
Formal Verification of OpenZeppelin (May -

June 2022)

Summary

This document describes the specification and verification of OpenZeppelin’s contracts

using the Certora Prover. The work was undertaken from May 9th to June 10th. The latest

commit that was reviewed and run through the Certora Prover was commit  109778c .

The scope of our verification was the following contracts:

• Initializable.sol  ( Verification Result )

•  GovernorPreventLateQuorum.sol  ( Verification Result )

•  ERC1155Burnable.sol  ( Verification Result )

•  ERC1155Pausable.sol  ( Verification Result )

•  ERC1155Supply.sol  ( Verification Result )

•  ERC1155Holder.sol  (Formal Verification Unnnecessary)

•  ERC1155Receiver.sol  (Formal Verification Unnnecessary)

The Certora Prover proved the implementation of the Open Zeppelin contracts is correct

with respect to the formal rules written by the Open Zeppelin and the Certora teams.

During the verification process, the Certora Prover discovered bugs in the code listed in

the table below. All issues were promptly corrected, and the fixes were verified to satisfy

the specifications up to the limitations of the Certora Prover. The Certora development

team is currently handling these limitations. The next section formally defines high level

specifications of Open Zeppelin. All the rules are publically available in a public github.

List of Main Issues Discovered

Severity: High Medium Low

https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/109778c17c7020618ea4e035efb9f0f9b82d43ca
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://prover.certora.com/output/22971/304a5146df53f0c7e001?anonymousKey=c1f853808841991986fb427b85279e3ab996591d
https://prover.certora.com/output/22971/304a5146df53f0c7e001?anonymousKey=c1f853808841991986fb427b85279e3ab996591d
https://prover.certora.com/output/22971/304a5146df53f0c7e001?anonymousKey=c1f853808841991986fb427b85279e3ab996591d
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorPreventLateQuorum.sol
https://prover.certora.com/output/22971/c5bfa4ddb219ab2832c5?anonymousKey=8c4103f84bec08a245b610dc8fc8156d15fcaa73
https://prover.certora.com/output/22971/c5bfa4ddb219ab2832c5?anonymousKey=8c4103f84bec08a245b610dc8fc8156d15fcaa73
https://prover.certora.com/output/22971/c5bfa4ddb219ab2832c5?anonymousKey=8c4103f84bec08a245b610dc8fc8156d15fcaa73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Burnable.sol
https://prover.certora.com/output/22971/a3cfaed40191eb6bec32?anonymousKey=6888ecd7dbeac8b3bf6e1df42a4b5bec37567952
https://prover.certora.com/output/22971/a3cfaed40191eb6bec32?anonymousKey=6888ecd7dbeac8b3bf6e1df42a4b5bec37567952
https://prover.certora.com/output/22971/a3cfaed40191eb6bec32?anonymousKey=6888ecd7dbeac8b3bf6e1df42a4b5bec37567952
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Pausable.sol
https://prover.certora.com/output/22971/80740cdc094361da319e?anonymousKey=a4b621f433d74aabf943f69e3f21f628110bba80
https://prover.certora.com/output/22971/80740cdc094361da319e?anonymousKey=a4b621f433d74aabf943f69e3f21f628110bba80
https://prover.certora.com/output/22971/80740cdc094361da319e?anonymousKey=a4b621f433d74aabf943f69e3f21f628110bba80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://prover.certora.com/output/93493/86ee10f63e7a4e7beab0/?anonymousKey=6f569ac45430b8378946e72ed0d04ec037898979
https://prover.certora.com/output/93493/86ee10f63e7a4e7beab0/?anonymousKey=6f569ac45430b8378946e72ed0d04ec037898979
https://prover.certora.com/output/93493/86ee10f63e7a4e7beab0/?anonymousKey=6f569ac45430b8378946e72ed0d04ec037898979
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/utils/ERC1155Receiver.sol
https://github.com/Certora/openzeppelin-contracts/tree/certora/erc1155ext
https://github.com/Certora/openzeppelin-contracts/tree/certora/erc1155ext
https://github.com/Certora/openzeppelin-contracts/tree/certora/erc1155ext


Issue:

Calling updateQuorumNumerator()  can change the output of

quorumReached()  for previous proposals, leading to unexpected

outcomes.

