// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface for `RelayHub`, the core contract of the GSN. Users should not need to interact with this contract * directly. * * See the https://github.com/OpenZeppelin/openzeppelin-gsn-helpers[OpenZeppelin GSN helpers] for more information on * how to deploy an instance of `RelayHub` on your local test network. */ interface IRelayHub { // Relay management /** * @dev Adds stake to a relay and sets its `unstakeDelay`. If the relay does not exist, it is created, and the caller * of this function becomes its owner. If the relay already exists, only the owner can call this function. A relay * cannot be its own owner. * * All Ether in this function call will be added to the relay's stake. * Its unstake delay will be assigned to `unstakeDelay`, but the new value must be greater or equal to the current one. * * Emits a {Staked} event. */ function stake(address relayaddr, uint256 unstakeDelay) external payable; /** * @dev Emitted when a relay's stake or unstakeDelay are increased */ event Staked(address indexed relay, uint256 stake, uint256 unstakeDelay); /** * @dev Registers the caller as a relay. * The relay must be staked for, and not be a contract (i.e. this function must be called directly from an EOA). * * This function can be called multiple times, emitting new {RelayAdded} events. Note that the received * `transactionFee` is not enforced by {relayCall}. * * Emits a {RelayAdded} event. */ function registerRelay(uint256 transactionFee, string calldata url) external; /** * @dev Emitted when a relay is registered or re-registerd. Looking at these events (and filtering out * {RelayRemoved} events) lets a client discover the list of available relays. */ event RelayAdded(address indexed relay, address indexed owner, uint256 transactionFee, uint256 stake, uint256 unstakeDelay, string url); /** * @dev Removes (deregisters) a relay. Unregistered (but staked for) relays can also be removed. * * Can only be called by the owner of the relay. After the relay's `unstakeDelay` has elapsed, {unstake} will be * callable. * * Emits a {RelayRemoved} event. */ function removeRelayByOwner(address relay) external; /** * @dev Emitted when a relay is removed (deregistered). `unstakeTime` is the time when unstake will be callable. */ event RelayRemoved(address indexed relay, uint256 unstakeTime); /** Deletes the relay from the system, and gives back its stake to the owner. * * Can only be called by the relay owner, after `unstakeDelay` has elapsed since {removeRelayByOwner} was called. * * Emits an {Unstaked} event. */ function unstake(address relay) external; /** * @dev Emitted when a relay is unstaked for, including the returned stake. */ event Unstaked(address indexed relay, uint256 stake); // States a relay can be in enum RelayState { Unknown, // The relay is unknown to the system: it has never been staked for Staked, // The relay has been staked for, but it is not yet active Registered, // The relay has registered itself, and is active (can relay calls) Removed // The relay has been removed by its owner and can no longer relay calls. It must wait for its unstakeDelay to elapse before it can unstake } /** * @dev Returns a relay's status. Note that relays can be deleted when unstaked or penalized, causing this function * to return an empty entry. */ function getRelay(address relay) external view returns (uint256 totalStake, uint256 unstakeDelay, uint256 unstakeTime, address payable owner, RelayState state); // Balance management /** * @dev Deposits Ether for a contract, so that it can receive (and pay for) relayed transactions. * * Unused balance can only be withdrawn by the contract itself, by calling {withdraw}. * * Emits a {Deposited} event. */ function depositFor(address target) external payable; /** * @dev Emitted when {depositFor} is called, including the amount and account that was funded. */ event Deposited(address indexed recipient, address indexed from, uint256 amount); /** * @dev Returns an account's deposits. These can be either a contracts's funds, or a relay owner's revenue. */ function balanceOf(address target) external view returns (uint256); /** * Withdraws from an account's balance, sending it back to it. Relay owners call this to retrieve their revenue, and * contracts can use it to reduce their funding. * * Emits a {Withdrawn} event. */ function withdraw(uint256 amount, address payable dest) external; /** * @dev Emitted when an account withdraws funds from `RelayHub`. */ event Withdrawn(address indexed account, address indexed dest, uint256 amount); // Relaying /** * @dev Checks if the `RelayHub` will accept a relayed operation. * Multiple things must be true for this to happen: * - all arguments must be signed for by the sender (`from`) * - the sender's nonce must be the current one * - the recipient must accept this transaction (via {acceptRelayedCall}) * * Returns a `PreconditionCheck` value (`OK` when the transaction can be relayed), or a recipient-specific error * code if it returns one in {acceptRelayedCall}. */ function canRelay( address relay, address from, address to, bytes calldata encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes calldata signature, bytes calldata approvalData ) external view returns (uint256 status, bytes memory recipientContext); // Preconditions