
OpenZeppelin
Contracts
Release v5.1 Audit

| security

October 3, 2024



Table of Contents
Table of Contents __________________________________________________________________    2

Summary _________________________________________________________________________    4

Scope ____________________________________________________________________________    5
Phase 1 5

Phase 2 6

Overview - Phase 1 ________________________________________________________________    7

Overview - Phase 2 ________________________________________________________________    8
Adding Cliff to the Vesting Wallet 8

Support for Fractional Voting 8

Support for ERC-1363 and ERC-7674 9

Code Refactor 9

Addition of New Utilities 9

Security Model and Trust Assumptions _____________________________________________    10

Medium Severity _________________________________________________________________    11
M-01 AccessManager's schedule Function Misses minGas and minValue - Phase 1 11

M-02 Proving Empty Set Inclusion May Lead to Issues for Integrators in MerkleProof.multiProofVerify - Phase 1 12

M-03 Dirty Bytes Can Manipulate Derived Mapping Slot - Phase 2 13

Low Severity ____________________________________________________________________    13
L-01 Royalty Calculation May Result in Zero Token Transfers Between Buyer and Seller of NFT - Phase 1 13

L-02 Missing Docstrings - Phase 1 14

L-03 Custom Functions Might Modify Memory - Phase 1 14

L-04 Incorrect or Misleading Docstrings - Phase 1 15

L-05 Different Pragma Directives Are Used - Phase 2 15

L-06 Vesting Can Start Before Cliff Ends - Phase 2 16

L-07 Over-Engineered Heap - Phase 2 16

L-08 Small Public Exponents in RSA - Phase 2 17

L-09 Incorrect Addition With Point at Infinity - Phase 2 19

Notes & Additional Information ____________________________________________________    20
N-01 Lack of Indexed Event Parameters - Phase 1 20

N-02 Privileged User with Zero Execution Delay Can Re-Execute Operations - Phase 1 21

N-03 Padding Ignored in Base64URL Encoding - Phase 1 21

N-04 Inconsistent Annotation for Documentation - Phase 1 22

N-05 Inconsistent Use of Named Returns - Phase 1 22

N-06 Redundant Function Call in Checkpoints._insert - Phase 1 23

OpenZeppelin Contracts Release v5.1 Audit − Table of Contents − 2



N-07 Incorrect Panic Error in modExp Functions - Phase 1 23

N-08 Poor Documentation in SafeERC20 - Phase 1 24

N-09 Non-Standardized Declaration of memory-safe Assembly - Phase 1 24

N-10 Unused Import - Phase 1 25

N-11 Inconsistent Order Within Contracts - Phase 1 25

N-12 Typographical Errors - Phase 1 25

N-13 Inconsistent Declaration of memory-safe Assembly - Phase 2 26

N-14 Inconsistent Order Within Contracts - Phase 2 27

N-15 Missing Named Parameters in Mappings - Phase 2 27

N-16 Typographical Errors - Phase 2 28

N-17 Potential Licensing Conflict - Phase 2 28

N-18 Incorrect and Misleading Documentation - Phase 2 29

N-19 Redundant Code - Phase 2 30

N-20 Inconsistent Integer Base Within a Contract - Phase 2 30

N-21 Inconsistent _jAdd Function Interface - Phase 2 31

N-22 Arbitrary RSA Modulus Size - Phase 2 31

N-23 Custom Functions Might Modify Memory - Phase 2 32

N-24 Lack of Input Validation - Phase 2 32

N-25 Unintialized Variable - Phase 2 32

N-26 Applicability of Padding Oracle Attacks to RSA.sol - Phase 2 33

N-27 Inconsistent Documentation - Phase 2 34

N-28 Naming Suggestions - Phase 2 34

Client Reported __________________________________________________________________    35
CR-01 Incorrect Internal Call - Phase 1 35

CR-02 Incorrect _jAdd Result When a Point Is Added to Itself - Phase 2 35

Recommendations _______________________________________________________________    36
Protection Against Postquantum Adversaries in RSA Signatures 36

Conclusion ______________________________________________________________________    38

OpenZeppelin Contracts Release v5.1 Audit − Table of Contents − 3



Type Library

Phase 1 From 2024-07-29
To 2024-08-14

Phase 2 From 2024-08-19
To 2024-09-06

Languages Solidity

Total Issues 42 (31 resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

0 (0 resolved)

Medium Severity
Issues

3 (2 resolved)

Low Severity Issues 9 (8 resolved)

Notes & Additional
Information

28 (19 resolved)

Client Reported
Issues

2 (2 resolved)

Summary
Timeline

OpenZeppelin Contracts Release v5.1 Audit − Summary − 4



Scope
We audited the OpenZeppelin/openzeppelin-contracts repository at commit aba9ff6. The audit

consisted of two phases. 

Phase 1
The scope of this audit was limited to the changes introduced in some contracts that were 

previously audited for the v5.0.0 release.

In scope were the following files:

contracts
├── access
│   ├── extensions
│   │   └── AccessControlEnumerable.sol
│   └── manager
│       └── AccessManager.sol
├── governance
│   ├── Governor.sol
│   ├── extensions
│   │   └── GovernorCountingSimple.sol
│   └── utils
│       └── Votes.sol
├── metatx
│     └── ERC2771Forwarder.sol
├── proxy
│   ├── Clones.sol
│   ├── ERC1967
│   │   └── ERC1967Utils.sol
│   └── transparent
│       └── TransparentUpgradeableProxy.sol
├── token
│   ├── ERC1155
│   │   ├── ERC1155.sol
│   │   └── extensions
│   │       └── ERC1155Supply.sol
│   ├── ERC20
│   │   └── utils
│   │       └── SafeERC20.sol
│   ├── ERC721
│   │   ├── ERC721.sol
│   │   └── extensions
│   │       └── ERC721Enumerable.sol
│   └── common
│       └── ERC2981.sol

OpenZeppelin Contracts Release v5.1 Audit − Scope − 5

https://github.com/OpenZeppelin/openzeppelin-contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/audits/2023-10-v5.0.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/v5.0.0


└── utils
    ├── Address.sol
    ├── Arrays.sol
    ├── Base64.sol
    ├── Create2.sol
    ├── StorageSlot.sol
    ├── Strings.sol
    ├── cryptography
    │   ├── MerkleProof.sol
    │   └── SignatureChecker.sol
    ├── math
    │   ├── Math.sol
    │   ├── SafeCast.sol
    │   └── SignedMath.sol
    └── structs
        ├── Checkpoints.sol
        ├── DoubleEndedQueue.sol
        └── EnumerableMap.sol

Phase 2
In scope were the following files:

contracts
├── finance
│   └── VestingWalletCliff.sol 
├── governance
│   └── extensions
│       └── GovernorCountingFractional.sol
├── token
│   ├── ERC20
│   │   └── extensions
│   │       ├── draft-ERC20TemporaryApproval.sol
│   │       └── ERC1363.sol
│   ├── ERC721
│   │   └── utils
│   │       └── ERC721Utils.sol
│   └── ERC1155
│       └── utils
│           └── ERC1155Utils.sol
└── utils
    ├── Errors.sol
    ├── Packing.sol
    ├── Panic.sol
    ├── ReentrancyGuardTransient.sol
    ├── SlotDerivation.sol
    ├── cryptography
    │   ├── Hashes.sol
    │   ├── P256.sol
    │   └── RSA.sol
    └── structs
        ├── CircularBuffer.sol

OpenZeppelin Contracts Release v5.1 Audit − Scope − 6



        ├── Heap.sol
        └── MerkleTree.sol

Overview - Phase 1
Version 5.1 of the OpenZeppelin Contracts library introduces minor changes to previously

existing contracts. The following modifications were made across the majority of the in-scope

contracts:

Improved documentation: Many contracts have had their docstrings reworked. They

have either been improved or have been adapted to describe the new functionalities.

Improved handling of common errors: Common errors have now been isolated into a

separate Panic  or Errors  library.

Improved return parameters: Many functions have been changed to have their return

parameters named.

For a complete list of specific changes made in individual files, one can refer to the changelog

from version 5.0.0 to the latest one.

During the course of the audit, some behaviors were observed in the system that were

considered worth mentioning to the community.

AccessManager.execute  Reverts on Failed External Calls

The AccessManager  contract provides a mechanism for role-based access control,

allowing certain operations to be scheduled and executed with specified delays. This

system ensures that only authorized users can perform certain actions. Once a call is 

scheduled , depending on the role, the caller  needs to wait until the end of an

execution delay period before they can execute  the scheduled call. If a scheduled call

is malicious, an address with the admin  or guardian  role can cancel the schedule

before it is executed.

Once the delay period has passed (if it is applicable for a given role and caller), the 

execute  function within this contract is responsible for carrying out these operations. It

achieves this by invoking the target contract’s function through a low-level call, with the

option to send value along with the call.

The execute  function utilizes the Address.functionCallWithValue  function to

perform the external call to the target contract. This function reverts if the external call

• 

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Overview - Phase 1 − 7

https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-3240ab56e67b434cb937eba06924a054ead3444cf7a28bafdf0ee8b4bab3e01fR47
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-d33289f3eb8b3043d73cb1803745e64ae1338991933016a3230321df1045d38bR500
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-ffa332ee53bcddd238be67717a329a9c17b1adab1b63d65a72fba86bb54a8a8cR43
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-ffa332ee53bcddd238be67717a329a9c17b1adab1b63d65a72fba86bb54a8a8cR43
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-df5f42736a1ae53c5ebcac557dce01c0e3c1bcb1ce4388f1e77b5dd796fdbe4fR136
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-df5f42736a1ae53c5ebcac557dce01c0e3c1bcb1ce4388f1e77b5dd796fdbe4fR136
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v5.0.0...aba9ff6#diff-d33289f3eb8b3043d73cb1803745e64ae1338991933016a3230321df1045d38bR193
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/CHANGELOG.md
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L484
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L484
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Address.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Address.sol#L75


fails. While this ensures that failed operations do not proceed, it also means that if the

external call fails, the operation is not marked as executed. This allows the caller to retry

the same operation without needing to reschedule it, as long as the operation has not

expired. In certain situations, depending on the target  and the reason of the failed

execution, retrying the execution can result unsuccessful attempts thereby causing

wastage of gas.

