// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (governance/TimelockController.sol) pragma solidity ^0.8.0; import "../access/AccessControl.sol"; /** * @dev Contract module which acts as a timelocked controller. When set as the * owner of an `Ownable` smart contract, it enforces a timelock on all * `onlyOwner` maintenance operations. This gives time for users of the * controlled contract to exit before a potentially dangerous maintenance * operation is applied. * * By default, this contract is self administered, meaning administration tasks * have to go through the timelock process. The proposer (resp executor) role * is in charge of proposing (resp executing) operations. A common use case is * to position this {TimelockController} as the owner of a smart contract, with * a multisig or a DAO as the sole proposer. * * _Available since v3.3._ */ contract TimelockController is AccessControl { bytes32 public constant TIMELOCK_ADMIN_ROLE = keccak256("TIMELOCK_ADMIN_ROLE"); bytes32 public constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE"); bytes32 public constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE"); uint256 internal constant _DONE_TIMESTAMP = uint256(1); mapping(bytes32 => uint256) private _timestamps; uint256 private _minDelay; /** * @dev Emitted when a call is scheduled as part of operation `id`. */ event CallScheduled( bytes32 indexed id, uint256 indexed index, address target, uint256 value, bytes data, bytes32 predecessor, uint256 delay ); /** * @dev Emitted when a call is performed as part of operation `id`. */ event CallExecuted(bytes32 indexed id, uint256 indexed index, address target, uint256 value, bytes data); /** * @dev Emitted when operation `id` is cancelled. */ event Cancelled(bytes32 indexed id); /** * @dev Emitted when the minimum delay for future operations is modified. */ event MinDelayChange(uint256 oldDuration, uint256 newDuration); /** * @dev Initializes the contract with a given `minDelay`. */ constructor( uint256 minDelay, address[] memory proposers, address[] memory executors ) { _setRoleAdmin(TIMELOCK_ADMIN_ROLE, TIMELOCK_ADMIN_ROLE); _setRoleAdmin(PROPOSER_ROLE, TIMELOCK_ADMIN_ROLE); _setRoleAdmin(EXECUTOR_ROLE, TIMELOCK_ADMIN_ROLE); // deployer + self administration _setupRole(TIMELOCK_ADMIN_ROLE, _msgSender()); _setupRole(TIMELOCK_ADMIN_ROLE, address(this)); // register proposers for (uint256 i = 0; i < proposers.length; ++i) { _setupRole(PROPOSER_ROLE, proposers[i]); } // register executors for (uint256 i = 0; i < executors.length; ++i) { _setupRole(EXECUTOR_ROLE, executors[i]); } _minDelay = minDelay; emit MinDelayChange(0, minDelay); } /** * @dev Modifier to make a function callable only by a certain role. In * addition to checking the sender's role, `address(0)` 's role is also * considered. Granting a role to `address(0)` is equivalent to enabling * this role for everyone. */ modifier onlyRoleOrOpenRole(bytes32 role) { if (!hasRole(role, address(0))) { _checkRole(role, _msgSender()); } _; } /** * @dev Contract might receive/hold ETH as part of the maintenance process. */ receive() external payable {} /** * @dev Returns whether an id correspond to a registered operation. This * includes both Pending, Ready and Done operations. */ function isOperation(bytes32 id) public view virtual returns (bool pending) { return getTimestamp(id) > 0; } /** * @dev Returns whether an operation is pending or not. */ function isOperationPending(bytes32 id) public view virtual returns (bool pending) { return getTimestamp(id) > _DONE_TIMESTAMP; } /** * @dev Returns whether an operation is ready or not. */ function isOperationReady(bytes32 id) public view virtual returns (bool ready) { uint256 timestamp = getTimestamp(id); return timestamp > _DONE_TIMESTAMP && timestamp <= block.timestamp; } /** * @dev Returns whether an operation is done or not. */ function isOperationDone(bytes32 id) public view virtual returns (bool done) { return getTimestamp(id) == _DONE_TIMESTAMP; } /** * @dev Returns the timestamp at with an operation becomes ready (0 for * unset operations, 1 for done operations). */ function getTimestamp(bytes32 id) public view virtual returns (uint256 timestamp) { return _timestamps[id]; } /** * @dev Returns the minimum delay for an operation to become valid. * * This value can be changed by executing an operation that calls `updateDelay`. */ function getMinDelay() public view virtual returns (uint256 duration) { return _minDelay; } /** * @dev Returns the identifier of an operation containing a single * transaction. */ function hashOperation( address target, uint256 value, bytes calldata data, bytes32 predecessor, bytes32 salt ) public pure virtual returns (bytes32 hash) { return keccak256(abi.encode(target, value, data, predecessor, salt)); } /** * @dev Returns the identifier of an operation containing a batch of * transactions. */ function hashOperationBatch( address[] calldata targets, uint256[] calldata values, bytes[] calldata datas, bytes32 predecessor, bytes32 