Rules

Broken:

quorumReachedEffect , proposalNotCreatedEffects ,

proposalInOneState , deadlineCantBeUnextended

Description:

• High Decreasing the number of votes required for a proposal to

reach quorum can allow proposals which are currently active,

passing, and unexecutable to become immediately executable.

Breaks rules quorumReachedEffect ,

proposalNotCreatedEffects , and proposalInOneState .

• Medium Decreasing the number of votes required for a proposal

to reach quorum can allow proposals to reach quorum late without

extending their deadlines. Breaks rules quorumReachedEffect ,

proposalNotCreatedEffects , and proposalInOneState .

• Low Increasing the number of votes required for a proposal to

reach quorum can cause proposals which had previously reached

quorum to no longer be in quorum. Breaks rule

deadlineCantBeUnextended .

Response:

We agree that this is a significant issue and will change

GovernorVotesQuorumFraction  so that changes to quorum

requirements do not affect past proposals. Additionally, we are looking

for affected instances of this contract on-chain to reach out and notify

of the potential issue.

Severity: Low



Issue:

A governance with a voting token that has 0 totalSupply will

consider all current and future proposals to have reached

quorum.

Rules

Broken:

quorumReachedEffect , proposalNotCreatedEffects ,

proposalInOneState

Description:

A voting token with 0 token supply will result in all proposals being

considered as having reached quorum. This can be an issue in the

case that the token has not been initialized/minted, but this case is not

as interesting because there will be no tokens to vote with. A more

interesting case can arise if the voting token’s totalSupply  is

accidentally set to 0. This will allow all proposals to reach quorum and

thus be executable as long as the vote is successful.

Response:

This is an edge case that should never manifest as long as tokens

withhold the invariant that total supply is equal to the sum of all

balances, as in this case no one will be able to vote for a proposal and

the condition for a successful proposal will never be met (more for

votes than against votes).

Severity: Low

Issue:
TimelockController should not have additional executors beside

the governor [GovernorTimelockControl _execute()]

Rules

Broken:
None

Description:

An executor can execute a scheduled operation on the

TimelockController by calling TimelockController.execute. If the

operation was queued using GovernorTimelockControl.queue, this will

cause GovernorTimelockControl.execute to revert as the proposal has

already been executed by the TimelockController. (Same issue with

calling TimelockController.cancel)

Response:

Agreed, but probably not any significant consequence. The only

consequence is that if the proposal is executed directly in the

timelock, the “ProposalExecuted” event will never be emitted.

Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that

the contract satisfies the specification in all scenarios. Importantly, the guarantees of the



Certora Prover are scoped to the provided specification, and the Certora Prover does not

check any cases not covered by the specification.

We hope that this information is useful, but provide no warranty of any kind, explicit or

implied. The contents of this report should not be construed as a complete guarantee that

the contract is secure in all dimensions. In no event shall Certora or any of its employees

be liable for any claim, damages or other liability, whether in an action of contract, tort or

otherwise, arising from, out of or in connection with the results reported here.

Notations

 indicates the rule is formally verified on the latest reviewed commit. We write �* when

the rule was verified on a simplified version of the code (or under some assumptions).

 indicates the rule was violated under one of the tested versions of the code.

 indicates the rule is not yet formally specified.

�� indicates the rule is postponed (<due to other issues, low priority>) .

 indicates that some functions cannot be verified because the rules timed out

Footnotes describe any simplifications or assumptions used while verifying the

rules (beyond the general assumptions listed above).

Verification of Initializable

Initializable  is a contract used to make constructors for upgradeable contracts. This

is accomplished by applying the initializer  modifier to any function that serves as a

constructor, which makes this function only callable once. The secondary modifier

reinitializer  allows for upgrades that change the contract’s initializations.

Assumptions and Simplifications

We assume initializer()  and reinitializer(1)  are equivalent if they both

guarentee _initialized  to be set to 1 after a successful call. This allows us to use

reinitializer(n)  as a general version that also handles the regular initialzer  case.

Harnessing

Two harness versions were implemented, a simple flat contract, and a multi-inheriting

contract. The two versions together help us ensure there are no unexpected results

because of different implementions. Initializable can be used in many different ways but

we believe these 2 cases provide good coverage for all cases. In both harnesses we use

getter functions for _initialized  and _initializing  and implement initializer



and reinitializer  functions that use their respective modifiers. We also implement

some versioned functions that are only callable in specific versions of the contract to

mimick upgrading contracts.

