mirror of openzeppelin-contracts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
openzeppelin-contracts/scripts/generate/templates/Heap.js

327 lines
12 KiB

const format = require('../format-lines');
const { TYPES } = require('./Heap.opts');
const { capitalize } = require('../../helpers');
/* eslint-disable max-len */
const header = `\
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
import {Comparators} from "../Comparators.sol";
import {Panic} from "../Panic.sol";
/**
* @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as
* https://en.wikipedia.org/wiki/Priority_queue[priority queue].
*
* Heaps are represented as an array of Node objects. This array stores two overlapping structures:
* * A tree structure where the first element (index 0) is the root, and where the node at index i is the child of the
* node at index (i-1)/2 and the father of nodes at index 2*i+1 and 2*i+2. Each node stores the index (in the array)
* where the corresponding value is stored.
* * A list of payloads values where each index contains a value and a lookup index. The type of the value depends on
* the variant being used. The lookup is the index of the node (in the tree) that points to this value.
*
* Some invariants:
* \`\`\`
* i == heap.data[heap.data[i].index].lookup // for all indices i
* i == heap.data[heap.data[i].lookup].index // for all indices i
* \`\`\`
*
* The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the
* highest priority value is the one at the root. This value can be looked up in constant time (O(1)) at
* \`heap.data[heap.data[0].index].value\`
*
* The structure is designed to perform the following operations with the corresponding complexities:
*
* * peek (get the highest priority value): O(1)
* * insert (insert a value): O(log(n))
* * pop (remove the highest priority value): O(log(n))
* * replace (replace the highest priority value with a new value): O(log(n))
* * length (get the number of elements): O(1)
* * clear (remove all elements): O(1)
*/
`;
const generate = ({ struct, node, valueType, indexType, blockSize }) => `\
/**
* @dev Binary heap that supports values of type ${valueType}.
*
* Each element of that structure uses ${blockSize} storage slots.
*/
struct ${struct} {
${node}[] data;
}
/**
* @dev Internal node type for ${struct}. Stores a value of type ${valueType}.
*/
struct ${node} {
${valueType} value;
${indexType} index; // position -> value
${indexType} lookup; // value -> position
}
/**
* @dev Lookup the root element of the heap.
*/
function peek(${struct} storage self) internal view returns (${valueType}) {
// self.data[0] will \`ARRAY_ACCESS_OUT_OF_BOUNDS\` panic if heap is empty.
return _unsafeNodeAccess(self, self.data[0].index).value;
}
/**
* @dev Remove (and return) the root element for the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(${struct} storage self) internal returns (${valueType}) {
return pop(self, Comparators.lt);
}
/**
* @dev Remove (and return) the root element for the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(
${struct} storage self,
function(uint256, uint256) view returns (bool) comp
) internal returns (${valueType}) {
unchecked {
${indexType} size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
${indexType} last = size - 1;
// get root location (in the data array) and value
${node} storage rootNode = _unsafeNodeAccess(self, 0);
${indexType} rootIdx = rootNode.index;
${node} storage rootData = _unsafeNodeAccess(self, rootIdx);
${node} storage lastNode = _unsafeNodeAccess(self, last);
${valueType} rootDataValue = rootData.value;
// if root is not the last element of the data array (that will get popped), reorder the data array.
if (rootIdx != last) {
// get details about the value stored in the last element of the array (that will get popped)
${indexType} lastDataIdx = lastNode.lookup;
${valueType} lastDataValue = lastNode.value;
// copy these values to the location of the root (that is safe, and that we no longer use)
rootData.value = lastDataValue;
rootData.lookup = lastDataIdx;
// update the tree node that used to point to that last element (value now located where the root was)
_unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
}
// get last leaf location (in the data array) and value
${indexType} lastIdx = lastNode.index;
${valueType} lastValue = _unsafeNodeAccess(self, lastIdx).value;
// move the last leaf to the root, pop last leaf ...
