
Formal Verification Report for

OpenZeppelin Governance Contracts

Summary

This document describes the specification and verification of OpenZeppelin’s Governor

module using the Certora Prover. The work was undertaken from October 31 to November

23, 2021. The latest commit that was reviewed and ran through the Certora Prover was

 4088540a .

The scope of this verification is OpenZeppelin’s governance system, particularly the

following contracts:

• Governor.sol

• extensions/GovernorCountingSimple.sol

• extensions/GovernorProposalThreshold.sol

• extensions/GovernorTimelockControl.sol

• extensions/GovernorVotes.sol

• extensions/GovernorVotesQuorumFraction.sol

The Certora Prover proved the implementation of the Governance system is correct with

respect to formal specifications written by the the Certora team. The team also performed

a manual audit of these contracts.

The formal specifications are focused on validating the integrity of the governance system

— valid states of proposals, correct transitions between proposal states, invocation

privileges and integrity of vote casting and counting. The formal specifications have been

submitted as a pull request against OpenZeppelin’s public git repository.

Main Issues Discovered

Severity: High

https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2997
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2997
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2997

Issue:
Setting the proposalThreshold too high breaks the proposing

system

Description:

In any case where the proposalThreshold becomes too high for any

user to propose, it will be impossible to set a new, more reasonable

threshold to the system. That is since the setter

setProposalThreshold is guarded by the modifier onlyGovernance ,

which must be executed via a proposal. This situation may occur by

either accidentally setting the threshold too high, or by changes in

ERC20Votes token’s market value which will price users out of the

ability to raise proposals.

Response:

The obvious solution is to set a reasonable maximum to

proposalThreshold, however we can’t hardcode an opinionated

maximum as it is highly dependent on the specifics of the governance

system, e.g. different protocols may use different numbers of decimals

and in this case a maximum threshold can be orders of magnitude off.

An alternative is to provide the maximum as a configurable parameter,

but this increases the complexity of setting up governance parameters

in a way that could be counterproductive. The assumption is that a

critical operation like changing the proposal threshold would be

properly tested. Changes in the market value of the voting token are

seen as a possibility that needs to be dealt with as part of the

governance protocol.

Severity: High

Issue: Two systems that use the same timelock can attack each other

Description:

In case that two rival systems use the same timelock in

GovernorTimelockControl , each one of them can propse to invoke

onlyGovenrnace functions on behalf the other system. Since the

timelock is the executor of both those systems, the function will

be invoked successfuly. This vulnerability can easily be exploited to

achieve a DOS attack in the following manner: one system may raise a

proposal to set the proposalThreshold of the other system to a very

high value. After execution, it will be practically impossible to raise any

proposals on the attacked system which will render it practically

unusable.

Response:

We’re looking into ways to mitigate this issue. In the meantime we will

explain this possibility in our documentation and recommend against

sharing a governance timelock with other executors.

Severity: High

Issue:
Two systems that use the same timelock can not queue the same

proposal

Description:

Two systems that use the same TimelockController (given in the

constructor), cannot queue the same proposal. In that case, the first

system that calls queue() will queue the propsal and the second will

revert. This can be exploited as a DoS attack if one system decide to

attack the other. For example system A, that have a shorter voting

period can always propose the same proposal in system B and queue

them before system B can. That will make all the proposals in system

B inaccessible.

Response:
We’re considering including the governor address as a salt so timelock

ids do not clash between governors.

Severity: Low

Issue:
Setting a new timelock removes all queued proposals along with

the old timelock

Description:

When queueing proposals in a timelock, the proposals are being

stored and monitored by a specific address (timelock). Therefore,

when changing a timelock, all the proposals that were queued but yet

to be executed in the old timelock are now inaccessible through the

current govenor. In this case, all these proposals that were in

queueing state are lost, i.e. cannot be executed nor moved to the

queue of the new timelock.

Note that the community can vote to change the timelock back to the

old one, thereby regaining access to these queued proposals.