Munging

Variables _initialized  and _initializing  were changed to have internal visibility to

be harnessable.

Definitions

isUninitialized:  A contract’s _initialized  variable is equal to 0.

isInitialized:  A contract’s _initialized  variable is greater than 0.

isInitializedOnce:  A contract’s _initialized  variable is equal to 1.

isReinitialized:  A contract’s _initialized  variable is greater than 1.

isDisabled:  A contract’s _initialized  variable is equal to 255.

Properties

( ) invariant notInitializing

A contract must only be in the _initializing  state if and only if the contract is in

the middle of an initializing transaction execution.

( ) rule initOnce

An initializeable contract with a function that inherits the initializer modifier must be

initializable only once.

( ) rule reinitializeEffects

Successfully calling reinitialize()  with a version value of 1 must result in

_initialized  being set to 1.

( ) rule initalizeEffects

Successfully calling initalize()  must result in _initialized  being set to 1.

( ) rule disabledStaysDisabled

A disabled initializable contract must always stay disabled.

( ) rule increasingInitialized

The variable _initialized  must not decrease.

( ) rule reinitializeIncreasesInit

If reinitialize(…) was called successfuly, then the variable _initialized  must

increase.



( ) rule reinitializeLiveness

Reinitialize(n) must be callable if the contract is not in an _initializing state and n is

greater than _initialized and less than 255.

( ) rule reinitializeRule

If reinitialize(n) was called successfully then n was greater than _initialized.

( ) rule reinitVersionCheckParent

Functions implemented in the parent contract that need _initialized  to be a equal

to some value n in order to be called, are only callable when _initialized  is equal

to n.

( ) rule reinitVersionCheckChild

Functions implemented in the child contract that need _initialized  to be a equal to

some value n in order to be called, are only callable when _initialized  is equal to

n.

( ) rule reinitVersionCheckGrandchild

Functions implemented in the grandchild contract that need _initialized  to be a

equal to some value n in order to be called, are only callable when _initialized  is

equal to n.

( ) rule inheritanceCheck

Calling parent initalizer function must initialize all child contracts.

Verification of GovernorPreventLateQuorum

GovernorPreventLateQuorum  extends the Governor group of contracts to add the feature

of giving voters more time to vote in the case that a proposal reaches quorum with less

than voteExtension  amount of time left to vote.

Assumptions and Simplifications

Harnessing

• The contract that the specification was verified against is

GovernorPreventLateQuorumHarness , which inherits from all of the Governor

contracts — excluding Compound variations — and implements a number of view

functions to gain access to values that are impossible/difficult to access in CVL. It

also implements all of the required functions not implemented in the abstract

contracts it inherits from.

• _castVote  was overriden to add an additional flag before calling the parent version.

This flag stores the block.number  in a variable latestCastVoteCall  and is used

as a way to check when any of variations of castVote  are called.



Munging

• Various variables’ visibility was changed from private to internal or from internal to

public throughout the Governor contracts in order to make them accessible in the

spec.

• Arbitrary low level calls are assumed to change nothing and thus the function

_execute  is changed to do nothing. The tool normally havocs in this situation,

assuming all storage can change due to possible reentrancy. We assume, however,

there is no risk of reentrancy because _execute  is a protected call locked behind the

timelocked governance vote. All other governance functions are verified separately.

Definitions

deadlineExtendible:  A proposal is defined to be deadlineExtendible  if its respective

extendedDeadline  variable is unset and quorum on that proposal has not been reached.

deadlineExtended:  A proposal is defined to be deadlineExtended  if its respective

extendedDeadline  variable is set and quorum on that proposal has been reached.

proposalNotCreated:  A proposal is defined to be proposalNotCreated  if its snapshot

(block.number at which voting started), deadline, and totalVotes  all equal 0.

Properties

( ) rule deadlineChangeEffects

If deadline increases then we are in a deadlineExtended  state and castVote  has

been called.

( ) rule deadlineCantBeUnextended

A proposal must not leave a deadlineExtended  state.

( ) rule canExtendDeadlineOnce

A proposal’s deadline must not change once in a deadlineExtended  state.

