const format = require('../format-lines'); const { capitalize } = require('../../helpers'); const { TYPES } = require('./Arrays.opts'); const header = `\ pragma solidity ^0.8.20; import {Comparators} from "./Comparators.sol"; import {SlotDerivation} from "./SlotDerivation.sol"; import {StorageSlot} from "./StorageSlot.sol"; import {Math} from "./math/Math.sol"; /** * @dev Collection of functions related to array types. */ `; const sort = type => `\ /** * @dev Sort an array of ${type} (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is \`O(n · log(n))\` in average and \`O(n²)\` in the worst case, with n the length of the * array. Using it in view functions that are executed through \`eth_call\` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( ${type}[] memory array, function(${type}, ${type}) pure returns (bool) comp ) internal pure returns (${type}[] memory) { ${ type === 'uint256' ? '_quickSort(_begin(array), _end(array), comp);' : 'sort(_castToUint256Array(array), _castToUint256Comp(comp));' } return array; } /** * @dev Variant of {sort} that sorts an array of ${type} in increasing order. */ function sort(${type}[] memory array) internal pure returns (${type}[] memory) { ${type === 'uint256' ? 'sort(array, Comparators.lt);' : 'sort(_castToUint256Array(array), Comparators.lt);'} return array; } `; const quickSort = `\ /** * @dev Performs a quick sort of a segment of memory. The segment sorted starts at \`begin\` (inclusive), and stops * at end (exclusive). Sorting follows the \`comp\` comparator. * * Invariant: \`begin <= end\`. This is the case when initially called by {sort} and is preserved in subcalls. * * IMPORTANT: Memory locations between \`begin\` and \`end\` are not validated/zeroed. This function should * be used only if the limits are within a memory array. */ function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure { unchecked { if (end - begin < 0x40) return; // Use first element as pivot uint256 pivot = _mload(begin); // Position where the pivot should be at the end of the loop uint256 pos = begin; for (uint256 it = begin + 0x20; it < end; it += 0x20) { if (comp(_mload(it), pivot)) { // If the value stored at the iterator's position comes before the pivot, we increment the // position of the pivot and move the value there. pos += 0x20; _swap(pos, it); } } _swap(begin, pos); // Swap pivot into place _quickSort(begin, pos, comp); // Sort the left side of the pivot _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot } } /** * @dev Pointer to the memory location of the first element of \`array\`. */ function _begin(uint256[] memory array) private pure returns (uint256 ptr) { assembly ("memory-safe") { ptr := add(array, 0x20) } } /** * @dev Pointer to the memory location of the first memory word (32bytes) after \`array\`. This is the memory word * that comes just after the last element of the array. */ function _end(uint256[] memory array) private pure returns (uint256 ptr) { unchecked { return _begin(array) + array.length * 0x20; } } /** * @dev Load memory word (as a uint256) at location \`ptr\`. */ function _mload(uint256 ptr) private pure returns (uint256 value) { assembly { value := mload(ptr) } } /** * @dev Swaps the elements memory location \`ptr1\` and \`ptr2\`. */ function _swap(uint256 ptr1, uint256 ptr2) private pure { assembly { let value1 := mload(ptr1) let value2 := mload(ptr2) mstore(ptr1, value2) mstore(ptr2, value1) } } `; const castArray = type => `\ /// @dev Helper: low level cast ${type} memory array to uint256 memory array function _castToUint256Array(${type}[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } `; const castComparator = type => `\ /// @dev Helper: low level cast ${type} comp function to uint256 comp function function _castToUint256Comp( function(${type}, ${type}) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } `; const search = `\ /** * @dev Searches a sorted \`array\` and returns the first index that contains * a value greater or equal to \`element\`. If no such index exists (i.e. all * values in the array are strictly less than \`element\`), the array length is * returned. Time complexity O(log n). * * NOTE: The \`array\` is expected to be sorted in ascending order, and to * contain no repeated elements. * * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks * support for repeated elements in the array. The {lowerBound} function should * be used instead. */ function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { low = mid + 1; } } // At this point \`low\` is the exclusive upper bound. We will return the inclusive upper bound. if (low > 0 && unsafeAccess(array, low - 1).value == element) { return low - 1; } else { return low; } } /** * @dev Searches an \`array\` sorted in ascending order and returns the first * index that contains a value greater or equal than \`element\`. If no such index * exists (i.e. all values in the array are strictly less than \`element\`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound]. */ function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Searches an \`array\` sorted in ascending order and returns the first * index that contains a value strictly greater than \`element\`. If no such index * exists (i.e. all values in the array are strictly less than \`element\`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound]. */ function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Same as {lowerBound}, but with an array in memory. */ function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Same as {upperBound}, but with an array in memory. */ function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } `; const unsafeAccessStorage = type => `\ /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain \`pos\` is lower than the array length. */ function unsafeAccess(${type}[] storage arr, uint256 pos) internal pure returns (StorageSlot.${capitalize( type, )}Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).get${capitalize(type)}Slot(); } `; const unsafeAccessMemory = type => `\ /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain \`pos\` is lower than the array length. */ function unsafeMemoryAccess(${type}[] memory arr, uint256 pos) internal pure returns (${type} res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } `; const unsafeSetLength = type => `\ /** * @dev Helper to set the length of an dynamic array. Directly writing to \`.length\` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(${type}[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } `; // GENERATE module.exports = format( header.trimEnd(), 'library Arrays {', format( [].concat( 'using SlotDerivation for bytes32;', 'using StorageSlot for bytes32;', '', // sorting, comparator, helpers and internal sort('uint256'), TYPES.filter(type => type !== 'uint256').map(sort), quickSort, TYPES.filter(type => type !== 'uint256').map(castArray), TYPES.filter(type => type !== 'uint256').map(castComparator), // lookup search, // unsafe (direct) storage and memory access TYPES.map(unsafeAccessStorage), TYPES.map(unsafeAccessMemory), TYPES.map(unsafeSetLength), ), ).trimEnd(), '}', );