Response:

Our recommendation would be to avoid changing the timelock while

there are queued proposals. That said, we’re considering alternatives

to mitigate this at the contract level. Note that if the governor remains

an executor in the timelock, a newer feature Governor.relay would

allow triggering execution of a previously queued proposal.

Severity: Low

Issue: Voting period is 1 block less than expected

Description:

The function state() categorize a proposal as Active if the current

block number is in the range: [proposal.voteStart,

proposal.voteEnd) . On the other hand, when casting a vote, a

require statment in the function demands: block.number >

proposal.voteStart . This makes voting exactly at the start block

impossible, even though the proposal is marked as Active. To put it

simply, any user can vote only during the period

[proposal.voteStart+1, proposal.voteEnd-1] . Hence, because

the ending date of a proposal is being determined by 2

parameters: proposal.voteEnd = proposal.voteStart +

votingPeriod , if the votingPeriod is set to 1 it is impossible to vote.

Note in particular that if a proposal’s voting period is only one block

long, the proposal will be entirely blocked.

Response:
Fixed in a more recent commit. A proposal is considered Pending

during block number voteStart.

Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that

the contract satisfies the specification in all scenarios. Importantly, the guarantees of the

Certora Prover are scoped to the provided specification, and the Certora Prover does not

check any cases not covered by the specification.

We hope that this information is useful, but provide no warranty of any kind, explicit or

implied. The contents of this report should not be construed as a complete guarantee that

the contract is secure in all dimensions. In no event shall Certora or any of its employees

be liable for any claim, damages or other liability, whether in an action of contract, tort or

otherwise, arising from, out of or in connection with the results reported here.

Summary of formal verification

Overview of OpenZeppelin/Governance contracts

Our verification efforts focused on the OpenZeppelin Governance module. The

Governance module contains several abstract contracts that implement the core

functionality of a governance system. Developers can combine and extend these

contracts to implement a governance system that fits their individual needs. See the

OpenZeppelin Contracts documentation for a high-level overview of the Governance

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/a05312f1b72acca6904ffe32ef83ccdbad20cb4f/contracts/governance/Governor.sol#L129
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/a05312f1b72acca6904ffe32ef83ccdbad20cb4f/contracts/governance/Governor.sol#L129
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/a05312f1b72acca6904ffe32ef83ccdbad20cb4f/contracts/governance/Governor.sol#L129
https://docs.openzeppelin.com/contracts/4.x/governance
https://docs.openzeppelin.com/contracts/4.x/governance
https://docs.openzeppelin.com/contracts/4.x/governance

module, and the Governance API for a detailed description.

A governance system allows a community of stakeholders to collectively make decisions

about a project by voting on proposals. The governance system defines the requirements

for creating proposals, the voting process, the requirements for accepting or rejecting a

proposal, and the process for executing a proposal that has been accepted.

For our verification effort, we created multiple concrete governance systems by combining

the components defined by the OpenZeppelin Governance module. Our concrete systems

were based on the output of the OpenZeppelin Contracts Wizard. We then wrote general-

purpose verification conditions that describe the correct operation of a governance

system, and verified that the concrete governance systems satisfied those specifications.

The remainder of this section describes the rules and invariants that we have checked.

Assumptions and simplifications made during

verification

We made the following assumptions during our verification:

• When verifying contracts that make external calls, we assume that those calls can

have arbitrary side effects outside of the contracts, but that they do not affect the

state of the contract being verified. This means that some reentrancy bugs may not

be caught.

• Due to limitations of the Certora Prover, two of the rules listed below timed out on

certain methods. The list of unverified methods is included in the detailed description

of each rule listed below. The Certora team is working to address these limitations.

• We assume that the values returned by different calls to

ERC20Votes.getPastTotalSupply and ERC20Votes.getPastVotes in the same

transaction return the same value.

• We assume that hash operations return an arbitrary deterministic value

• We unroll loops. Violations that require a loop to execute more than once will not be

detected.

