mirror of openzeppelin-contracts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
openzeppelin-contracts/scripts/generate/templates/MerkleProof.js

187 lines
7.8 KiB

const format = require('../format-lines');
const { OPTS } = require('./MerkleProof.opts');
const DEFAULT_HASH = 'Hashes.commutativeKeccak256';
const formatArgsSingleLine = (...args) => args.filter(Boolean).join(', ');
const formatArgsMultiline = (...args) => '\n' + format(args.filter(Boolean).join(',\0').split('\0'));
// TEMPLATE
const header = `\
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. \`H(a, b) == H(b, a)\`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
`;
const errors = `\
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
`;
const templateProof = ({ suffix, location, visibility, hash }) => `\
/**
* @dev Returns true if a \`leaf\` can be proved to be a part of a Merkle tree
* defined by \`root\`. For this, a \`proof\` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in ${location} with ${hash ? 'a custom' : 'the default'} hashing function.
*/
function verify${suffix}(${(hash ? formatArgsMultiline : formatArgsSingleLine)(
`bytes32[] ${location} proof`,
'bytes32 root',
'bytes32 leaf',
hash && `function(bytes32, bytes32) view returns (bytes32) ${hash}`,
)}) internal ${visibility} returns (bool) {
return processProof${suffix}(proof, leaf${hash ? `, ${hash}` : ''}) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from \`leaf\` using \`proof\`. A \`proof\` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in ${location} with ${hash ? 'a custom' : 'the default'} hashing function.
*/
function processProof${suffix}(${(hash ? formatArgsMultiline : formatArgsSingleLine)(
`bytes32[] ${location} proof`,
'bytes32 leaf',
hash && `function(bytes32, bytes32) view returns (bytes32) ${hash}`,
)}) internal ${visibility} returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = ${hash ?? DEFAULT_HASH}(computedHash, proof[i]);
}
return computedHash;
}
`;
const templateMultiProof = ({ suffix, location, visibility, hash }) => `\
/**
* @dev Returns true if the \`leaves\` can be simultaneously proven to be a part of a Merkle tree defined by
* \`root\`, according to \`proof\` and \`proofFlags\` as described in {processMultiProof}.
*
* This version handles multiproofs in ${location} with ${hash ? 'a custom' : 'the default'} hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where \`root == proof[0] && leaves.length == 0\` as it will return \`true\`.
* The \`leaves\` must be validated independently. See {processMultiProof${suffix}}.
*/
function multiProofVerify${suffix}(${formatArgsMultiline(
`bytes32[] ${location} proof`,
`bool[] ${location} proofFlags`,
'bytes32 root',
`bytes32[] memory leaves`,
hash && `function(bytes32, bytes32) view returns (bytes32) ${hash}`,
)}) internal ${visibility} returns (bool) {
return processMultiProof${suffix}(proof, proofFlags, leaves${hash ? `, ${hash}` : ''}) == root;
}
/**
* @dev Returns the root of a tree reconstructed from \`leaves\` and sibling nodes in \`proof\`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each \`proofFlags\` item is true or false
* respectively.
*
* This version handles multiproofs in ${location} with ${hash ? 'a custom' : 'the default'} hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where \`proof.length == 1 && leaves.length == 0\`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns \`proof[0]\`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof${suffix}(${formatArgsMultiline(
`bytes32[] ${location} proof`,
`bool[] ${location} proofFlags`,
`bytes32[] memory leaves`,
hash && `function(bytes32, bytes32) view returns (bytes32) ${hash}`,
)}) internal ${visibility} returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the \`leaves\` array, then goes onto the
// \`hashes\` array. At the end of the process, the last hash in the \`hashes\` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// \`xxx[xxxPos++]\`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// \`proof\` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = ${hash ?? DEFAULT_HASH}(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
`;
// GENERATE
module.exports = format(
header.trimEnd(),
'library MerkleProof {',
format(
[].concat(
errors,
OPTS.flatMap(opts => templateProof(opts)),
OPTS.flatMap(opts => templateMultiProof(opts)),
),
).trimEnd(),
'}',
);