Overview - Phase 2
Version 5.1 of the OpenZeppelin Contracts library introduces several new features, including

the following:

Adding Cliff to the Vesting Wallet
To address the Lack of Inclusion of a "Vesting Cliff" Feature issue from the audit of the v5.0.0

release, the Contracts team has created a VestingWalletCliff  contract, which adds a cliff

period to the vesting schedule.

Support for Fractional Voting
The GovernorCountingFractional  contract allows delegates to decide how they want to

use their voting power. The delegates can either fractionally split their voting weight into 

Against , For , and Abstain  votes (called fractional voting), or cast their entire voting

weight into one of the three options (called nominal voting).

To identify if the voting is nominal or fraction, the _countVote  function of the 

GovernorCountingFractional  contract utilizes the support  and bytes memory

params  parameters in the function signature. If support  is 255  and params  has exactly

48 bytes, the vote is considered fractional.

While traditional voting mechanisms allow an account to participate in a voting process only

once, the GovernorCountingFractional  contract allows for rolling voting, whereby one

account can vote for a proposal with a portion of its total weight and then subsequently vote

again with the remaining portion of its weight.

OpenZeppelin Contracts Release v5.1 Audit − Overview - Phase 2 − 8

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/audits/2023-10-v5.0.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/finance/VestingWalletCliff.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/finance/VestingWalletCliff.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L124
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L124


Given that fractional voting restricts the number of casted votes (in each category) to 128 bits,

depending on the decimals of the underlying token, a voter may have to split their vote into

multiple vote operations. This has been properly documented in the contract.

Support for ERC-1363 and ERC-7674
The ERC1363  contract extends the functionality of ERC-20 tokens by atomically allowing

code execution on the target contract after a transfer or approval. The transferAndCall

and transferFromAndCall  functions call the _checkOnTransferReceived  hook which

calls IERC1363Receiver-onTransferReceived  on the recipient address. Similarly, the 

approveAndCall  functions call the _checkOnApprovalReceived  hook which calls 

IERC1363Spender-onApprovalReceived  on the spender address.

The draft-ERC20TemporaryApproval  contract implements the ERC-7674 standard which

introduces temporary approval extensions for ERC-20 tokens. By using transient storage, the 

owner  can approve an allowance for the spender  which is only valid for the current

transaction.

Code Refactor
In the v5.1 release, the checkOnERC721Received  function which is used to verify if a

recipient contract implements the IERC721Receiver-onERC721Received  hook, has been

moved to a new ERC721Utils  library. Similarly, the checkOnERC1155Received  and 

checkOnERC1155BatchReceived  functions have been moved to the ERC1155Utils

library.

Addition of New Utilities
A set of new contracts has been added to the utils  suite. These contracts provide

implementations for cryptographic libraries such as RSA  and P256 , and new data structures

such as CircularBuffer , Heap , and MerkleTree . The ReentrancyGuardTransient

library implements the ReentrancyGuard  using transient storage.

A comprehensive list of changes made in the v5.1 release can be found in the changelog.

OpenZeppelin Contracts Release v5.1 Audit − Overview - Phase 2 − 9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L126C14-L130
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/ERC1363.sol#L156
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/ERC1363.sol#L156
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/ERC1363.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/ERC1363.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/draft-ERC20TemporaryApproval.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/draft-ERC20TemporaryApproval.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC1155/utils/ERC1155Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC1155/utils/ERC1155Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC1155/utils/ERC1155Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/CHANGELOG.md


Security Model and Trust
Assumptions
Auditing libraries requires a shift in focus due to their composability within blockchain

protocols. While the scope of an audit is typically limited to the code itself, this expands when

it comes to libraries because of their potential internal and external integrations. Libraries act

as foundational components for many protocols. This means that their security is influenced

not just by their internal robustness, but also by how they are utilized by integrators. Therefore,

ensuring a library’s security involves not only reviewing the code but also anticipating its

various use cases and integration scenarios.

In addition, the complexity grows because while a library must cover a wide range of potential

use cases, the responsibility for secure implementation often lies with the developers who

integrate it into their projects. A library's security risks can multiply depending on how well

developers understand and utilize its contracts. This necessitates extra care to ensure that all

potential threats, both direct and indirect, are either identified and addressed, or documented

so that the developers are aware of the security risks.

OpenZeppelin Contracts Release v5.1 Audit − Security Model and Trust
Assumptions − 10



Medium Severity

M-01 AccessManager's schedule Function Misses 
minGas and minValue - Phase 1
The schedule function of the AccessManager  contract allows users to schedule some

calls to target . This operation generates an operationId  by hashing the provided 

caller  address, target  address, and data .

However, when calling execute  on a scheduled operation, the call is performed using 

msg.value  as the attached value. This msg.value  can be anything and is not meant to be

a part of operationId . As a result, there can be different execution outcomes for the same 

operationId  if the target  contract implements a logic that depends on msg.value . To

some extent, the same argument can be made for the provided gas in the execute  function,

given that the target  might have custom logic based on that as well.

Consider adding minimum committed minValue  and minGas  parameters to the schedule

function and check those in the execute  function implementation. Alternatively, consider

making them exact values instead of minimal ones.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Both gas and value were left out of the operationId  considering that the operation

can only be executed by its original scheduler. For this reason, the proposer has full

control of how the proposal is executed and can evaluate the execution requirements of

the target at that moment.

The team considers that specifying exact gas  and value  allows to DoS an operation

by manipulating the target requirements. Similarly, specifying minimum values does not

eliminate the possibility of different execution outcomes.

For these reasons, and considering that this change would be breaking, we have

decided not to include gas  and value  parameters as part of an operation.

OpenZeppelin Contracts Release v5.1 Audit − Medium Severity − 11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L432
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L484


M-02 Proving Empty Set Inclusion May Lead to
Issues for Integrators in 
MerkleProof.multiProofVerify - Phase 1
The multiProofVerify function of the MerkleProof  library allows for proving the

inclusion of an empty set of leaves in the root of a tree. While this logic may be valid in

isolation, it poses a significant risk during integration into other codebases. Particularly when

the integrator accepts arrays of arguments from users and relies on this function to validate the

inclusion of a leaf in the tree.

The issue occurs when the proof  array only contains the Merkle root, and both the 

proofFlags  and leaves  arrays are empty. Despite the absence of a complete proof, the

function still computes the Merkle root and considers the proof as valid. This can lead to a

scenario where a user can bypass proper validation by submitting an incomplete proof that the

function accepts as valid and returns true . A secret gist has been created with PoC

demonstrating the potential problem.

To ensure the safety of integrators, consider adding an additional argument such as 

treeHeight  to the function and validate that the arguments provided are indeed for that

height. This would prevent situations where, for example, an integrator assumes a tree height

of 5 but the user can pass a set of arguments corresponding to the proof of an empty set at

the root and the function still returns true . Alternatively, consider adding a warning for

integrators which could help mitigate this risk.

Update: Resolved in pull request #5144 at commit c304b67 and in pull request #5142 at

commit bcd4beb. The OpenZeppelin Contracts team stated:

The empty set validity is a property we expect in the multiProofVerify  function

according to a consistent no-op policy that we have followed throughout the library. As

such, we consider this inclusion proof a complete one and acknowledge the risks of

using the multiProofVerify  function without validating the content of its leaves.

However, we did not find any meaningful use case where the leaves are used only for

proof validation without further validation or usage. Considering this, we think the 

treeHeight  argument might increase the algorithm's complexity and undermine

developer experience while not preventing a concrete impact. We added a note to make

the validity of the empty set proof explicit but decided against changing the function

semantics to preserve backward compatibility.

OpenZeppelin Contracts Release v5.1 Audit − Medium Severity − 12

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L172
https://gist.github.com/KumaCrypto/1acd43eb941316f91472fbdec9d3af54
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5144
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/c304b6710b4b5fcf2a319ad28c36c49df6caef14
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5142
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/bcd4beb5e7fd8bd8edf160fbffb5d5b03804efdb


M-03 Dirty Bytes Can Manipulate Derived
Mapping Slot - Phase 2
The SlotDerivation  library allows developers to derive a value slot given the slot of a

mapping and a key. There are several functions depending on various key types. Two of these

supported key types are address  and bool . These two types allocate 20 bytes and 1 byte,

respectively. However, if these input keys have previously been manipulated or assigned with

assembly, it is possible that the upper bytes are dirty (non-zero). These dirty bytes would lead

to a different hash and therefore different storage location. The impact of this flaw is very

context-dependent with the caveat of assembly manipulation, but can escalate to severe

issues.

Consider cleaning the upper bytes of the address  and bool  type key before hashing these

values.

Update: Resolved in pull request #5195 at commit 9f0960d.