rootNode.index = lastIdx;
_unsafeNodeAccess(self, lastIdx).lookup = 0;
self.data.pop();
// ... and heapify
_siftDown(self, last, 0, lastValue, comp);
// return root value
return rootDataValue;
}
}
/**
* @dev Insert a new element in the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(${struct} storage self, ${valueType} value) internal {
insert(self, value, Comparators.lt);
}
/**
* @dev Insert a new element in the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(
${struct} storage self,
${valueType} value,
function(uint256, uint256) view returns (bool) comp
) internal {
${indexType} size = length(self);
if (size == type(${indexType}).max) Panic.panic(Panic.RESOURCE_ERROR);
self.data.push(${struct}Node({index: size, lookup: size, value: value}));
_siftUp(self, size, value, comp);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(${struct} storage self, ${valueType} newValue) internal returns (${valueType}) {
return replace(self, newValue, Comparators.lt);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(
${struct} storage self,
${valueType} newValue,
function(uint256, uint256) view returns (bool) comp
) internal returns (${valueType}) {
${indexType} size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
// position of the node that holds the data for the root
${indexType} rootIdx = _unsafeNodeAccess(self, 0).index;
// storage pointer to the node that holds the data for the root
${node} storage rootData = _unsafeNodeAccess(self, rootIdx);
// cache old value and replace it
${valueType} oldValue = rootData.value;
rootData.value = newValue;
// re-heapify
_siftDown(self, size, 0, newValue, comp);
// return old root value
return oldValue;
}
/**
* @dev Returns the number of elements in the heap.
*/
function length(${struct} storage self) internal view returns (${indexType}) {
return self.data.length.to${capitalize(indexType)}();
}
/**
* @dev Removes all elements in the heap.
*/
function clear(${struct} storage self) internal {
${struct}Node[] storage data = self.data;
assembly ("memory-safe") {
sstore(data.slot, 0)
}
}
/**
* @dev Swap node \`i\` and \`j\` in the tree.
*/
function _swap(${struct} storage self, ${indexType} i, ${indexType} j) private {
${node} storage ni = _unsafeNodeAccess(self, i);
${node} storage nj = _unsafeNodeAccess(self, j);
${indexType} ii = ni.index;
${indexType} jj = nj.index;
// update pointers to the data (swap the value)
ni.index = jj;
nj.index = ii;
// update lookup pointers for consistency
_unsafeNodeAccess(self, ii).lookup = j;
_unsafeNodeAccess(self, jj).lookup = i;
}
/**
* @dev Perform heap maintenance on \`self\`, starting at position \`pos\` (with the \`value\`), using \`comp\` as a
* comparator, and moving toward the leaves of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. \`length\`
* and \`value\` could be extracted from \`self\` and \`pos\`, but that would require redundant storage read. These
* parameters are not verified. It is the caller role to make sure the parameters are correct.
*/
function _siftDown(
${struct} storage self,
${indexType} size,
${indexType} pos,
${valueType} value,
function(uint256, uint256) view returns (bool) comp
) private {
uint256 left = 2 * pos + 1; // this could overflow ${indexType}
uint256 right = 2 * pos + 2; // this could overflow ${indexType}
if (right < size) {
// the check guarantees that \`left\` and \`right\` are both valid ${indexType}
${indexType} lIndex = ${indexType}(left);
${indexType} rIndex = ${indexType}(right);
${valueType} lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
${valueType} rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
if (comp(lValue, value) || comp(rValue, value)) {
${indexType} index = ${indexType}(comp(lValue, rValue).ternary(lIndex, rIndex));
_swap(self, pos, index);
_siftDown(self, size, index, value, comp);
}
} else if (left < size) {
// the check guarantees that \`left\` is a valid ${indexType}
${indexType} lIndex = ${indexType}(left);
${valueType} lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
if (comp(lValue, value)) {
_swap(self, pos, lIndex);
_siftDown(self, size, lIndex, value, comp);
}
}
}
/**
* @dev Perform heap maintenance on \`self\`, starting at position \`pos\` (with the \`value\`), using \`comp\` as a
* comparator, and moving toward the root of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. \`value\`
* could be extracted from \`self\` and \`pos\`, but that would require redundant storage read. These parameters are not
* verified. It is the caller role to make sure the parameters are correct.
*/
function _siftUp(
${struct} storage self,
${indexType} pos,
${valueType} value,
function(uint256, uint256) view returns (bool) comp
) private {
unchecked {
while (pos > 0) {
${indexType} parent = (pos - 1) / 2;
${valueType} parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
if (comp(parentValue, value)) break;
_swap(self, pos, parent);
pos = parent;
}
}
}
function _unsafeNodeAccess(
${struct} storage self,
${indexType} pos
) private pure returns (${node} storage result) {
assembly ("memory-safe") {
mstore(0x00, self.slot)
result.slot := add(keccak256(0x00, 0x20), ${blockSize == 1 ? 'pos' : `mul(pos, ${blockSize})`})
}
}
`;
// GENERATE
module.exports = format(
header.trimEnd(),
'library Heap {',
format(
[].concat(
'using Math for *;',
'using SafeCast for *;',
'',
TYPES.map(type => generate(type)),
),
).trimEnd(),
'}',
);