salt ) public pure virtual returns (bytes32 hash) { return keccak256(abi.encode(targets, values, datas, predecessor, salt)); } /** * @dev Schedule an operation containing a single transaction. * * Emits a {CallScheduled} event. * * Requirements: * * - the caller must have the 'proposer' role. */ function schedule( address target, uint256 value, bytes calldata data, bytes32 predecessor, bytes32 salt, uint256 delay ) public virtual onlyRole(PROPOSER_ROLE) { bytes32 id = hashOperation(target, value, data, predecessor, salt); _schedule(id, delay); emit CallScheduled(id, 0, target, value, data, predecessor, delay); } /** * @dev Schedule an operation containing a batch of transactions. * * Emits one {CallScheduled} event per transaction in the batch. * * Requirements: * * - the caller must have the 'proposer' role. */ function scheduleBatch( address[] calldata targets, uint256[] calldata values, bytes[] calldata datas, bytes32 predecessor, bytes32 salt, uint256 delay ) public virtual onlyRole(PROPOSER_ROLE) { require(targets.length == values.length, "TimelockController: length mismatch"); require(targets.length == datas.length, "TimelockController: length mismatch"); bytes32 id = hashOperationBatch(targets, values, datas, predecessor, salt); _schedule(id, delay); for (uint256 i = 0; i < targets.length; ++i) { emit CallScheduled(id, i, targets[i], values[i], datas[i], predecessor, delay); } } /** * @dev Schedule an operation that is to becomes valid after a given delay. */ function _schedule(bytes32 id, uint256 delay) private { require(!isOperation(id), "TimelockController: operation already scheduled"); require(delay >= getMinDelay(), "TimelockController: insufficient delay"); _timestamps[id] = block.timestamp + delay; } /** * @dev Cancel an operation. * * Requirements: * * - the caller must have the 'proposer' role. */ function cancel(bytes32 id) public virtual onlyRole(PROPOSER_ROLE) { require(isOperationPending(id), "TimelockController: operation cannot be cancelled"); delete _timestamps[id]; emit Cancelled(id); } /** * @dev Execute an (ready) operation containing a single transaction. * * Emits a {CallExecuted} event. * * Requirements: * * - the caller must have the 'executor' role. */ // This function can reenter, but it doesn't pose a risk because _afterCall checks that the proposal is pending, // thus any modifications to the operation during reentrancy should be caught. // slither-disable-next-line reentrancy-eth function execute( address target, uint256 value, bytes calldata data, bytes32 predecessor, bytes32 salt ) public payable virtual onlyRoleOrOpenRole(EXECUTOR_ROLE) { bytes32 id = hashOperation(target, value, data, predecessor, salt); _beforeCall(id, predecessor); _call(id, 0, target, value, data); _afterCall(id); } /** * @dev Execute an (ready) operation containing a batch of transactions. * * Emits one {CallExecuted} event per transaction in the batch. * * Requirements: * * - the caller must have the 'executor' role. */ function executeBatch( address[] calldata targets, uint256[] calldata values, bytes[] calldata datas, bytes32 predecessor, bytes32 salt ) public payable virtual onlyRoleOrOpenRole(EXECUTOR_ROLE) { require(targets.length == values.length, "TimelockController: length mismatch"); require(targets.length == datas.length, "TimelockController: length mismatch"); bytes32 id = hashOperationBatch(targets, values, datas, predecessor, salt); _beforeCall(id, predecessor); for (uint256 i = 0; i < targets.length; ++i) { _call(id, i, targets[i], values[i], datas[i]); } _afterCall(id); } /** * @dev Checks before execution of an operation's calls. */ function _beforeCall(bytes32 id, bytes32 predecessor) private view { require(isOperationReady(id), "TimelockController: operation is not ready"); require(predecessor == bytes32(0) || isOperationDone(predecessor), "TimelockController: missing dependency"); } /** * @dev Checks after execution of an operation's calls. */ function _afterCall(bytes32 id) private { require(isOperationReady(id), "TimelockController: operation is not ready"); _timestamps[id] = _DONE_TIMESTAMP; } /** * @dev Execute an operation's call. * * Emits a {CallExecuted} event. */ function _call( bytes32 id, uint256 index, address target, uint256 value, bytes calldata data ) private { (bool success, ) = target.call{value: value}(data); require(success, "TimelockController: underlying transaction reverted"); emit CallExecuted(id, index, target, value, data); } /** * @dev Changes the minimum timelock duration for future operations. * * Emits a {MinDelayChange} event. * * Requirements: * * - the caller must be the timelock itself. This can only be achieved by scheduling and later executing * an operation where the timelock is the target and the data is the ABI-encoded call to this function. */ function updateDelay(uint256 newDelay) external virtual { require(msg.sender == address(this), "TimelockController: caller must be timelock"); emit MinDelayChange(_minDelay, newDelay); _minDelay = newDelay; } }