Low Severity

L-01 Royalty Calculation May Result in Zero
Token Transfers Between Buyer and Seller of NFT
- Phase 1
In ERC2981.sol , the _setTokenRoyalty  function checks and reverts if feeNumerator

is greater than _feeDenominator()  to ensure that royaltyAmount  is always less than

the salePrice . However, the function accepts feeNumerator  to be equal to 

_feeDenominator() . In the royaltyInfo  function, if feeNumerator  is equal to 

_feeDenominator() , the royaltyAmount  becomes equal to salePrice , which could

translate to the total price of the NFT sale being paid as royalty and no transfer of ERC-20

tokens between the buyer and the seller.

It is essential to note that most NFT marketplaces that support royalty payments have distinct

addresses, one for transfer of sale price, and another for paying royalty. In general, the royalty

is paid to the creator of the NFT and the sale price is transferred from the buyer to the seller (or

owner) of the NFT. The ERC states that royalty should be a percentage of the sale price.

Therefore, the royalty being equal to 100% of the sale price is a valid scenario. However, a

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 13

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/SlotDerivation.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/SlotDerivation.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/SlotDerivation.sol#L83-L105
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/SlotDerivation.sol#L83-L105
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/SlotDerivation.sol#L83-L105
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5195
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5195/commits/9f0960d1a3c7d5c645dc3d4fc90e801fb4c3ae9c
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/common/ERC2981.sol#L123-L126
https://eips.ethereum.org/EIPS/eip-2981#specification


transfer of zero amount of tokens between the buyer and the seller of the NFT could be

incompatible with protocols that use ERC-20 tokens which do not allow zero-token transfers.

Consider documenting the aforementioned behavior so that the protocols integrating with this

contract are aware of potential zero-amount transfers.

Update: Resolved in pull request #5173. The OpenZeppelin Contracts team stated:

The team agreed with the risks of paying the royaltyAmount  using an ERC-20 token

that reverts on 0-value transfers. We are documenting this issue with a note for

integrators to consider.

L-02 Missing Docstrings - Phase 1
Throughout the codebase, multiple instances of missing docstrings were identified:

The ADMIN_ROLE  state variable in AccessManager.sol

The PUBLIC_ROLE  state variable in AccessManager.sol

The upgradeToAndCall  function in TransparentUpgradeableProxy.sol

Consider thoroughly documenting all functions (and their parameters) that are part of any

contract's public API. Functions implementing sensitive functionality, even if not public, should

be clearly documented as well. When writing docstrings, consider following the Ethereum

Natural Specification Format (NatSpec).

Update: Resolved in pull request #5168.

L-03 Custom Functions Might Modify Memory -
Phase 1
The custom hasher function of the MerkleProof  library and the comp comparator

function of the Array  library are arbitrary functions passed as input parameters by

integrators. There are no restrictions on these functions apart from the list of input and output

parameters. As such, integrators might maliciously or accidentally code these functions in a

way that modifies the memory state whenever they are executed. Depending on the logic of

these functions, modifications done to memory can result in unexpected behavior.

While balancing the trade-offs between providing flexible library code and the risk of side

effects like memory manipulation, consider adding this edge case as a warning in the

documentation.

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 14

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5173
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L101
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L101
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L18
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5168
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L74
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Arrays.sol#L32


Update: Resolved in pull request #5174. The OpenZeppelin Contracts team stated:

We acknowledge the risks of custom hashing functions so we are documenting that

memory side effects should be considered when using function pointers

L-04 Incorrect or Misleading Docstrings - Phase 1
Throughout the codebase, multiple instances of incorrect or misleading docstrings were

identified:

This docstring in the ERC1967Utils.sol  incorrectly mentions that the library is an

"abstract contract".

This docstrings within the _encode  function in Base64.sol  states that, if padding is

absent, the data.length  is rounded up and then multiplied by 4. However, in the code

implementation, data.length  is first multiplied by 4 and then rounded up.

Consider updating the aforementioned instances of misleading docstrings for improved code

clarity and readability.

Update: Resolved in pull request #5168.

L-05 Different Pragma Directives Are Used -
Phase 2
In order to clearly identify the Solidity version with which the contracts will be compiled,

pragma directives should be consistent across file imports.

MerkleTree.sol  has the pragma directive pragma solidity ^0.8.0;  and imports the

file Panic.sol , which has a different pragma directive pragma solidity ^0.8.20; . In

addition, Hashes.sol  is the only other file in the entire codebase that uses pragma

solidity ^0.8.0;  directive.

Consider using the same floating pragma version in all files.

Update: Resolved in pull request #5198. The OpenZeppelin Contracts team stated:

We are increasing the pragma version to 0.8.20. This is consistent with the rest of the

library.

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 15

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5174
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/proxy/ERC1967/ERC1967Utils.sol#L12
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Base64.sol#L48-L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Base64.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Base64.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5168
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Panic.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Panic.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/Hashes.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/Hashes.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/Hashes.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/Hashes.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5198


L-06 Vesting Can Start Before Cliff Ends - Phase
2
A cliff is a specific period during which the tokens are locked and the holder cannot claim the

allocated tokens. However, the _vestingSchedule  function in the VestingWalletCliff

contract allows the vesting to begin when the timestamp  becomes equal to the cliff() .

Consider starting the vesting period after the cliff has ended.

Update: Acknowledged, not resolved. The understanding of the cliff point in time is subjective

and the OpenZeppelin Contracts team prefers that the cliff timestamp marks the beginning of

the vesting. The OpenZeppelin Contracts team stated:

The interpretation of the cliff from VestingWallerCliff  matches the one we

observed in other similar contracts, such as this one from ThirdWeb.

In any case, this difference of interpretation (< vs <=) only changes the outcome for one

particular second. This is insignificant over the common duration of cliffs (months) and

vestings (years). For this difference to even be visible, you would need a block to be

produced at the exact second the cliff ends (there is an 8% chance that this block even

exists, considering 12s between blocks), and you would have to release the asset in that

exact block. Even if that were to happen, re-submitting the same transaction in the next

block would "resolve" things.

Here we value lower gas cost (of < over <=) and, more importantly, consistency with

existing vesting wallets.

L-07 Over-Engineered Heap - Phase 2
A heap is a binary-tree-based data structure that satisfies the heap property, which is that the

value of a parent node is always less than the values of its children. Heap.sol  uses an array

of Node  objects to implement a heap, where each Node  consists of a value , an index ,

and a lookup . Currently, the insertion of a new element is done by pushing a new node at the

end of the array, comparing the value of this node to the value of the parent node, and 

swapping the indexes and lookups if the value of the new element is less than the value of the

parent node. This process is repeated till the heap property is met.

The root element is removed by reading the root and the last elements of the heap. If the 

rootNode  is not the last element of the array, the value of the root is replaced with the value

of the last element, and the respective indexes and lookups are exchanged. Once copied to

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/finance/VestingWalletCliff.sol#L50
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/finance/VestingWalletCliff.sol#L50
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/finance/VestingWalletCliff.sol#L50
https://thirdweb.com/arbitrum/0x6f73a287611526d57112ad26ec396d86be65e104/sources
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L140
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L158
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L296
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L297
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L345
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L378
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L378
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L379-L390


the root node, the last element is popped out of the array. The heap then rebalances (or 

heapifies) its nodes by comparing the root value to its children's values until the heap property

is met, thereby swapping the indexes and lookups wherever necessary. Similarly, a 

replacement of the root element is done by replacing the value of the root element with the

new value, and heapifying until the heap property is met.

The current implementations of the insert , pop , and replace  functionalities are difficult

to follow due to the necessary reading and writing of the indexes  and lookups .

Additionally, the _swap  function along with the _siftUp  or _siftDown  functions costs

more gas to swap the indexes  and lookups  of two nodes as compared to simply

swapping the values .

To reduce the complexity of the codebase, consider simplifying the heap structure by using a

linear uint256  array that stores the values of each node. The array is created such that the

root is always at index 0 (i.e., the first element of the array). For each node at index i , the

value of the left child is found at index i * 2 + 1  and the right child is at i * 2 + 2 .

Update: Resolved in pull request #5190 at commit 71fb803 and in pull request #5215 at

commit 2843690. The OpenZeppelin Contracts team stated:

As suggested, the Heap is updated to remove the dependency on index  and lookup

since it is redundant to store them. This way, we simplify the implementation and

improve readability while keeping the core array-based implementation that will leverage

cheaper adjacent storage accesses after the Verkle EVM upgrade.

L-08 Small Public Exponents in RSA - Phase 2
The pkcs1  function of RSA.sol  allows small values of the public exponent  (e.g., ).

Small values of  have been known to be vulnerable to attacks such as Coppersmith's attack,

which the RSA  implementation seems to be vulnerable to.

In cases where the public key is small (e.g., ), Coppersmith's attack on the RSA

signature scheme allows an attacker to forge a signature  for an arbitrary message  without

knowledge of the private key . This is achieved by solving the following equation using the

Coppersmith's method [1, 2]:

The above is equivalent to computing the third root of the padded message  modulo ,

which is feasible for , when the structure of  is partially known as in the case of the

PKCS#1 v1.5 padding scheme and the solution  is smaller than the modulus . Specifically, 

eee e=3e=3e = 3
eee

e=3e=3e = 3
SSS mmm

ddd

S3=Mmodn S^3 = M \bmod n S =3 M mod n

MMM nnn
e=3e=3e = 3 MMM

SSS nnn

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 17

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L394
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L436
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L462
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L462
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L465
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L492-L503
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L492-L503
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L553-L568
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L553-L568
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L513-L543
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L513-L543
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5190
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5190/commits/71fb8035ebe8b32ff9a681b3a1266b91c1f5a50b
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5215
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5215/commits/2843690dc69ec04a49012668a1eeeb1960c552fb
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L44
https://en.wikipedia.org/wiki/Coppersmith's_attack
https://en.wikipedia.org/wiki/Coppersmith_method
https://www.klwu.co/maths-in-crypto/lattice-1/


Coppersmith's theorem states that for the attack to be successful, the length of  should be at

most  for , where  is the small public exponent (e.g., ). Roughly, the

length of  should not be larger than  or  bits for  of around  bits.

