mirror of openzeppelin-contracts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
openzeppelin-contracts/docs/modules/ROOT/pages/utilities.adoc

200 lines
8.3 KiB

= Utilities
The OpenZeppelin Contracts provide a ton of useful utilities that you can use in your project. Here are some of the more popular ones.
[[cryptography]]
== Cryptography
=== Checking Signatures On-Chain
xref:api:utils.adoc#ECDSA[`ECDSA`] provides functions for recovering and managing Ethereum account ECDSA signatures. These are often generated via https://web3js.readthedocs.io/en/v1.7.3/web3-eth.html#sign[`web3.eth.sign`], and are a 65 byte array (of type `bytes` in Solidity) arranged the following way: `[[v (1)], [r (32)], [s (32)]]`.
The data signer can be recovered with xref:api:utils.adoc#ECDSA-recover-bytes32-bytes-[`ECDSA.recover`], and its address compared to verify the signature. Most wallets will hash the data to sign and add the prefix '\x19Ethereum Signed Message:\n', so when attempting to recover the signer of an Ethereum signed message hash, you'll want to use xref:api:utils.adoc#MessageHashUtils-toEthSignedMessageHash-bytes32-[`toEthSignedMessageHash`].
[source,solidity]
----
using ECDSA for bytes32;
using MessageHashUtils for bytes32;
function _verify(bytes32 data, bytes memory signature, address account) internal pure returns (bool) {
return data
.toEthSignedMessageHash()
.recover(signature) == account;
}
----
WARNING: Getting signature verification right is not trivial: make sure you fully read and understand xref:api:utils.adoc#MessageHashUtils[`MessageHashUtils`]'s and xref:api:utils.adoc#ECDSA[`ECDSA`]'s documentation.
=== Verifying Merkle Proofs
xref:api:utils.adoc#MerkleProof[`MerkleProof`] provides:
* xref:api:utils.adoc#MerkleProof-verify-bytes32---bytes32-bytes32-[`verify`] - can prove that some value is part of a https://en.wikipedia.org/wiki/Merkle_tree[Merkle tree].
* xref:api:utils.adoc#MerkleProof-multiProofVerify-bytes32-bytes32---bytes32---bool---[`multiProofVerify`] - can prove multiple values are part of a Merkle tree.
[[introspection]]
== Introspection
In Solidity, it's frequently helpful to know whether or not a contract supports an interface you'd like to use. ERC-165 is a standard that helps do runtime interface detection. Contracts provide helpers both for implementing ERC-165 in your contracts and querying other contracts:
* xref:api:utils.adoc#IERC165[`IERC165`] — this is the ERC-165 interface that defines xref:api:utils.adoc#IERC165-supportsInterface-bytes4-[`supportsInterface`]. When implementing ERC-165, you'll conform to this interface.
* xref:api:utils.adoc#ERC165[`ERC165`] — inherit this contract if you'd like to support interface detection using a lookup table in contract storage. You can register interfaces using xref:api:utils.adoc#ERC165-_registerInterface-bytes4-[`_registerInterface(bytes4)`]: check out example usage as part of the ERC-721 implementation.
* xref:api:utils.adoc#ERC165Checker[`ERC165Checker`] — ERC165Checker simplifies the process of checking whether or not a contract supports an interface you care about.
* include with `using ERC165Checker for address;`
* xref:api:utils.adoc#ERC165Checker-_supportsInterface-address-bytes4-[`myAddress._supportsInterface(bytes4)`]
* xref:api:utils.adoc#ERC165Checker-_supportsAllInterfaces-address-bytes4---[`myAddress._supportsAllInterfaces(bytes4[\])`]
[source,solidity]
----
contract MyContract {
using ERC165Checker for address;
bytes4 private InterfaceId_ERC721 = 0x80ac58cd;
/**
* @dev transfer an ERC-721 token from this contract to someone else
*/
function transferERC721(
address token,
address to,
uint256 tokenId
)
public
{
require(token.supportsInterface(InterfaceId_ERC721), "IS_NOT_721_TOKEN");
IERC721(token).transferFrom(address(this), to, tokenId);
}
}
----
[[math]]
== Math
Although Solidity already provides math operators (i.e. `+`, `-`, etc.), Contracts includes xref:api:utils.adoc#Math[`Math`]; a set of utilities for dealing with mathematical operators, with support for extra operations (eg. xref:api:utils.adoc#Math-average-uint256-uint256-[`average`]) and xref:api:utils.adoc#SignedMath[`SignedMath`]; a library specialized in signed math operations.