( ) rule hasVotedCorrelationNonzero

A change in hasVoted  for a given account and proposal must correlate positively

with an increase in the number of votes for one of the vote categories, e.g.

abstainVotes , againstVotes , or forVotes . Additionally, the totalVotes  must

not decrease.

( ) rule againstVotesDontCount

againstVotes  for a given proposal must not contribute to the proposal’s quorum.

( ) rule deadlineExtenededIfQuorumReached

The deadline for a given proposal must only be extended from a

deadlineExtendible  state with quorum being reached and with ≤



lateQuorumVoteExtension  time left to vote.

( ) rule extendedDeadlineValueSetIfQuorumReached

extendedDeadline  is set if and only if _castVote  is called and quorum is reached.

( ) rule deadlineNeverReduced

The deadline for a given proposal must never be reduced.

( ) invariant quorumReachedEffect

If a proposal has reached quorum then the proposal snapshot ( block.number  at

which voting started) must be non-zero.

( ) invariant proposalNotCreatedEffects

A non-existant proposal’s snapshot, deadline, and totalVotes  must all equal 0.

( ) invariant proposalNotCreatedEffects

A non-existant proposal’s snapshot, deadline, and totalVotes  must all equal 0.

Verification of ERC1155

ERC1155  establishes base level support EIP1155, a standard interface for contracts that

manage multiple token types. The contract was verified as part of previous work with

OpenZeppelin and is included here for the purposes of increased verification coverage

with respect to token transfer methods.

Assumptions and Simplifications

• Internal burn and mint methods are wrapped by CVT callable functions.

Properties

The following properties are additions to the previous ERC1155  verification. Please see

the previous report for earlier contract properties verified.

( ) rule singleTokenSafeTransferFromSafeBatchTransferFromEquivalence

The result of transferring a single token must be equivalent whether done via

safeTransferFrom or safeBatchTransferFrom.

( ) rule multipleTokenSafeTransferFromSafeBatchTransferFromEquivalence

The results of transferring multiple tokens must be equivalent whether done

separately via safeTransferFrom or together via safeBatchTransferFrom.

( ) rule transfersHaveSameLengthInputArrays

If transfer methods do not revert, the input arrays must be the same length.

https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://hackmd.io/3OWgnLQtQmqdSb4rFCqCdw
https://hackmd.io/3OWgnLQtQmqdSb4rFCqCdw
https://hackmd.io/3OWgnLQtQmqdSb4rFCqCdw


Verification of ERC1155Burnable

ERC1155Burnable  extends the ERC1155  functionality by wrapping the internal methods

_burn  and _burnBatch  in the public methods burn  and burnBatch , adding a

requirement that the caller of either method be the account holding the tokens or

approved to act on that account’s behalf.

Assumptions and Simplifications

• No changes made using the harness

Properties

( ) rule onlyHolderOrApprovedCanReduceBalance

If a method call reduces account balances, the caller must be either the holder of the

account or approved to act on the holder’s behalf.

( ) rule burnAmountProportionalToBalanceReduction

Burning a larger amount of a token must reduce that token’s balance more than

burning a smaller amount. This rule holds for burnBatch  as well due to rules

establishing appropriate equivance between burn  and burnBatch  methods.

( ) rule sequentialBurnsEquivalentToSingleBurnOfSum

Two sequential burns must be equivalent to a single burn of the sum of their amounts.

This rule holds for also burnBatch  due to rules establishing appropriate equivance

between burn  and burnBatch  methods.

( ) rule singleTokenBurnBurnBatchEquivalence

The result of burning a single token must be equivalent whether done via burn or

burnBatch.

( ) rule multipleTokenBurnBurnBatchEquivalence

The results of burning multiple tokens must be equivalent whether done separately

via burn or together via burnBatch.

( ) rule burnBatchOnEmptyArraysChangesNothing

If passed empty token and burn amount arrays, burnBatch must not change token

balances or address permissions.

Verification of ERC1155Pausable

ERC1155Pausable  extends existing Pausable  functionality by requiring that a contract

not be in a paused  state prior to a token transfer.

Assumptions and Simplifications



• Internal methods _pause  and _unpause  wrapped in CVT callable versions

• Dummy functions created to verify whenPaused  and whenNotPaused  modifiers

Properties

( ) rule balancesUnchangedWhenPaused

When a contract is in a paused state, the token balance for a given user and token

must not change.

( ) rule transferMethodsRevertWhenPaused

When a contract is in a paused state, transfer methods must revert.