The implementation seems to be vulnerable to Coppersmith's attack, where the attacker will

solve the above equation for the part of the padded message  that corresponds to the

message hash . Since the hash is of size  bits, which is less than the limit , the

attack is likely to succeed. The attack steps are listed below:

Signature Forgery Attack Steps Using Coppersmith's Method

Choose an arbitrary  the attacker wants to forge a signature for.

Compute the hash .

Compute the padded message  according to the PKCS#1 v.1.5 padding scheme: 

Break the solution  into a known part , composed of the padding prefix up to (and

excluding) the hash  and an unknown part , of size , that we want

to solve for: 

Apply Coppersmith's method to find a root of the following polynomial: 

 This is equivalent to solving for  the equation 

, where .

If a solution  is found, then  is a valid forged signature produced without

knowledge of the private key  that would be validated correctly since 

. Stop.

If a solution is not found, repeat from step (1.) with a new message .

An immediate and easy fix would be to enforce the use of large public exponents, such as 

. This would make the attack less feasible, but still theoretically possible. Therefore, as a

long-term solution, consider switching to the EMSA-PSS  padding scheme. The latter

effectively mitigates the attack due to its randomized padding which makes the structure of the

padded message  unpredictable. In particular, it is not possible to break  into a known

and unknown part.

Update: Resolved in pull request #5234 at commit c9243c4. The OpenZeppelin Contracts team

prefers to keep the implementation flexible by verifying any exponent with a valid signature. A

warning was added to the documentation that exponent 65537 is recommended by the NIST

and that lower exponents raise security concerns.

SSS
n1e−ϵn^{\frac{1}
{e}-
\epsilon}

n −ϵ
e
1

1d>ϵ>0\frac{1}
{d}
>\epsilon>0

>
d
1 ϵ > 0 eee e=3e=3e = 3

SSS n13n^\frac{1}
{3}
n 3

1 ≈341\approx
341
≈ 341 nnn 102410241024

MMM

h(m)h(m)h(m) 256256256 341341341

1. mmm

2. h(m)h(m)h(m)
3. MMM

M=(0x00∥0x01∥0xFF…
0xFF∥0x00∥ASN.
1 structure∥h(m))M
=
(\texttt{0x00}\|
\texttt{0x01}\|
\texttt{0xFF}
\ldots\texttt{0xFF}
\|
\texttt{0x00}\|
\text{ASN.
1
structure}
\|
h(m))

M = (0x00∥0x01∥0xFF… 0xFF∥0x00∥ASN.1 structure∥h(m))
4. SSS Δ\DeltaΔ

h(m)h(m)h(m) xxx ∣x∣=∣h(m)∣|
x|
=|
h(m)|

∣x∣ = ∣h(m)∣
S=(0x00∥0x01∥0xFF…
0xFF∥0x00∥ASN.
1 structure∥x)=Δ∥x=2∣x∣Δ+xS
=
(\texttt{0x00}\|
\texttt{0x01}\|
\texttt{0xFF}
\ldots\texttt{0xFF}
\|
\texttt{0x00}\|
\text{ASN.
1
structure}
\|
x)
=
\Delta\|
x
=
2^{|
x|}
\Delta
+
x

S = (0x00∥0x01∥0xFF… 0xFF∥0x00∥ASN.1 structure∥x) =
Δ∥x = 2 Δ +∣x∣ x

5. P(x)=(2∣x∣Δ+x)e−M≡0
mod
nP(x)=(2^{|
x|}
\Delta
+
x)^e-
M
\equiv
0
\quad
\bmod
n

P (x) =
(2 Δ +∣x∣ x) −e M ≡ 0 mod n xxx
(2∣x∣Δ+x)e=M
mod
n(2^{|
x|}
\Delta
+
x)^e
=
M
\bmod
n

(2 Δ +∣x∣ x) =e M mod n e=3e=3e = 3
6. xxx S=Δ∥xS=\Delta\|

x
S = Δ∥x
ddd Se=(2∣x∣Δ+x)e=M

mod
nS^e=(2^{|
x|}
\Delta
+
x)^e
=
M
\bmod
n

S =e (2 Δ +∣x∣

x) =e M mod n

7. mmm

655376553765537

MMM MMM

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 18

https://handwiki.org/wiki/Coppersmith's_attack
https://en.wikipedia.org/wiki/Coppersmith_method
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5234
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5234/commits/c9243c4bf1bbf5e939219001e07673a21b1337c6
https://csrc.nist.gov/pubs/sp/800/78/5/final


L-09 Incorrect Addition With Point at Infinity -
Phase 2
In the P256  library, the _jAdd  function adds two points in Jacobian coordinates. This

addition operation is used in the _preComputeJacobianPoints  and _jMultShamir

functions to perform the computation of , which is the main step for signature

verification and public key recovery. Note that  is the curve's generator and  the public key.

However, this _jAdd  function does not properly handle the addition of a point with the point

at infinity  (the identity element). For any point , the addition of  should be ,

whereas _jAdd  returns the incorrect point . This prevents a valid signature from

being correctly verified.

For instance, if a message was signed with the private key , where  is the order of the

group, then  is equal to . Thus, the pre-computed point points[0x05]  is 

. When this point is looked up during _jMultShamir  to be added to the

rolling coordinates , the loop cycle should basically do a no-op, but instead resets 

 to . The following table contains all private keys that lead to a pre-computed

point at infinity.

Private Key Lookup Point at Infinity

, , 

Two approaches can be taken to address this issue:

Perform a no-op by skipping the _jAdd  operation in _jMultShamir  when the pre-

computed point is the point at infinity.

In the _jAdd  function, check if one of the points is the point at infinity and return the

other.

It is important to note that approach (1.) would leave the _jAdd  function with this particular

bug, but would resolve the issue in the context of this implementation. This is the case

G⋅u1+P⋅u2G
\cdot
u_1
+
P
\cdot
u_2

G ⋅ u +1 P ⋅ u2

GGG PPP

O\mathcal{O}O QQQ Q+OQ
+
\mathcal{O}

Q + O QQQ
(0,
0,
0)
(0,
0,
0)

(0, 0, 0)

N−1N-1N − 1 NNN
PPP −G-

G
−G P+G=−G+G=OP

+
G
=
-
G
+
G
=
\mathcal{O}

P + G =
−G + G = O

x,y,zx,
y,
z

x, y, z
x,y,zx,
y,
z

x, y, z (0,
0,
0)
(0,
0,
0)

(0, 0, 0)

N−1N
-
1

N − 1 P+GP
+
G

P + G 2P+2G2P
+
2G

2P + 2G 3P+3G3P
+
3G

3P + 3G

N−2N
-
2

N − 2 P+2GP
+
2G

P + 2G

N−3N
-
3

N − 3 P+3GP
+
3G

P + 3G

(N−1)/
2(N
-
1) /
2

(N − 1)/2 2P+G2P
+
G

2P + G

(N−3)/
2(N
-
3) /
2

(N − 3)/2 2P+3G2P
+
3G

2P + 3G

(N−1)/
3(N
-
1) /
3

(N − 1)/3 3P+G3P
+
G

3P + G

1. 

2. 

OpenZeppelin Contracts Release v5.1 Audit − Low Severity − 19

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L185
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L185
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L289
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L289
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L250
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L250
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L296
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L266
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L266


because no addition with the point at infinity would be performed since the addition operation

is skipped in _jMultShamir . Within _preComputeJacobianPoints  only  and  are

used as points for further calculations ( , , etc.), however, since  is an elliptic

curve point part of a group of order  where  and , it means

that neither  nor  can ever be equal to the point at infinity. Hence, the pre-computed

points are safe against the bug described above. Approach (2.) would fix the problem at its root

but is therefore more gas intense.

Carefully consider the two approaches mentioned above and adopt one. While doing so,

thoroughly document any accepted risks or incorrect behaviors. In addition, consider writing a

thorough test suite that validates a correct signature verification for previously affected private

keys over random messages.

Update: Resolved in pull request #5218 at commit 427d074. The OpenZeppelin Contracts

team chose to implement the first approach.

Notes & Additional
Information

N-01 Lack of Indexed Event Parameters - Phase 1
To improve the ability of off-chain services to search and filter for specific addresses creating

proposals, indexing the proposer  address in the ProposalCreated  event of 

IGovernor.sol  could be useful. Similarly, indexing proposalId  in the 

ProposalCreated , ProposalQueued , ProposalExecuted , ProposalCanceled , 

VoteCast , and VoteCastWithParams  events could be beneficial for filtering specific

proposals. However, discussion on issue 3826  of openzeppelin-contracts  repository

revealed that making changes to any of the events in the IGovernor.sol  interface could be

a breaking change for the integrators decoding these events.

Consider documenting this reasoning in IGovernor.sol  so that integrators are aware of this

limitation.

Update: Resolved in pull request #5175. Proper documentation has been added to the 

IGovernor.sol  interface.