Include these contracts with `using Math for uint256` or `using SignedMath for int256` and then use their functions in your code:
[source,solidity]
----
contract MyContract {
using Math for uint256;
using SignedMath for int256;
function tryOperations(uint256 a, uint256 b) internal pure {
(bool succededAdd, uint256 resultAdd) = x.tryAdd(y);
(bool succededSub, uint256 resultSub) = x.trySub(y);
(bool succededMul, uint256 resultMul) = x.tryMul(y);
(bool succededDiv, uint256 resultDiv) = x.tryDiv(y);
// ...
}
function unsignedAverage(int256 a, int256 b) {
int256 avg = a.average(b);
// ...
}
}
----
Easy!
[[structures]]
== Structures
Some use cases require more powerful data structures than arrays and mappings offered natively in Solidity. Contracts provides these libraries for enhanced data structure management:
- xref:api:utils.adoc#BitMaps[`BitMaps`]: Store packed booleans in storage.
- xref:api:utils.adoc#Checkpoints[`Checkpoints`]: Checkpoint values with built-in lookups.
- xref:api:utils.adoc#DoubleEndedQueue[`DoubleEndedQueue`]: Store items in a queue with `pop()` and `queue()` constant time operations.
- xref:api:utils.adoc#EnumerableSet[`EnumerableSet`]: A https://en.wikipedia.org/wiki/Set_(abstract_data_type)[set] with enumeration capabilities.
- xref:api:utils.adoc#EnumerableMap[`EnumerableMap`]: A `mapping` variant with enumeration capabilities.
The `Enumerable*` structures are similar to mappings in that they store and remove elements in constant time and don't allow for repeated entries, but they also support _enumeration_, which means you can easily query all stored entries both on and off-chain.
[[misc]]
== Misc
=== Base64
xref:api:utils.adoc#Base64[`Base64`] util allows you to transform `bytes32` data into its Base64 `string` representation.
This is especially useful for building URL-safe tokenURIs for both xref:api:token/ERC721.adoc#IERC721Metadata-tokenURI-uint256-[`ERC-721`] or xref:api:token/ERC1155.adoc#IERC1155MetadataURI-uri-uint256-[`ERC-1155`]. This library provides a clever way to serve URL-safe https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/Data_URIs/[Data URI] compliant strings to serve on-chain data structures.
Here is an example to send JSON Metadata through a Base64 Data URI using an ERC-721:
[source, solidity]
----
// contracts/My721Token.sol
// SPDX-License-Identifier: MIT
import {ERC721} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {Base64} from "@openzeppelin/contracts/utils/Base64.sol";
contract My721Token is ERC721 {
using Strings for uint256;
constructor() ERC721("My721Token", "MTK") {}
...
function tokenURI(uint256 tokenId)
public
pure
override
returns (string memory)
{
bytes memory dataURI = abi.encodePacked(
'{',
'"name": "My721Token #', tokenId.toString(), '"',
// Replace with extra ERC-721 Metadata properties
'}'
);
return string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(dataURI)
)
);
}
}
----
=== Multicall
The `Multicall` abstract contract comes with a `multicall` function that bundles together multiple calls in a single external call. With it, external accounts may perform atomic operations comprising several function calls. This is not only useful for EOAs to make multiple calls in a single transaction, it's also a way to revert a previous call if a later one fails.
Consider this dummy contract:
[source,solidity]
----
// contracts/Box.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/utils/Multicall.sol";
contract Box is Multicall {
function foo() public {
...
}
function bar() public {
...
}
}
----
This is how to call the `multicall` function using Ethers.js, allowing `foo` and `bar` to be called in a single transaction:
[source,javascript]
----
// scripts/foobar.js
const instance = await ethers.deployContract("Box");
await instance.multicall([
instance.interface.encodeFunctionData("foo"),
instance.interface.encodeFunctionData("bar")
]);
----