( ) rule pauseMethodPausesContract

When a contract is in an unpaused state, calling pause  must transition to a paused

state.

( ) rule unpauseMethodUnpausesContract

When a contract is in a paused state, calling unpause  must transition to an

unpaused state.

( ) rule cannotPauseWhilePaused

When a contract is in a paused state, calling pause  must revert.

( ) rule cannotUnpauseWhileUnpaused

When a contract is in an unpaused state, calling unpause  must revert.

( ) rule whenNotPausedModifierCausesRevertIfPaused

When a contract is in a paused state, functions with the whenNotPaused  modifier

must revert.

( ) rule whenPausedModifierCausesRevertIfUnpaused

When a contract is in an unpaused state, functions with the whenPaused  modifier

must revert.

Verification of ERC1155Supply

ERC1155Supply  extends the ERC1155  functionality. The contract creates a publicly

callable totalSupply  wrapper for the private _totalSupply  method, a public exists

method to check for a positive balance of a given token, and updates

_beforeTokenTransfer  to appropriately change the mapping _totalSupply  in the

context of minting and burning tokens.

Assumptions and Simplifications

• The exists  method was wrapped in the exists_wrapper  method because exists



is a keyword in CVL.

• The public functions burn , burnBatch , mint , and mintBatch  were implemented

in the harnesssing contract make their respective internal functions callable by the

CVL. This was used to test the increase and decrease of totalSupply  when tokens

are minted and burned.

• We created the onlyOwner  modifier to be used in the above functions so that they

are not called in unrelated rules.

Properties

( ) invariant total_supply_is_sum_of_balances

The sum of the balances over all users must equal the total supply for a given token.

( ) invariant balanceOfZeroAddressIsZero

The balance of a token for address(0)  must be zero.

( ) rule token_totalSupply_independence

Given two different token ids, if totalSupply  for one changes, then totalSupply

for the other must not.

( ) rule held_tokens_should_exist

If a user has a token, then the token must exist.

Bug Injection Test

In this section we intentionally create bugs to check if we have coverage for those type of

bugs.

We do this to make sure that even if an attacker managed to get into such a situation he

would not be able to harm the system.

( ) Bug1: mutate _castVote  function in GovernorPreventLateQuorum.sol

catching rule(s): extendedDeadlineValueSetIfQuorumReached  [Tool Output]

This change will cause the deadline be equal to the block time instead expanding it:

-    uint64 extendedDeadlineValue = block.number.toUint64() + lateQuorumVoteExtension();

+    uint64 extendedDeadlineValue = block.number.toUint64();

( ) Bug2: mutate _beforeTokenTransfer  function in ERC1155Pausable.sol

catching rule(s): balancesUnchangedWhenPaused ,

transferMethodsRevertWhenPaused  [Tool Output]

This lack of require will allow transfer while paused:

https://prover.certora.com/output/93493/7595d774877e05724a00/?anonymousKey=25bcf9d7a2b820076799a4e2545eef0a8c416b6a
https://prover.certora.com/output/93493/7595d774877e05724a00/?anonymousKey=25bcf9d7a2b820076799a4e2545eef0a8c416b6a
https://prover.certora.com/output/93493/7595d774877e05724a00/?anonymousKey=25bcf9d7a2b820076799a4e2545eef0a8c416b6a
https://prover.certora.com/output/93493/6603baa744391a373aa9/?anonymousKey=4a4ca23cbba9c2a12fea01b9bcd7448d28953ea3
https://prover.certora.com/output/93493/6603baa744391a373aa9/?anonymousKey=4a4ca23cbba9c2a12fea01b9bcd7448d28953ea3
https://prover.certora.com/output/93493/6603baa744391a373aa9/?anonymousKey=4a4ca23cbba9c2a12fea01b9bcd7448d28953ea3


-    require(!paused(), "ERC1155Pausable: token transfer while paused");

+    // require(!paused(), "ERC1155Pausable: token transfer while paused");

( ) Bug3: mutate _castVote  function in GovernorPreventLateQuorum.sol

catching rule(s): deadlineChangeEffects  [Tool Output]

This change will allow a proposal to extend the deadline even if it doesn’t reach

quorum:

-    if (extendedDeadline.isUnset() && _quorumReached(proposalId)) {

+    // if (extendedDeadline.isUnset() && _quorumReached(proposalId)) {

+    if (extendedDeadline.isUnset()) {

( ) Bug4: mutate burn  function in ERC1155Burnable.sol

catching rule(s): onlyHolderOrApprovedCanReduceBalance  [Tool Output]

This lack of require will allow anyone to burn tokens for an account:

-    require(account == _msgSender() || isApprovedForAll(account, _msgSender()),"ERC1155: cal

+    // require(account == _msgSender() || isApprovedForAll(account, _msgSender()),"ERC1155: 

( ) Bug5: mutate _beforeTokenTransfer  function in ERC1155Supply.sol

catching rule(s): total_supply_is_sum_of_balances  [Tool Output]

This change will cause the total supply not to increase when a token is transfered (or

minted):

-    _totalSupply[ids[i]] += amounts[i];

+    // _totalSupply[ids[i]] += amounts[i];

( ) Bug6: mutate _beforeTokenTransfer  function in ERC1155Supply.sol

catching rule(s): total_supply_is_sum_of_balances  [Tool Output]

This change will cause total supply to increase upon token transfer only for the

account at i = 0  instead of for all appropriate accounts:

-    _totalSupply[ids[i]] += amounts[i];

+    // _totalSupply[ids[i]] += amounts[i];

+    _totalSupply[ids[0]] += amounts[i];

( ) Bug7: mutate burn  function in ERC1155Burnable.sol

catching rule(s): burnAmountProportionalToBalanceReduction ,

sequentialBurnsEquivalentToSingleBurnOfSum ,

https://prover.certora.com/output/93493/90a88d6e617a0e3ce82c/?anonymousKey=794e42395231b59725af5195d55e5c28bdefff1a
https://prover.certora.com/output/93493/90a88d6e617a0e3ce82c/?anonymousKey=794e42395231b59725af5195d55e5c28bdefff1a
https://prover.certora.com/output/93493/90a88d6e617a0e3ce82c/?anonymousKey=794e42395231b59725af5195d55e5c28bdefff1a
https://prover.certora.com/output/93493/110864b6c4e603e6bfa9?anonymousKey=4c4c2ef11e192b91ca098a793ead288bf8bea92c
https://prover.certora.com/output/93493/110864b6c4e603e6bfa9?anonymousKey=4c4c2ef11e192b91ca098a793ead288bf8bea92c
https://prover.certora.com/output/93493/110864b6c4e603e6bfa9?anonymousKey=4c4c2ef11e192b91ca098a793ead288bf8bea92c
https://prover.certora.com/output/93493/de3be8addac126ce324f/?anonymousKey=1c1639b7abcad4c3f13c52b69b25bef45231147c
https://prover.certora.com/output/93493/de3be8addac126ce324f/?anonymousKey=1c1639b7abcad4c3f13c52b69b25bef45231147c
https://prover.certora.com/output/93493/de3be8addac126ce324f/?anonymousKey=1c1639b7abcad4c3f13c52b69b25bef45231147c
https://prover.certora.com/output/93493/0bb293fb65306dc568ad/?anonymousKey=c3e1409bc2b4b58532b789bedbacd1ff5c3cd902
https://prover.certora.com/output/93493/0bb293fb65306dc568ad/?anonymousKey=c3e1409bc2b4b58532b789bedbacd1ff5c3cd902
https://prover.certora.com/output/93493/0bb293fb65306dc568ad/?anonymousKey=c3e1409bc2b4b58532b789bedbacd1ff5c3cd902


singleTokenBurnBurnBatchEquivalence ,

multipleTokenBurnBurnBatchEquivalence  [Tool Output]

This change will cause msg.sender’s token balance to decrease by value  instead of

the appropriate account’s balance:

-    _burn(account, id, value);

+    _burn(msg.sender, id, value);

https://prover.certora.com/output/93493/4120349b7bd20fcf56d3/?anonymousKey=bdf9c65a25aa5ce4e13fd545bb5573b8b270502b
https://prover.certora.com/output/93493/4120349b7bd20fcf56d3/?anonymousKey=bdf9c65a25aa5ce4e13fd545bb5573b8b270502b
https://prover.certora.com/output/93493/4120349b7bd20fcf56d3/?anonymousKey=bdf9c65a25aa5ce4e13fd545bb5573b8b270502b