2P2P2P 3P3P3P
2P+G2P+G2P + G 3P+G3P+G3P + G PPP

NNN N≡1mod
2N
\equiv
1
\mod
2

N ≡ 1 mod 2 N≡1mod
3N
\equiv
1
\mod
3

N ≡ 1 mod 3
2P2P2P 3P3P3P

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 20

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5218
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5218/commits/427d074115955a989face5ce299ed3647ed3bed7
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/IGovernor.sol#L115-L125
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/IGovernor.sol#L115-L125
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3826
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3826
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5175


N-02 Privileged User with Zero Execution Delay
Can Re-Execute Operations - Phase 1
In the AccessManager  contract, a user with zero execution delay can re-execute a

scheduled and executed operation, a cancelled operation, or an expired operation. Assigning a

role with no execution delay comes with a trust assumption that the user is trusted and will not

make any malicious or undesirable changes to the protocol, allowing them to execute any

operation regardless of the schedule. However, this is in contrast with the comment above the 

execute  function in the AccessManager  contract which states that 

_consumeScheduledOp  guarantees that a scheduled operation is only executed once. If a

role has zero execution delay, the role takes precedence over the schedule, allowing the role to

execute a scheduled operation more than once.

Consider documenting the precedence of the role over the schedule to correctly reflect this

scenario.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

The current behavior of the AccessManager 's execute  function is expected as it

allows any account with a privileged role to execute a function regardless of any

previously scheduled operation. We acknowledge this behavior but do not think

documentation is required since it does not change how developers should interact with

this contract.

N-03 Padding Ignored in Base64URL Encoding -
Phase 1
The encodeURL  function of the Base64  contract purposefully ignores any padding. This

implementation is based on RFC-4648 which allows the padding to be skipped for URL/URI

encoding since the pad character "=" is typically percent-encoded. As highlighted in this

research, depending on the behavior of the decoder, the optionality of padding can introduce

malleable outputs when decoding this string. 

Consider documenting explicitly that the padding is ignored while encoding the Base64URL

so that integrating projects are aware and able to modify the decoding functionality wherever

necessary.

Update: Resolved in pull request #5176. The OpenZeppelin Contracts team stated:

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 21

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L482
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L500-L502
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Base64.sol#L27-L29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Base64.sol#L27-L29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Base64.sol#L28
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://en.wikipedia.org/wiki/Percent-encoding
https://eprint.iacr.org/2022/361.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5176


The team agrees that it is an issue that mostly depends on the decoder implementation.

For this reason, we would like to document it on the decoding side once a Base64URL

decoder is implemented in OpenZeppelin Contracts. We are adding a small note to

clarify its behavior but have decided not to document it extensively.

N-04 Inconsistent Annotation for Documentation
- Phase 1
Throughout the codebase, inconsistent uses of annotations for referencing documentation

from the base contracts were identified. For instance, within Governor.sol , in line 99, the 

@dev See {IGovernor-name}.  annotation is used, whereas in line 839, the docstrings are

inherited via the @inheritdoc IGovernor  annotation.

The use of @inheritdoc  annotation is also inconsistent between certain contracts. For

instance, in AccessManager.sol , the annotation is a single-line comment, whereas in 

Governor.sol , the annotation is in a multi-line comment /** ... */  format.

To improve code readability, consider using a consistent standard for inheriting documentation

throughout the codebase.

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

This inconsistency has been discussed in issue 3502. Particularly, this comment details

the limitations of using @inheritdoc  for extending documentation. For these cases,

we leverage our documentation engine and use the @dev See {...}  syntax to point

users in the right direction while also writing additional documentation. We acknowledge

the inconsistency between single-line comments and /** ... */  comments and will

consider making them consistent in the future.

N-05 Inconsistent Use of Named Returns - Phase
1
Throughout the codebase, multiple instances of functions having inconsistent usage of named

returns were identified:

In the AccessManager  contract, multiple functions such as canCall , getAccess ,

and hasRole , utilize named return variables, whereas others like expiration  do not.

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 22

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/Governor.sol#L99
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/Governor.sol#L839
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L130
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/Governor.sol#L827-L829
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/Governor.sol#L827-L829
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3502
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3502#issuecomment-1164866525
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L131
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L131
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L190
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L190
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L203
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L203
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L150
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L150


In the ERC2771Forwarder  contract, the _validate  and _execute  functions use

named return variables, whereas the verify , _recoverForwardRequestSigner ,

and _isTrustedByTarget  functions do not.

To improve code readability, consider using the same return style across all of a contract's

functions.

Update: Resolved in pull request #5178 and in pull request #5177. The OpenZeppelin

Contracts team stated:

Previously, the team agreed to name the returned values when there is more than one.

We are documenting this clearly in our guidelines and adding missing names where

needed according to this policy.

N-06 Redundant Function Call in 
Checkpoints._insert - Phase 1
In the _insert  function of the Checkpoints  library, the _unsafeAccess  function is used

to retrieve a storage pointer to the struct. However, this retrieval has already been performed at

an earlier point in the code.

Consider directly using the previously retrieved storage pointer instead of calling 

_unsafeAccess  again.

Update: Resolved in pull request #5169 at commit 951b97e.

N-07 Incorrect Panic Error in modExp Functions -
Phase 1
The modExp  function in the Math  library will revert with an invalid panic error if the 

staticcall  to the precompile modexp  reverts due to running out of gas. The call to the

precompile may fail if the operation costs more gas than was provided, resulting in success

being false . This causes a revert with the DIVISION_BY_ZERO  panic error which misleads

library users.

Consider reverting with distinct errors for the case where m == 0  and when the 

staticcall  fails due to an out-of-gas error. The above also applies to the analogous 

modExp function for fixed-length arguments, though this is less likely to occur.

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 23

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol#L200
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol#L200
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol#L255
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol#L255
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5178
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5177
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Checkpoints.sol#L145
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Checkpoints.sol#L145
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Checkpoints.sol#L134
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5169
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/951b97ec17df37c74c42468c848944b53dc4fb16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L367
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L367
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L368
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L368
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L370
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L370
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L383
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L383
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L319


Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Detecting an out-of-gas error is already a difficult task. Although we acknowledge that

there is a mismatched panic if the function runs out of gas, there is no other side effect.

Future community efforts involve EOF, which removes gas observability. For this reason,

we would prefer not to make changes that limit our compatibility with it.

N-08 Poor Documentation in SafeERC20 - Phase 1
In _callOptionalReturn  and _callOptionalReturnBool  functions of the 

SafeERC20  library, there is a check that if some data is returned then the first word must be

true (1). However, there is no check that the length of the returned data is exactly one word.

This can lead to a scenario in which the target contract does not implement a token interface,

but at the same time, has a fallback function which returns some data with 1 in the first

returned word. In this case, the library will process the output and not revert.

Consider adding a warning to the code so that integrators are aware of this scenario.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

The referenced functions are currently private  so they are not available for

developers to use. We consider the current documentation to be satisfactory since it

already describes that non-reverting calls are assumed to be successful in the

corresponding entry points (i.e., safeTransfer , safeTransferFrom , and 

forceApprove ). We will consider documenting this if those functions ever become 

internal .

N-09 Non-Standardized Declaration of memory-
safe Assembly - Phase 1
There are two types of memory-safe assembly declarations:

assembly ("memory-safe")

/// @solidity memory-safe-assembly

Both types are used in the codebase, leading to inconsistencies. For example, the 

SafeERC20  contract uses the former, whereas the ERC2771Forwarder  contract uses the

latter. Moreover, according to Solidity documentation, the latter is likely to be deprecated.

Consider standardizing the use of the memory-safe  declaration.

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 24

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/utils/SafeERC20.sol#L146
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/utils/SafeERC20.sol#L146
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/utils/SafeERC20.sol#L174
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/utils/SafeERC20.sol#L174
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/utils/SafeERC20.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/utils/SafeERC20.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol#L312
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/metatx/ERC2771Forwarder.sol#L312
https://docs.soliditylang.org/en/latest/assembly.html#memory-safety


Update: Resolved in pull request #5172 at commit 04e0df3.

N-10 Unused Import - Phase 1
Having unused imports negatively affect code quality.

In IAccessManager.sol , the IAccessManaged  interface is imported but never used.

Consider removing the unused import statement to improve code clarity and readability.

Update: Resolved in pull request #5170 at commit 05f7a22.

N-11 Inconsistent Order Within Contracts - Phase
1
Throughout the codebase, multiple instances of contracts deviating from the Solidity Style

Guide due to having inconsistent ordering of functions were identified. The following is a non-

exhaustive list of such instances:

AccessManager has mixed orders of public  and internal  functions.

Checkpoints has mixed orders of internal  and private  functions.

To improve the project's overall legibility, consider standardizing ordering throughout the

codebase as recommended by the Solidity Style Guide (Order of Functions).

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

A negative aspect of reordering functions is that it may change the compiler output,

leading to unexpected results (e.g., suddenly hitting stack-too-deep errors). Also,

changing the order is difficult to review and audit as it produces a big diff that may not

be substantial. For these reasons, we decided not to make changes to function

ordering.

N-12 Typographical Errors - Phase 1
Throughout the codebase, multiple instances of typographical errors were identified:

In line 690 of AccessManager.sol , the variable name isTragetClosed  should be 

isTargetClosed .

In line 235 of Math.sol , expect  should be except .

• 

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 25

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5172
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/04e0df30aaf341bed5398012e3a8740bddeb6e04
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/IAccessManager.sol#L6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/IAccessManager.sol#L6
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5170
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/05f7a22360645f1feee81366eb2a4b10007941d2
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Checkpoints.sol
https://docs.soliditylang.org/en/latest/style-guide.html#order-of-layout
https://docs.soliditylang.org/en/latest/style-guide.html#order-of-functions
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/access/manager/AccessManager.sol#L690
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/Math.sol#L235


In line 61 of SignedMath.sol , bytes(0)  should be bytes32(0) .