Verification conditions

https://docs.openzeppelin.com/contracts/4.x/api/governance
https://docs.openzeppelin.com/contracts/4.x/api/governance
https://docs.openzeppelin.com/contracts/4.x/api/governance
https://docs.openzeppelin.com/contracts/4.x/wizard
https://docs.openzeppelin.com/contracts/4.x/wizard
https://docs.openzeppelin.com/contracts/4.x/wizard

Notation

 indicates the rule is formally verified on the latest reviewed commit. Footnotes

describe any simplifications or assumptions used while verifying the rules (beyond the

general assumptions listed above).

In this document, verification conditions are either shown as logical formulas or Hoare

triples of the form {p} C {q} . A verification condition given by a logical formula denotes

an invariant that holds if every reachable state satisfies the condition.

Hoare triples of the form {p} C {q} hold if any non-reverting execution of program C

that starts in a state satsifying the precondition p ends in a state satisfying the

postcondition q . The notation {p} C@withrevert {q} is similar but applies to both

reverting and non-reverting executions. Preconditions and postconditions are similar to

the Solidity require and assert statements.

Formulas relate the results of method calls. In most cases, these methods are getters

defined in the contracts, but in some cases they are getters we have added to our

harness or definitions provided in the rules file. Undefined variables in the formulas are

treated as arbitrary: the rule is checked for every possible value of the variables.

Properties

() startAndEndDatesNonZero

Start and end dates are either initialized (non zero) or uninitialized (zero)

simultaneously.

proposalSnapshot(proposalId) ≠ 0 ⇔ proposalDeadline(proposalId) ≠ 0

() voteStartBeforeVoteEnd

A proposal starting block number must be less than or equal to the proposal end

block number.

proposalSnapshot(proposalId) > 0 ⇒ proposalSnapshot(proposalId) ≤ proposalDeadline(propos

() canceledImplyStartAndEndDateNonZero

If a proposal is canceled it must have a start date and an end date.

isCanceled(proposalId) ⇒ proposalSnapshot(proposalId) ≠ 0

() executedImplyStartAndEndDateNonZero

If a proposal is executed it must have a start date and an end date.

isExecuted(proposalId) ⇒ proposalSnapshot(proposalId) ≠ 0

() noBothExecutedAndCanceled

A proposal cannot be both executed and canceled simultaneously.

¬isExecuted(proposalId) v ¬isCanceled(proposalId)

() executionOnlyIfQuoromReachedAndVoteSucceeded

A proposal can be executed only if quorum was reached and vote succeeded.

{

 isExecutedBefore = isExecuted(proposalId) ∧

 quorumReachedBefore = _quorumReached(e, proposalId) ∧

 voteSucceededBefore = _voteSucceeded(proposalId)

}

 <transaction>

{

 isExecutedAfter = isExecuted(proposalId) ∧

 ((¬isExecutedBefore ∧ isExecutedAfter) ⇒ (quorumReachedBefore ∧ voteSucceededBefore))

}

() doubleVoting

A user cannot vote twice.

{

 hasVoted(proposalId, msg.sender)

}

 castVote@withrevert(proposalId, support)

{

 lastReverted

}

() immutableFieldsAfterProposalCreation

Once a proposal is created, voteStart and voteEnd are immutable.

[1]

file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fn1
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fn1

{

 _voteStart = proposalSnapshot(proposalId) ∧

 uint256 _voteEnd = proposalDeadline(proposalId) ∧

 proposalCreated(proposalId)

}

 <transaction>

{

 voteStart_ = proposalSnapshot(proposalId) ∧

 voteEnd_ = proposalDeadline(proposalId) ∧

 voteStart == voteStart ∧ _voteEnd == voteEnd_

}

() noStartBeforeCreation

Voting cannot start at a block number prior to proposal’s creation block number.

{

 previousStart = proposalSnapshot(proposalId) ∧

 ¬proposalCreated(proposalId)

}

 propose(e, args)

{

 newStart = proposalSnapshot(proposalId) ∧

 newStart ≠ previousStart ⇒ newStart ≥ e.block.number

}

() noExecuteOrCancelBeforeDeadline

A proposal can neither be executed nor canceled before it ends.

