256Heap { Uint256HeapNode[] data; } /** * @dev Internal node type for Uint256Heap. Stores a value of type uint256. */ struct Uint256HeapNode { uint256 value; uint64 index; // position -> value uint64 lookup; // value -> position } /** * @dev Lookup the root element of the heap. */ function peek(Uint256Heap storage self) internal view returns (uint256) { // self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty. return _unsafeNodeAccess(self, self.data[0].index).value; } /** * @dev Remove (and return) the root element for the heap using the default comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function pop(Uint256Heap storage self) internal returns (uint256) { return pop(self, Comparators.lt); } /** * @dev Remove (and return) the root element for the heap using the provided comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function pop( Uint256Heap storage self, function(uint256, uint256) view returns (bool) comp ) internal returns (uint256) { unchecked { uint64 size = length(self); if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP); uint64 last = size - 1; // get root location (in the data array) and value Uint256HeapNode storage rootNode = _unsafeNodeAccess(self, 0); uint64 rootIdx = rootNode.index; Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx); Uint256HeapNode storage lastNode = _unsafeNodeAccess(self, last); uint256 rootDataValue = rootData.value; // if root is not the last element of the data array (that will get popped), reorder the data array. if (rootIdx != last) { // get details about the value stored in the last element of the array (that will get popped) uint64 lastDataIdx = lastNode.lookup; uint256 lastDataValue = lastNode.value; // copy these values to the location of the root (that is safe, and that we no longer use) rootData.value = lastDataValue; rootData.lookup = lastDataIdx; // update the tree node that used to point to that last element (value now located where the root was) _unsafeNodeAccess(self, lastDataIdx).index = rootIdx; } // get last leaf location (in the data array) and value uint64 lastIdx = lastNode.index; uint256 lastValue = _unsafeNodeAccess(self, lastIdx).value; // move the last leaf to the root, pop last leaf ... rootNode.index = lastIdx; _unsafeNodeAccess(self, lastIdx).lookup = 0; self.data.pop(); // ... and heapify _siftDown(self, last, 0, lastValue, comp); // return root value return rootDataValue; } } /** * @dev Insert a new element in the heap using the default comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function insert(Uint256Heap storage self, uint256 value) internal { insert(self, value, Comparators.lt); } /** * @dev Insert a new element in the heap using the provided comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function insert( Uint256Heap storage self, uint256 value, function(uint256, uint256) view returns (bool) comp ) internal { uint64 size = length(self); if (size == type(uint64).max) Panic.panic(Panic.RESOURCE_ERROR); self.data.push(Uint256HeapNode({index: size, lookup: size, value: value})); _siftUp(self, size, value, comp); } /** * @dev Return the root element for the heap, and replace it with a new value, using the default comparator. * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function replace(Uint256Heap storage self, uint256 newValue) internal returns (uint256) { return replace(self, newValue, Comparators.lt); } /** * @dev Return the root element for the heap, and replace it with a new value, using the provided comparator. * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function replace( Uint256Heap storage self, uint256 newValue, function(uint256, uint256) view returns (bool) comp ) internal returns (uint256) { uint64 size = length(self); if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP); // position of the node that holds the data for the root uint64 rootIdx = _unsafeNodeAccess(self, 0).index; // storage pointer to the node that holds the data for the root Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx); // cache old value and replace it uint256 oldValue = rootData.value; rootData.value = newValue; // re-heapify _siftDown(self, size, 0, newValue, comp); // return old root value return oldValue; } /** * @dev Returns the number of elements in the heap. */ function length(Uint256Heap storage self) internal view returns (uint64) { return self.data.length.toUint64(); } /** * @dev Removes all elements in the heap. */ function clear(Uint256Heap storage self) internal { Uint256HeapNode[] storage data = self.data; /// @solidity memory-safe-assembly assembly { sstore(data.slot, 0) } } /** * @dev Swap node `i` and `j` in the tree. */ function _swap(Uint256Heap storage self, uint64 i, uint64 j) private { Uint256HeapNode storage ni = _unsafeNodeAccess(self, i); Uint256HeapNode storage nj = _unsafeNodeAccess(self, j); uint64 ii = ni.index; uint64 jj = nj.index; // update pointers to the data (swap the value) ni.index = jj; nj.index = ii; // update lookup pointers for consistency _unsafeNodeAccess(self, ii).lookup = j; _unsafeNodeAccess(self, jj).lookup = i; } /** * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a * comparator, and moving toward the leafs of the underlying tree. * * NOTE: This is a private function that is called in a trusted context with already cached parameters. `length` * and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These * parameters are not verified. It is the caller role to make sure the parameters are correct. */ function _siftDown( Uint256Heap storage self, uint64 size, uint64 pos, uint256 value, function(uint256, uint256) view returns (bool) comp ) private { uint256 left = 2 * pos + 1; // this could overflow uint64 uint256 right = 2 * pos + 2; // this could overflow uint64 if (right < size) { // the check guarantees that `left` and `right` are both valid uint64 uint64 lIndex = uint64(left); uint64 rIndex = uint64(right); uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value; uint256 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value; if (comp(lValue, value) || comp(rValue, value)) { uint64 index = uint64(comp(lValue, rValue).ternary(lIndex, rIndex)); _swap(self, pos, index); _siftDown(self, size, index, value, comp); } } else if (left < size) { // the check guarantees that `left` is a valid uint64 uint64 lIndex = uint64(left); uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value; if (comp(lValue, value)) { _swap(self, pos, lIndex); _siftDown(self, size, lIndex, value, comp); } } } /** * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a * comparator, and moving toward the root of the underlying tree. * * NOTE: This is a private function that is called in a trusted context with already cached parameters. `value` * could be extracted from `self` and `pos`, but that would require redundant storage read. These parameters are not * verified. It is the caller role to make sure the parameters are correct. */ function _siftUp( Uint256Heap storage self, uint64 pos, uint256 value, function(uint256, uint256) view returns (bool) comp ) private { unchecked { while (pos > 0) { uint64 parent = (pos - 1) / 2; uint256 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value; if (comp(parentValue, value)) break; _swap(self, pos, parent); pos = parent; } } } function _unsafeNodeAccess( Uint256Heap storage self, uint64 pos ) private pure returns (Uint256HeapNode storage result) { assembly ("memory-safe") { mstore(0x00, self.slot) result.slot := add(keccak256(0x00, 0x20), mul(pos, 2)) } } /** * @dev Binary heap that support values of type uint208. * * Each element of that structure uses 1 storage slots. */ struct Uint208Heap { Uint208HeapNode[] data; } /** * @dev Internal node type for Uint208Heap. Stores a value of type uint208. */ struct Uint208HeapNode { uint208 value; uint24 index; // position -> value uint24 lookup; // value -> position } /** * @dev Lookup the root element of the heap. */ function peek(Uint208Heap storage self) internal view returns (uint208) { // self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty. return _unsafeNodeAccess(self, self.data[0].index).value; } /** * @dev Remove (and return) the root element for the heap using the default comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function pop(Uint208Heap storage self) internal returns (uint208) { return pop(self, Comparators.lt); } /** * @dev Remove (and return) the root element for the heap using the provided comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function pop( Uint208Heap storage self, function(uint256, uint256) view returns (bool) comp ) internal returns (uint208) { unchecked { uint24 size = length(self); if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP); uint24 last = size - 1; // get root location (in the data array) and value Uint208HeapNode storage rootNode = _unsafeNodeAccess(self, 0); uint24 rootIdx = rootNode.index; Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx); Uint208HeapNode storage lastNode = _unsafeNodeAccess(self, last); uint208 rootDataValue = rootData.value; // if root is not the last element of the data array (that will get popped), reorder the data array. if (rootIdx != last) { // get details about the value stored in the last element of the array (that will get popped) uint24 lastDataIdx = lastNode.lookup; uint208 lastDataValue = lastNode.value; // copy these values to the location of the root (that is safe, and that we no longer use) rootData.value = lastDataValue; rootData.lookup = lastDataIdx; // update the tree node that used to point to that last element (value now located where the root was) _unsafeNodeAccess(self, lastDataIdx).index = rootIdx; } // get last leaf location (in the data array) and value uint24 lastIdx = lastNode.index; uint208 lastValue = _unsafeNodeAccess(self, lastIdx).value; // move the last leaf to the root, pop last leaf ... rootNode.index = lastIdx; _unsafeNodeAccess(self, lastIdx).lookup = 0; self.data.pop(); // ... and heapify _siftDown(self, last, 0, lastValue, comp); // return root value return rootDataValue; } } /** * @dev Insert a new element in the heap using the default comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function insert(Uint208Heap storage self, uint208 value) internal { insert(self, value, Comparators.lt); } /** * @dev Insert a new element in the heap using the provided comparator. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function insert( Uint208Heap storage self, uint208 value, function(uint256, uint256) view returns (bool) comp ) internal { uint24 size = length(self); if (size == type(uint24).max) Panic.panic(Panic.RESOURCE_ERROR); self.data.push(Uint208HeapNode({index: size, lookup: size, value: value})); _siftUp(self, size, value, comp); } /** * @dev Return the root element for the heap, and replace it with a new value, using the default comparator. * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function replace(Uint208Heap storage self, uint208 newValue) internal returns (uint208) { return replace(self, newValue, Comparators.lt); } /** * @dev Return the root element for the heap, and replace it with a new value, using the provided comparator. * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation. * * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator * during the lifecycle of a heap will result in undefined behavior. */ function replace( Uint208Heap storage self, uint208 newValue, function(uint256, uint256) view returns (bool) comp ) internal returns (uint208) { uint24 size = length(self); if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP); // position of the node that holds the data for the root uint24 rootIdx = _unsafeNodeAccess(self, 0).index; // storage pointer to the node that holds the data for the root Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx); // cache old value and replace it uint208 oldValue = rootData.value; rootData.value = newValue; // re-heapify _siftDown(self, size, 0, newValue, comp); // return old root value return oldValue; } /** * @dev Returns the number of elements in the heap. */ function length(Uint208Heap storage self) internal view returns (uint24) { return self.data.length.toUint24(); } /** * @dev Removes all elements in the heap. */ function clear(Uint208Heap storage self) internal { Uint208HeapNode[] storage data = self.data; /// @solidity memory-safe-assembly assembly { sstore(data.slot, 0) } } /** * @dev Swap node `i` and `j` in the tree. */ function _swap(Uint208Heap storage self, uint24 i, uint24 j) private { Uint208HeapNode storage ni = _unsafeNodeAccess(self, i); Uint208HeapNode storage nj = _unsafeNodeAccess(self, j); uint24 ii = ni.index; uint24 jj = nj.index; // update pointers to the data (swap the value) ni.index = jj; nj.index = ii; // update lookup pointers for consistency _unsafeNodeAccess(self, ii).lookup = j; _unsafeNodeAccess(self, jj).lookup = i; } /** * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a * comparator, and moving toward the leafs of the underlying tree. * * NOTE: This is a private function that is called in a trusted context with already cached parameters. `length` * and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These * parameters are not verified. It is the caller role to make sure the parameters are correct. */ function _siftDown( Uint208Heap storage self, uint24 size, uint24 pos, uint208 value, function(uint256, uint256) view returns (bool) comp ) private { uint256 left = 2 * pos + 1; // this could overflow uint24 uint256 right = 2 * pos + 2; // this could overflow uint24 if (right < size) { // the check guarantees that `left` and `right` are both valid uint24 uint24 lIndex = uint24(left); uint24 rIndex = uint24(right); uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value; uint208 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value; if (comp(lValue, value) || comp(rValue, value)) { uint24 index = uint24(comp(lValue, rValue).ternary(lIndex, rIndex)); _swap(self, pos, index); _siftDown(self, size, index, value, comp); } } else if (left < size) { // the check guarantees that `left` is a valid uint24 uint24 lIndex = uint24(left); uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value; if (comp(lValue, value)) { _swap(self, pos, lIndex); _siftDown(self, size, lIndex, value, comp); } } } /** * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a * comparator, and moving toward the root of the underlying tree. * * NOTE: This is a private function that is called in a trusted context with already cached parameters. `value` * could be extracted from `self` and `pos`, but that would require redundant storage read. These parameters are not * verified. It is the caller role to make sure the parameters are correct. */ function _siftUp( Uint208Heap storage self, uint24 pos, uint208 value, function(uint256, uint256) view returns (bool) comp ) private { unchecked { while (pos > 0) { uint24 parent = (pos - 1) / 2; uint208 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value; if (comp(parentValue, value)) break; _swap(self, pos, parent); pos = parent; } } } function _unsafeNodeAccess( Uint208Heap storage self, uint24 pos ) private pure returns (Uint208HeapNode storage result) { assembly ("memory-safe") { mstore(0x00, self.slot) result.slot := add(keccak256(0x00, 0x20), pos) } } }