In line 92 of StorageSlot.sol , an BooleanSlot  should be a BooleanSlot .

In line 102 of StorageSlot.sol , an Bytes32Slot  should be a Bytes32Slot .

In line 112 of StorageSlot.sol , an Uint256Slot  should be a Uint256Slot .

In line 132 and line 142 of StorageSlot.sol , an StringSlot  should be a

StringSlot .

In line 152 and line 162 of StorageSlot.sol , an BytesSlot  should be a

BytesSlot .

To improve code readability, consider fixing the above along with any other instances of

typographical errors in the codebase.

Update: Resolved in pull request #5171 at commit 3e44eed.

N-13 Inconsistent Declaration of memory-safe
Assembly - Phase 2
There are two types of memory-safe assembly declarations:

assembly ("memory-safe")

/// @solidity memory-safe-assembly

Both types are being used in the codebase, leading to inconsistencies. For example, the 

Packing  contract uses the former, whereas the Panic  contract uses the latter. Moreover,

according to Solidity documentation, the latter is likely to be deprecated.

Consider standardizing the use of the memory-safe declaration.

Update: Resolved in pull request #5172. The OpenZeppelin Contracts team stated:

Issue N-09 was resolved by migrating the memory-safe declarations to the newer 

assembly ("memory-safe")  syntax.

• 

• 

• 

• 

• 

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 26

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/math/SignedMath.sol#L61
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L92
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L102
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L112
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L132
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L142
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/StorageSlot.sol#L162
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5171
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/3e44eede9ab88e732b5f68be664ccc2d536febae
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Packing.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Packing.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Panic.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/Panic.sol#L49
https://docs.soliditylang.org/en/latest/assembly.html#memory-safety
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5172


N-14 Inconsistent Order Within Contracts -
Phase 2
Throughout the codebase, multiple instances of inconsistent ordering of functions were

identified:

In the GovernorCountingFractional  contract, view  functions should come before 

pure  functions and internal  functions should come before internal view

functions.

In the Heap  library, internal  functions should come before internal view

functions.

In the P256  library, internal  functions should come before private  functions.

In the ReentrancyGuardTransient  contract, internal  functions should come

before private  functions.

In the ERC20TemporaryApproval  contract, public  functions should come before 

internal  functions.

To improve the project's overall legibility, consider standardizing ordering throughout the

codebase as recommended by the Solidity Style Guide (Order of Functions).

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We generally adhere to the Solidity style guide on function ordering. However, in the

presented cases, changing the order of the functions makes it difficult to review and

audit parts of the contracts. For this reason, we decided not to change the function

ordering in these cases.

N-15 Missing Named Parameters in Mappings -
Phase 2
Since Solidity 0.8.18, developers can utilize named parameters in mappings. This means

mappings can take the form of 

mapping(KeyType keyName => ValueType valueName) . This updated syntax provides

a more transparent representation of a mapping's purpose.

Within GovernorCountingFractional.sol , the _proposalVotes  state variable can

benefit from a named parameter.

Consider adding named parameters to mappings in order to improve the readability and

maintainability of the codebase.

• 

• 

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 27

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/ReentrancyGuardTransient.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/ReentrancyGuardTransient.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/draft-ERC20TemporaryApproval.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC20/extensions/draft-ERC20TemporaryApproval.sol
https://docs.soliditylang.org/en/latest/style-guide.html#order-of-layout
https://docs.soliditylang.org/en/latest/style-guide.html#order-of-functions
https://github.com/ethereum/solidity/releases/tag/v0.8.18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L47


Update: Resolved in pull request #5204. The OpenZeppelin Contracts team stated:

We agree that named parameters in mappings improve readability when the mapping 

key  specifies a name. In the case of the mapping's value , its name is already that of

the mapping itself (e.g., _proposalVotes ). For this reason, we are updating 

GovernorCountingFractional  to name the _proposalVotes  parameter, but we

decided not to name its value as we have consistently not done so across the library.

N-16 Typographical Errors - Phase 2
Throughout the codebase, multiple instances of typographical errors were identified:

In line 21 of IERC1363Receiver.sol , "The address which are tokens transferred

from" should be "The address which the tokens are transferred from".

In line 19 of ERC1155Utils.sol , "if the target address is doesn't contain code"

should be "if the target address doesn't contain code".

In line 47 and line 314 of Heap.sol , "Binary heap that support values" should be

"Binary heap that supports values".

In line 240 and line 507 of Heap.sol , "leafs" should be "leaves".

In line 12 of RSA.sol , "semanticaly" should be "semantically".

In line 30 of RSA.sol , "according the verification" should be "according to the

verification".

In line 140 of RSA.sol , "safetiness" should be "safeness".

In line 95 of CircularBuffer.sol , "elements kepts in" should be "elements kept in".

Update: Resolved in pull request #5194. The OpenZeppelin Contracts team stated:

The indicated typographical errors have been addressed as per the recommendations.

N-17 Potential Licensing Conflict - Phase 2
The following two cryptography libraries might face licensing conflicts:

The RSA  library is said to be inspired by the adria0/SolRsaVerify  repository, which

is licensed under GPL version 3.

The P256  library is said to be based on the itsobvioustech/aa-passkeys-

wallet  repository, also licensed under GPL version 3.

As the OpenZeppelin contracts library is released under the MIT license, consider clarifying

that inspired and copied code under GPL v3 can be released under MIT.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 28

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5204
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/interfaces/IERC1363Receiver.sol#L21
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/token/ERC1155/utils/ERC1155Utils.sol#L19
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L314
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L240
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L507
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L12
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L140
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/CircularBuffer.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5194
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L14
https://github.com/adria0/SolRsaVerify
https://github.com/adria0/SolRsaVerify
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L15
https://github.com/itsobvioustech/aa-passkeys-wallet/blob/main/src/Secp256r1.sol
https://github.com/itsobvioustech/aa-passkeys-wallet/blob/main/src/Secp256r1.sol
https://github.com/itsobvioustech/aa-passkeys-wallet/blob/main/src/Secp256r1.sol
https://github.com/itsobvioustech/aa-passkeys-wallet/blob/main/src/Secp256r1.sol


Update: Resolved in pull request #5205. The OpenZeppelin Contracts team stated:

The team recognizes the potential licensing conflicts and we are clarifying that the code

that inspired our implementation is under a GPL v3 license.

N-18 Incorrect and Misleading Documentation -
Phase 2
Throughout the codebase, multiple instances of incorrect or misleading documentation were

identified:

The documentation of the VestingWalletCliff constructor  does not match the

implementation. There is just the cliffSeconds  parameter to be described. Note that

the inherited VestingWallet  contract also sets up the beneficiary as the owner using

the Ownable  contract instead of using the Ownable2Step  contract as indirectly

described.

The title of the IERC1363Spender  is incorrect as it is missing the "I" prefix.

In P256.sol , the comment for isValidPublicKey  states , whereas

it should be . Note that  are coordinates of an EC point and  is the

modulus of the base field they are elements of. So, all values of the coordinates are

strictly less than the modulus.

In P256.sol , the comment for _jMultShamir  says , whereas it should

be .

The _preComputeJacobianPoints  function has some comments on the end-result

of each table entry. For consistency, the 0x0c  array entry should be commented as 

(3g)  instead of (g+2g) . Also note that one index is 0x0C  with a capital "C" instead

of the otherwise lowercase hex characters.

In RSA signature schemes, the DigestInfo  allows having some optional parameters.

However, these are not checked in the RSA  implementation. In principle, this may create

a malleability issue. Although, the way the buffer  is parsed suggests that the

implementation does not support optional parameters. Consider clarifying this in the

documentation.

In RSA.sol , the verification has the sha-256 OID hard-coded in it, which is the only

hash function supported at the moment. Since there is a wrapper ( pkcs1Sha256 ) for

SHA256, it suggests the possibility of adding wrappers for other hash functions (e.g.,

Keccak) as well. If another hash function is used with the verification procedure,

verification will fail due to the hard-coded OID. Consider clarifying in the documentation

that the implementation currently only supports SHA256.

• 

• 

• x≤P,y≤Px\le{P},y\le{P}x ≤ P , y ≤ P

x<P,y<Px<{P},y<{P}x < P , y < P x,yx,yx, y PPP

• Pu1+Qu2Pu_1
+
Qu_2

Pu +1 Qu2

Gu1+Qu2Gu_1
+
Qu_2

Gu +1 Qu2

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 29

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5205
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/finance/VestingWalletCliff.sol#L24
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/interfaces/IERC1363Spender.sol#L7
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/interfaces/IERC1363Spender.sol#L7
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L145
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L242
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L302
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L302
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L305
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L305
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L98-L113
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L101
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L20


In the pkcs1  function of RSA , the length of the RSA modulus  is compared to the

constant 0x40 . However, it is not clear how this constant is computed. Consider

clarifying this in the documentation.

The index description of the CircularBuffer  library describing "The last item is at [...]

and the last item is at [...]" is unclear.

Consider applying the above suggestions for a clearer documentation that helps reason about

the codebase.

Update: Resolved in pull request #5206 at commit 0a0d44d and in pull request #5229 at

commit 9c986c5. The OpenZeppelin Contracts team stated:

The recommendations were implemented with a few differences. In the case of 

P256.sol , it was renamed to G·u1 + P·u2  instead of G·u1 + Q·u2 , which is

consistent with the arguments of _preComputeJacobianPoints . For RSA.sol ,

the pkcs1  function was renamed to pkcs1Sha256  to be consistent with the hard-

coded OID. Also, the RSA modulus is now enforced to be at least 0x100  following the

recommendation from N-22.