for relaying, checked by canRelay and returned as the corresponding numeric values. enum PreconditionCheck { OK, // All checks passed, the call can be relayed WrongSignature, // The transaction to relay is not signed by requested sender WrongNonce, // The provided nonce has already been used by the sender AcceptRelayedCallReverted, // The recipient rejected this call via acceptRelayedCall InvalidRecipientStatusCode // The recipient returned an invalid (reserved) status code } /** * @dev Relays a transaction. * * For this to succeed, multiple conditions must be met: * - {canRelay} must `return PreconditionCheck.OK` * - the sender must be a registered relay * - the transaction's gas price must be larger or equal to the one that was requested by the sender * - the transaction must have enough gas to not run out of gas if all internal transactions (calls to the * recipient) use all gas available to them * - the recipient must have enough balance to pay the relay for the worst-case scenario (i.e. when all gas is * spent) * * If all conditions are met, the call will be relayed and the recipient charged. {preRelayedCall}, the encoded * function and {postRelayedCall} will be called in that order. * * Parameters: * - `from`: the client originating the request * - `to`: the target {IRelayRecipient} contract * - `encodedFunction`: the function call to relay, including data * - `transactionFee`: fee (%) the relay takes over actual gas cost * - `gasPrice`: gas price the client is willing to pay * - `gasLimit`: gas to forward when calling the encoded function * - `nonce`: client's nonce * - `signature`: client's signature over all previous params, plus the relay and RelayHub addresses * - `approvalData`: dapp-specific data forwared to {acceptRelayedCall}. This value is *not* verified by the * `RelayHub`, but it still can be used for e.g. a signature. * * Emits a {TransactionRelayed} event. */ function relayCall( address from, address to, bytes calldata encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes calldata signature, bytes calldata approvalData ) external; /** * @dev Emitted when an attempt to relay a call failed. * * This can happen due to incorrect {relayCall} arguments, or the recipient not accepting the relayed call. The * actual relayed call was not executed, and the recipient not charged. * * The `reason` parameter contains an error code: values 1-10 correspond to `PreconditionCheck` entries, and values * over 10 are custom recipient error codes returned from {acceptRelayedCall}. */ event CanRelayFailed(address indexed relay, address indexed from, address indexed to, bytes4 selector, uint256 reason); /** * @dev Emitted when a transaction is relayed. * Useful when monitoring a relay's operation and relayed calls to a contract * * Note that the actual encoded function might be reverted: this is indicated in the `status` parameter. * * `charge` is the Ether value deducted from the recipient's balance, paid to the relay's owner. */ event TransactionRelayed(address indexed relay, address indexed from, address indexed to, bytes4 selector, RelayCallStatus status, uint256 charge); // Reason error codes for the TransactionRelayed event enum RelayCallStatus { OK, // The transaction was successfully relayed and execution successful - never included in the event RelayedCallFailed, // The transaction was relayed, but the relayed call failed PreRelayedFailed, // The transaction was not relayed due to preRelatedCall reverting PostRelayedFailed, // The transaction was relayed and reverted due to postRelatedCall reverting RecipientBalanceChanged // The transaction was relayed and reverted due to the recipient's balance changing } /** * @dev Returns how much gas should be forwarded to a call to {relayCall}, in order to relay a transaction that will * spend up to `relayedCallStipend` gas. */ function requiredGas(uint256 relayedCallStipend) external view returns (uint256); /** * @dev Returns the maximum recipient charge, given the amount of gas forwarded, gas price and relay fee. */ function maxPossibleCharge(uint256 relayedCallStipend, uint256 gasPrice, uint256 transactionFee) external view returns (uint256); // Relay penalization. // Any account can penalize relays, removing them from the system immediately, and rewarding the // reporter with half of the relay's stake. The other half is burned so that, even if the relay penalizes itself, it // still loses half of its stake. /** * @dev Penalize a relay that signed two transactions using the same nonce (making only the first one valid) and * different data (gas price, gas limit, etc. may be different). * * The (unsigned) transaction data and signature for both transactions must be provided. */ function penalizeRepeatedNonce(bytes calldata unsignedTx1, bytes calldata signature1, bytes calldata unsignedTx2, bytes calldata signature2) external; /** * @dev Penalize a relay that sent a transaction that didn't target ``RelayHub``'s {registerRelay} or {relayCall}. */ function penalizeIllegalTransaction(bytes calldata unsignedTx, bytes calldata signature) external; /** * @dev Emitted when a relay is penalized. */ event Penalized(address indexed relay, address sender, uint256 amount); /** * @dev Returns an account's nonce in `RelayHub`. */ function getNonce(address from) external view returns (uint256); }