mirror of openzeppelin-contracts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
openzeppelin-contracts/contracts/access/manager/AccessManaged.sol

113 lines
4.6 KiB

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManaged.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "./IAuthority.sol";
import {AuthorityUtils} from "./AuthorityUtils.sol";
import {IAccessManager} from "./IAccessManager.sol";
import {IAccessManaged} from "./IAccessManaged.sol";
import {Context} from "../../utils/Context.sol";
/**
* @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
* permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
* implementing a policy that allows certain callers to access certain functions.
*
* IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
* functions, and ideally only used in `external` functions. See {restricted}.
*/
abstract contract AccessManaged is Context, IAccessManaged {
address private _authority;
bool private _consumingSchedule;
/**
* @dev Initializes the contract connected to an initial authority.
*/
constructor(address initialAuthority) {
_setAuthority(initialAuthority);
}
/**
* @dev Restricts access to a function as defined by the connected Authority for this contract and the
* caller and selector of the function that entered the contract.
*
* [IMPORTANT]
* ====
* In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
* functions that are used as external entry points and are not called internally. Unless you know what you're
* doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
* implications! This is because the permissions are determined by the function that entered the contract, i.e. the
* function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
* ====
*
* [WARNING]
* ====
* Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
* function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
* functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
* since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
* if no calldata is provided. (See {_checkCanCall}).
*
* The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
* ====
*/
modifier restricted() {
_checkCanCall(_msgSender(), _msgData());
_;
}
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
return _authority;
}
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
revert AccessManagedUnauthorized(caller);
}
if (newAuthority.code.length == 0) {
revert AccessManagedInvalidAuthority(newAuthority);
}
_setAuthority(newAuthority);
}
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}
/**
* @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
* permissions set by the current authority.
*/
function _setAuthority(address newAuthority) internal virtual {
_authority = newAuthority;
emit AuthorityUpdated(newAuthority);
}
/**
* @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
* is less than 4 bytes long.
*/
function _checkCanCall(address caller, bytes calldata data) internal virtual {
(bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
authority(),
caller,
address(this),
bytes4(data[0:4])
);
if (!immediate) {
if (delay > 0) {
_consumingSchedule = true;
IAccessManager(authority()).consumeScheduledOp(caller, data);
_consumingSchedule = false;
} else {
revert AccessManagedUnauthorized(caller);
}
}
}
}