N-19 Redundant Code - Phase 2
Within the recovery  function of the P256  library, the v % 2  operation is unnecessary given

that the value of v  can only be 0 or 1.

Consider removing any redundant code to improve the readability and maintainability of the

codebase.

Update: Resolved in pull request #5200.

N-20 Inconsistent Integer Base Within a Contract
- Phase 2
In RSA.sol , integer constants are represented using both decimal (in line 98 and line 104)

and hexadecimal (in line 49, line 56, line 63, line 98, line 104, and line 134).

To avoid confusion and improve the readability of the codebase, consider using a consistent

notation.

Update: Resolved in pull request #5206.

• nnn

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 30

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/CircularBuffer.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5206
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5206/commits/0a0d44d338fc52adc8b38c0402ba6daa1982dabe
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5229
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5229/commits/9c986c52bc4eb8f072326f74530f4556e8cf202f
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L125-L127
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L125-L127
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5200
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L98
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L104
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L56-L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L63
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L98-L99
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L104-L105
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L134
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5206


N-21 Inconsistent _jAdd Function Interface -
Phase 2
In the _jAdd  function of the P256  library, the first point is passed as a JPoint  struct, while

the second point is passed with the explicit coordinates. In the assembly block, this leads to

fetching the , , and  coordinates from the first point using the mload  and add  opcodes,

thereby making the code additionally complex.

Consider changing the function interface by passing both points' coordinates explicitly.

Alternatively, consider documenting why this interface is required as is.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Using JPoint  for both points would be significantly more gas-expensive in the context

of how _jAdd  is used within other functions, particularly _jMultShamir . The current

design minimizes unnecessary memory operations. The _jAdd  function is primarily

called from contexts where one point is already in JPoint  format (often a running

calculation result), while the other is a new point being added, for which we have direct

coordinate access (such as in _jAddPoint ).

Note that _jAdd  using mixed input (point in memory + coordinates on the stack) is

necessary to circumvent stack-too-deep errors. The mloads for point 1 are done at the

very last moment. Doing the mload only once and caching the value on the stack would

possibly save gas, but it also blocks compilation without via-ir.

N-22 Arbitrary RSA Modulus Size - Phase 2
The comment for pkcs1  correctly states that using an RSA modulus of 1024  bits is unsafe

and encourages the use of at least 2048  bits.

Consider enforcing this requirement in the code so that the signatures produced under moduli

of size less than 2048  are not supported. This is in accordance with the minimum key sizes 

recommended by NIST throughout the year 2030.

Update: Resolved in pull request #5206. The OpenZeppelin Contracts team stated:

We acknowledge the risks of using a modulus of less than 2048  bits according to the

documentation so we are enforcing it.

xxx yyy zzz

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 31

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L186-L189
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L186-L189
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L20-L24
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L20-L24
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L33-L34
https://csrc.nist.gov/pubs/sp/800/78/5/final
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5206


N-23 Custom Functions Might Modify Memory -
Phase 2
The custom fnHash function of the MerkleTree  library and the comp comparator function

of the Heap  library are arbitrary functions passed as input parameters by integrators. There

are no restrictions on these functions apart from the list of input and output parameters. As

such, integrators might maliciously or accidentally code these functions in a way that modifies

the memory state whenever they are executed. Depending on the logic of these functions,

modifications done to memory can result in unexpected behavior.

While balancing the trade-offs between providing flexible library code and the risk of side

effects like memory manipulation, consider adding the aforementioned edge case as a warning

in the documentation.

Update: Resolved in pull request #5213 and in pull request #5190.

N-24 Lack of Input Validation - Phase 2
The setup  function of CircularBuffer.sol  does not verify if the size  of the buffer is

zero. In addition, the push  function of CircularBuffer.sol  does not verify if the buffer 

self  was set up. This could potentially lead to the modulus  being zero and revert due to

modulo by zero.

Consider checking the inputs explicitly to reduce the attack surface of the codebase.

Update: Resolved in pull request #5214. A check was added to the setup  function to ensure

that the buffer size is not zero. In the push  function, the panic of modulus by zero has been

kept as it is.

N-25 Unintialized Variable - Phase 2
Initializing some variables and leaving out others can impact code readability. In the 

_countVote  function of the GovernorCountingFractional  contract, the usedWeight

variable has not been initialized whereas others have been.

To improve code clarity and readability, consider initializing the usedWeight  variable as well.

Update: Resolved in pull request #5206.

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 32

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L90
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5213
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5190
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/CircularBuffer.sol#L64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/CircularBuffer.sol#L64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/CircularBuffer.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/CircularBuffer.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5214
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L146-L148
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/governance/extensions/GovernorCountingFractional.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5206


N-26 Applicability of Padding Oracle Attacks to 
RSA.sol - Phase 2
The EMSA-PKCS1-v1_5  padding scheme has been shown to be susceptible to

implementation errors that allow signature forgeries [1, 2] using variants of the padding oracle

attack by Bleichenbacher (1998), originally proposed for RSA encryption. In a padding oracle

attack on signatures, the attacker submits carefully chosen malformed signatures, modifying

parts of the padding. From the responses it gets from the signing algorithm, the attacker is able

to produce a forgery with high probability.

As a mitigation, the RFC8017 standard proposes the EMSA-PSS padding scheme. This

scheme is probabilistic, meaning that the same message can have different paddings each

time it is signed. The added randomness effectively mitigates padding oracle attacks. In

addition to having oracle access to the verification algorithm, the Bleichenbacher attack on

signatures leverages the following weaknesses:

Faulty implementations that only check the first bytes of the decrypted signature ( 0x00 , 

0x02 , and the 0xFF  padding) and omit to check the rest of the formatting. In particular,

they fail to check if the hash data matches the hash of the supplied message.

Use of small values for the public exponent . Although the attack is theoretically

possible for large values of  (e.g., ), it is much less efficient in that case.

Malleability of the RSA scheme, i.e., small changes to the ciphertext or signature result in

predictable changes in the plaintext.

Point (1.) is not applicable to the RSA.sol  implementation due to the thorough check being

performed on the full decrypted signature. On the other hand, points (2.) and (3.) are

applicable. As a result of the mitigation of point (1.), the padding oracle attack in its original

form is deemed as inapplicable to the specific implementation in RSA.sol .

The above being said, the EMSA-PSS  padding scheme enforces a full check of the format of

the decrypted signature (point 1.). It also binds the hash, the randomness, and the padding

together, which makes any manipulation of the signature easily detectable. Moreover, it fixes

the inherent malleability property of RSA (point 3.), making the scheme non-malleable.

Therefore, in the interest of long-term security, consider switching to the EMSA-PSS  padding

scheme.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Indeed, EMSA-PSS looks like a better, more modern scheme than EMSA-PKCS1-V1_5

which we currently support. We will consider adding support for EMSA-PSS in future

releases to improve the coverage of our library. That being said, it is going to take time

1. 

2. e=3e=3e = 3
eee 655376553765537

3. 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 33

https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://landonhemsley.com/bleichenbacher-06-rsa-signature-forgery-what-they-assume-you-know/
https://link.springer.com/chapter/10.1007/BFb0055716
https://datatracker.ietf.org/doc/html/rfc8017#section-9.1
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L98-L113
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/RSA.sol#L98-L113


to implement, test, and audit. In the meantime, EMSA-PKCS1-V1_5 is what we will

support.

N-27 Inconsistent Documentation - Phase 2
The docstring above the MerkleTree  library states that the library has been available since

v5.1. However, this statement is missing from other contracts that are introduced in this version

release.

For consistency, consider either adding this statement to all the contracts or removing it from

the MerkleTree  library.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

These release notes have been added to previous versions since we found them to be

relevant in some cases. While the addition of the release notes has not been automated,

we decided to leave this note and make it more consistent in future documentation

updates.

N-28 Naming Suggestions - Phase 2
Throughout the codebase, multiple instances of inconsistent or unclear naming were identified:

The MerkleTree  library refers to the height of the binary tree both as "depth" [1, 2, 3]

and "levels" [4, 5, 6, 7]. Consider sticking to one word for consistency.

In the Heap  library documentation, node i  is referred to as father for the nodes at

index 2*i+1  and 2*i+2 . Consider referring to i  as the parent node for a more neutral

wording.

In the pop  function of Heap , the first node of the data array is saved in the rootNode

variable, while the actual root node is saved as rootData . Consider renaming 

rootNode firstDataNode , rootData rootNode , and lastNode  to 

lastDataNode  for a more descriptive name.

Consider implementing the above-mentioned naming suggestions to improve the readability

and maintainability of the codebase.

Update: Resolved in pull request #5215. The third point was resolved with L-07.

• 

• 

• 

OpenZeppelin Contracts Release v5.1 Audit − Notes & Additional Information
− 34

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L33
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L166-L169
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L63-L64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L78-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/MerkleTree.sol#L130-L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L99-L103
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/structs/Heap.sol#L99-L103
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5215


Client Reported

CR-01 Incorrect Internal Call - Phase 1
During the audit, the OpenZeppelin Contracts team detected that the verifyCallData  and 

multiProoVerifyCalldata  functions of the MerkleProof  library incorrectly call 

processProof  and processMultiProof  internally instead of calling the corresponding

calldata variants processProofCalldata  and processMultiProofCalldata .

Update: Resolved in pull request #5140 at commit 24a641d.

CR-02 Incorrect _jAdd Result When a Point Is
Added to Itself - Phase 2
This bug was brought to our attention by Zellic. When the two points input to the _jAdd

function in P256.sol  are equal, the function returns the incorrect result .