{

 ¬isExecuted(proposalId) ∧ ¬isCanceled(proposalId)

}

 <transaction>

{

 e.block.number < proposalDeadline(proposalId) ⇒ (¬isExecuted(proposalId)

}

() executedOnlyAfterExecuteFunc

Proposal can be switched to executed only via execute() function

{ ¬isExecuted(proposalId) }

<non-execute operation on proposalId>

{ ¬isExecuted(proposalId) }

() allFunctionsRevertIfExecuted and allFunctionsRevertIfCanceled

All non-view functions should revert if proposal is executed/canceled.

{ isExecuted(proposalId) }

<non-view operation on proposalId>@withrevert

{ lastReverted }

and

{ isCanceled(proposalId) }

<non-view operation on proposalId>@withrevert

{ lastReverted }

() SumOfVotesCastEqualSumOfPowerOfVotedPerProposal

The sum of all votes casted is equal to the sum of voting power of those who voted,

per proposal.

tracked_weight(proposalId) == ghost_sum_vote_power_by_id(proposalId)

() SumOfVotesCastEqualSumOfPowerOfVoted

The sum of all votes casted is equal to the sum of voting power of those who voted.

sum_tracked_weight() == sum_all_votes_power()

() OneIsNotMoreThanAll

The sum of all votes casted is greater or equal to the sum of voting power of those

who voted as per specific proposal.

sum_all_votes_power() ≥ tracked_weight(proposalId)

() noVoteForSomeoneElse

Only sender’s voting status can be changed by execution of any cast vote function.

[2]

[1:1]

file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fn2
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fn2
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fn1
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fn1

{

 userVoteBefore = hasVoted(proposalId, user)

}

 castVote(proposalId, sup)

{

 userVoteAfter = hasVoted(proposalId, user) ∧

 user ≠ msg.sender ⇒ otherUserVoteBefore = otherUserVoteAfter

}

() votingWeightMonotonicity

Total voting tally is monotonically non-decreasing in every operation.

{

 votingWeightBefore = sum_tracked_weight()

}

 <transaction>

{

 votingWeightAfter = sum_tracked_weight() ∧

 votingWeightBefore ≤ votingWeightAfter

}

() hasVotedCorrelation

A change in hasVoted must be correlated with a non-decreasing change of the vote

supports (non-decreasing because user is allowed to vote with weight 0).

{

 acc = e.msg.sender ∧

 againstBefore = votesAgainst() ∧

 forBefore = votesFor() ∧

 abstainBefore = votesAbstain() ∧

 hasVotedBefore = hasVoted(e, proposalId, acc)

}

 <transaction on proposalId>

{

 (againstAfter = votesAgainst() ∧

 forAfter = votesFor() ∧

 abstainAfter = votesAbstain() ∧

 hasVotedAfter = hasVoted(e, proposalId, acc) ∧

 hasVotedAfter_User = hasVoted(e, proposalId, user) c

 ((¬hasVotedBefore ∧ hasVotedAfter) ⇒ againstBefore ≤ againstAfter ∨ forBefore ≤ forAft

}

() privilegedOnlyNumerator and privilegedOnlyDenominator

Only privileged users can execute privileged operations, e.g. change

_quorumNumerator or _timelock .

{

 quorumNumBefore = quorumNumerator(e)

}

 <transaction>

{

 quorumNumAfter = quorumNumerator(e) ∧

 address executorCheck = getExecutor(e) ∧

 (quorumNumBefore ≠ quorumNumAfter ⇒ e.msg.sender == executorCheck)

}

and

{ timelockBefore = timelock() }

<transaction>

{ (timelock() ≠ timeLockBefore ⇒ e.msg.sender == timelockBefore) }

1. we verified this property on the castVote method but not the other two vote casting

functions. We feel this is reasonable since the bulk of the code for all three functions

is contained in the _castVote helper method. ↩ ↩

2. due to timeouts, these properties were not verified on calls to view functions,

updateQuorumNumerator() , updateTimelock() , queue and __acceptAdmin()

methods ↩

file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fnref1
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fnref1
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fnref1:1
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fnref1:1
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fnref2
file:///tmp/cert/hackmd.io/@certora/SJbeAYwOF#fnref2