The bug can be triggered along two paths:

verifySolidity  calls _preComputeJacobianPoints  calls _jAdd

verifySolidity  calls _jMultShamir  calls _jAdd

The analysis along path 1 identifies $7$ distinct valid weak private keys  that would trigger the

bug: . Assuming that  is chosen uniformly at random

among  values, where  is a  bit prime, the probability to choose any one of the

weak keys is negligible: .

Along path 2, at most  valid weak private keys  are estimated that would trigger the bug.

While significantly larger than the path 1 case ( ), the size of this set is still negligible w.r.t. the

size of the whole space . Specifically, the probability of randomly drawing one of the weak

keys is at most: .

This analysis is in accordance with Zellic's security reduction argument which states:

If an attacker  chooses a (weak) public key and "manages" to compute 

that passes verification, then he'll also be able to efficiently compute the corresponding

(weak) private key  from the public key, which will invalidate the hardness of ECDLP

assumption.

(0,
0,
0)
(0,0,0)

(0, 0, 0)

1. 

2. 

ddd
d∈{1,
2,
3,
2−1,
3−1,
2 3−1,
3 2−1}
d
\in
\{1,2,3,2^{-1},
3^{-1},
2~3^{-1},
3~2^{-1}\}

d ∈ {1, 2, 3, 2 , 3 , 2 3 , 3 2 }−1 −1 −1 −1 ddd
n−1n-1n − 1 nnn 256256256

72256−1≈0\frac{7}
{2^{256}-1}\approx
0

≈2 −1256
7 0

204820482048 ddd
777

22562^{256}2256

20482256−1≈0\frac{2048}
{2^{256}-1}\approx
0

≈2 −1256
2048 0

A\mathcal{A}A σ=(r,s,h)
\sigma
=
(r,s,h)

σ = (r, s,h)

ddd

OpenZeppelin Contracts Release v5.1 Audit − Client Reported − 35

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L107
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L107
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L330
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L330
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L351
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/MerkleProof.sol#L351
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5140
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/24a641d9c9e0137093592a466c5496315626d98d
https://reports.zellic.io/publications/biconomy-secp256r1/findings/high-secp256r1-function--jadd-returns-an-incorrect-result-if-the-summands-are-equal
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L289
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L289
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L185
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L185
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L250
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L250
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L185
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/aba9ff61ac6d610eab12b1528c6f22f98dbb4dd3/contracts/utils/cryptography/P256.sol#L185


In terms of attack scenarios in which the bug can be exploited, we analyzed the following

scenarios (including the two scenarios reported by Zellic):

Zellic scenario 1:  holds a private key and valid signatures. However, these get

erroneously rejected by verifySolidity . In detail,  chooses a weak public/private

key pair and produces a valid signature . The signature $\sigma$ will be

rejected due to the bug.

Zellic scenario 2:  holds a private key with invalid signatures. However, these get

erroneously accepted by verifySolidity .

 holds a private key with a valid signature. However, it gets erroneously accepted by 

verifySolidity  with a public key that does not match the private key by triggering

the bug.

In summary, the reported bug looks highly unlikely to be triggered by chance. It also seems

that the possibilities to exploit it maliciously are very limited and do not have critical

consequences. That being said, it should be noted that if there are other attack scenarios apart

from the ones listed above, they would require further investigation. In addition, the above

analysis assumes that the bug can only be triggered from the verifySolidity  function as

an entry point. Last but not least, the bug clearly identifies an error in the computation,

regardless of any security implications. Therefore, it is recommended to change the _jAdd

implementation to cover the case where a point is added to itself, as outlined in the Zellic

write-up.

Update: Resolved in pull request #5218 at commit d3b67ce.

Recommendations

Protection Against Postquantum Adversaries in
RSA Signatures
In view of the fact that blockchain data is public and persists forever, attention can be drawn to

the possibility of adding perfect forward secrecy (PFS) to RSA signatures. This would be done

to prevent the recovery of the private key of a signature from the public key at a point in the

future when computational capabilities are more advanced (e.g., in a post-quantum setting).

PFS is typically associated with key exchange protocols (e.g., DH/ECDH) where session data is

encrypted with a temporary (ephemeral) session key which is discarded at the end of the

1. A\mathcal{A}A

A\mathcal{A}A

σ=(r,s,h)
\sigma
=
(r,s,h)

σ = (r, s,h)

2. A\mathcal{A}A

3. A\mathcal{A}A

OpenZeppelin Contracts Release v5.1 Audit − Recommendations − 36

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5218
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5218/commits/d3b67ce34111f0d346e33b753e7b8f2943cf5f19


session. In case the master private key that was used to derive the session key (e.g., using a

hash function) is compromised, the encrypted data that was transmitted in the past cannot be

decrypted in the future.

Adding PFS to signatures is uncommon and, to the best of our knowledge, no signature

schemes exist with this property. Indeed, such functionality would invalidate one of the core

properties of digital signatures, namely non-repudiation, which ensures that a signer is not able

to deny signing a piece of data after the fact. On the other hand, the relatively recent

emergence of blockchains presents new use cases that may, to some extent, justify the

suggested modification.

Specifically, the fact that blockchain data is public and persists forever may allow post-

quantum adversaries to recover the private key of a signature from the public key using

quantum computers. With PFS, the negative consequences from the latter will be prevented by

having an analogous notion of temporary private keys for signing that would be valid for a long,

but fixed, period of time (say, 10-20 years).

We suspect that adding PFS to digital signatures may require some non-trivial changes to the

signing and verification process. Yet, the changes would probably be more on the signer's

side, while the verifier would just need to discard signatures produced under invalid (i.e.,

expired) keys.

OpenZeppelin Contracts Release v5.1 Audit − Recommendations − 37



Conclusion
The v5.1 release of OpenZeppelin Contracts introduces several significant enhancements,

including the addition of a cliff period to the vesting wallet, support for fractional voting in

governance, implementations of the ERC-1363 and ERC-7674 standards, as well as new

implementations of data structures and cryptographic libraries. We commend the Solidity

Contracts team for addressing user needs and their efforts to improve existing features while

introducing new utilities.

Throughout the six-week engagement, three medium-severity vulnerability were identified.

Furthermore, several recommendations were provided to adhere to best practices and

minimize the attack surface. Special attention was given to documenting edge cases to ensure

that integrators are aware of potential risks when interacting with these contracts. These efforts

are intended to foster the development of a more resilient codebase keeping in mind the

library’s significance as a foundational element in the blockchain ecosystem. We are again very

grateful for the opportunity to collaborate with the Contracts team on this next milestone.

OpenZeppelin Contracts Release v5.1 Audit − Conclusion − 38


	OpenZeppelin Contracts Release v5.1 Audit
	Table of Contents
	Summary
	Scope
	Phase 1
	Phase 2

	Overview - Phase 1
	Overview - Phase 2
	Adding Cliff to the Vesting Wallet
	Support for Fractional Voting
	Support for ERC-1363 and ERC-7674
	Code Refactor
	Addition of New Utilities

	Security Model and Trust Assumptions
	Medium Severity
	AccessManager's schedule Function Misses minGas and minValue - Phase 1
	Proving Empty Set Inclusion May Lead to Issues for Integrators in MerkleProof.multiProofVerify - Phase 1
	Dirty Bytes Can Manipulate Derived Mapping Slot - Phase 2

	Low Severity
	Royalty Calculation May Result in Zero Token Transfers Between Buyer and Seller of NFT - Phase 1
	Missing Docstrings - Phase 1
	Custom Functions Might Modify Memory - Phase 1
	Incorrect or Misleading Docstrings - Phase 1
	Different Pragma Directives Are Used - Phase 2
	Vesting Can Start Before Cliff Ends - Phase 2
	Over-Engineered Heap - Phase 2
	Small Public Exponents in RSA - Phase 2
	Signature Forgery Attack Steps Using Coppersmith's Method

	Incorrect Addition With Point at Infinity - Phase 2

	Notes & Additional Information
	Lack of Indexed Event Parameters - Phase 1
	Privileged User with Zero Execution Delay Can Re-Execute Operations - Phase 1
	Padding Ignored in Base64URL Encoding - Phase 1
	Inconsistent Annotation for Documentation - Phase 1
	Inconsistent Use of Named Returns - Phase 1
	Redundant Function Call in Checkpoints._insert - Phase 1
	Incorrect Panic Error in modExp Functions - Phase 1
	Poor Documentation in SafeERC20 - Phase 1
	Non-Standardized Declaration of memory-safe Assembly - Phase 1
	Unused Import - Phase 1
	Inconsistent Order Within Contracts - Phase 1
	Typographical Errors - Phase 1
	Inconsistent Declaration of memory-safe Assembly - Phase 2
	Inconsistent Order Within Contracts - Phase 2
	Missing Named Parameters in Mappings - Phase 2
	Typographical Errors - Phase 2
	Potential Licensing Conflict - Phase 2
	Incorrect and Misleading Documentation - Phase 2
	Redundant Code - Phase 2
	Inconsistent Integer Base Within a Contract - Phase 2
	Inconsistent _jAdd Function Interface - Phase 2
	Arbitrary RSA Modulus Size - Phase 2
	Custom Functions Might Modify Memory - Phase 2
	Lack of Input Validation - Phase 2
	Unintialized Variable - Phase 2
	Applicability of Padding Oracle Attacks to RSA.sol - Phase 2
	Inconsistent Documentation - Phase 2
	Naming Suggestions - Phase 2

	Client Reported
	Incorrect Internal Call - Phase 1
	Incorrect _jAdd Result When a Point Is Added to Itself - Phase 2

	Recommendations
	Protection Against Postquantum Adversaries in RSA Signatures

	Conclusion


