'use strict' const storage = `pragma solidity >=0.7.0 <0.9.0; /** * @title Storage * @dev Store & retrieve value in a variable */ contract Storage { uint256 number; /** * @dev Store value in variable * @param num value to store */ function store(uint256 num) public { number = num; } /** * @dev Return value * @return value of 'number' */ function retrieve() public view returns (uint256){ return number; } }` const owner = `pragma solidity >=0.7.0 <0.9.0; /** * @title Owner * @dev Set & change owner */ contract Owner { address private owner; // event for EVM logging event OwnerSet(address indexed oldOwner, address indexed newOwner); // modifier to check if caller is owner modifier isOwner() { // If the first argument of 'require' evaluates to 'false', execution terminates and all // changes to the state and to Ether balances are reverted. // This used to consume all gas in old EVM versions, but not anymore. // It is often a good idea to use 'require' to check if functions are called correctly. // As a second argument, you can also provide an explanation about what went wrong. require(msg.sender == owner, "Caller is not owner"); _; } /** * @dev Set contract deployer as owner */ constructor() { owner = msg.sender; // 'msg.sender' is sender of current call, contract deployer for a constructor emit OwnerSet(address(0), owner); } /** * @dev Change owner * @param newOwner address of new owner */ function changeOwner(address newOwner) public isOwner { emit OwnerSet(owner, newOwner); owner = newOwner; } /** * @dev Return owner address * @return address of owner */ function getOwner() external view returns (address) { return owner; } }` const ballot = `pragma solidity >=0.7.0 <0.9.0; /** * @title Ballot * @dev Implements voting process along with vote delegation */ contract Ballot { struct Voter { uint weight; // weight is accumulated by delegation bool voted; // if true, that person already voted address delegate; // person delegated to uint vote; // index of the voted proposal } struct Proposal { // If you can limit the length to a certain number of bytes, // always use one of bytes1 to bytes32 because they are much cheaper bytes32 name; // short name (up to 32 bytes) uint voteCount; // number of accumulated votes } address public chairperson; mapping(address => Voter) public voters; Proposal[] public proposals; /** * @dev Create a new ballot to choose one of 'proposalNames'. * @param proposalNames names of proposals */ constructor(bytes32[] memory proposalNames) { chairperson = msg.sender; voters[chairperson].weight = 1; for (uint i = 0; i < proposalNames.length; i++) { // 'Proposal({...})' creates a temporary // Proposal object and 'proposals.push(...)' // appends it to the end of 'proposals'. proposals.push(Proposal({ name: proposalNames[i], voteCount: 0 })); } } /** * @dev Give 'voter' the right to vote on this ballot. May only be called by 'chairperson'. * @param voter address of voter */ function giveRightToVote(address voter) public { require( msg.sender == chairperson, "Only chairperson can give right to vote." ); require( !voters[voter].voted, "The voter already voted." ); require(voters[voter].weight == 0); voters[voter].weight = 1; } /** * @dev Delegate your vote to the voter 'to'. * @param to address to which vote is delegated */ function delegate(address to) public { Voter storage sender = voters[msg.sender]; require(!sender.voted, "You already voted."); require(to != msg.sender, "Self-delegation is disallowed."); while (voters[to].delegate != address(0)) { to = voters[to].delegate; // We found a loop in the delegation, not allowed. require(to != msg.sender, "Found loop in delegation."); } sender.voted = true; sender.delegate = to; Voter storage delegate_ = voters[to]; if (delegate_.voted) { // If the delegate already voted, // directly add to the number of votes proposals[delegate_.vote].voteCount += sender.weight; } else { // If the delegate did not vote yet, // add to her weight. delegate_.weight += sender.weight; } } /** * @dev Give your vote (including votes delegated to you) to proposal 'proposals[proposal].name'. * @param proposal index of proposal in the proposals array */ function vote(uint proposal) public { Voter storage sender = voters[msg.sender]; require(sender.weight != 0, "Has no right to vote"); require(!sender.voted, "Already voted."); sender.voted = true; sender.vote = proposal; // If 'proposal' is out of the range of the array, // this will throw automatically and revert all // changes. proposals[proposal].voteCount += sender.weight; } /** * @dev Computes the winning proposal taking all previous votes into account. * @return winningProposal_ index of winning proposal in the proposals array */ function winningProposal() public view returns (uint winningProposal_) { uint winningVoteCount = 0; for (uint p = 0; p < proposals.length; p++) { if (proposals[p].voteCount > winningVoteCount) { winningVoteCount = proposals[p].voteCount; winningProposal_ = p; } } } /** * @dev Calls winningProposal() function to get the index of the winner contained in the proposals array and then * @return winnerName_ the name of the winner */ function winnerName() public view returns (bytes32 winnerName_) { winnerName_ = proposals[winningProposal()].name; } } ` // eslint-disable-next-line const ballot_0_4_11 = `pragma solidity >=0.4.10 <0.7.0; contract Ballot { struct Voter { uint weight; bool voted; uint8 vote; address delegate; } struct Proposal { uint voteCount; } address chairperson; mapping(address => Voter) voters; Proposal[] proposals; /// Create a new ballot with $(_numProposals) different proposals. function Ballot (uint8 _numProposals) public { chairperson = msg.sender; voters[chairperson].weight = 1; proposals.length = _numProposals; } /// Give $(toVoter) the right to vote on this ballot. /// May only be called by $(chairperson). function giveRightToVote(address toVoter) public { if (msg.sender != chairperson || voters[toVoter].voted) return; voters[toVoter].weight = 1; } /// Delegate your vote to the voter $(to). function delegate(address to) public { Voter storage sender = voters[msg.sender]; // assigns reference if (sender.voted) return; while (voters[to].delegate != address(0) && voters[to].delegate != msg.sender) to = voters[to].delegate; if (to == msg.sender) return; sender.voted = true; sender.delegate = to; Voter storage delegateTo = voters[to]; if (delegateTo.voted) proposals[delegateTo.vote].voteCount += sender.weight; else delegateTo.weight += sender.weight; } /// Give a single vote to proposal $(toProposal). function vote(uint8 toProposal) public { Voter storage sender = voters[msg.sender]; if (sender.voted || toProposal >= proposals.length) return; sender.voted = true; sender.vote = toProposal; proposals[toProposal].voteCount += sender.weight; } function winningProposal() public returns (uint8 _winningProposal) { uint256 winningVoteCount = 0; for (uint8 prop = 0; prop < proposals.length; prop++) if (proposals[prop].voteCount > winningVoteCount) { winningVoteCount = proposals[prop].voteCount; _winningProposal = prop; } } }` const ballotTest = `pragma solidity >=0.4.22 <0.9.0; import "remix_tests.sol"; // this import is automatically injected by Remix. import "../3_Ballot.sol"; contract BallotTest { bytes32[] proposalNames; Ballot ballotToTest; function beforeAll () public { proposalNames.push(bytes32("candidate1")); ballotToTest = new Ballot(proposalNames); } function checkWinningProposal () public { ballotToTest.vote(0); Assert.equal(ballotToTest.winningProposal(), uint(0), "proposal at index 0 should be the winning proposal"); Assert.equal(ballotToTest.winnerName(), bytes32("candidate1"), "candidate1 should be the winner name"); } function checkWinningProposalWithReturnValue () public view returns (bool) { return ballotToTest.winningProposal() == 0; } } ` export default { storage: { name: '1_Storage.sol', content: storage }, owner: { name: '2_Owner.sol', content: owner }, ballot: { name: '3_Ballot.sol', content: ballot }, ballot_0_4_11: { name: 'ballot_0_4_11.sol', content: ballot_0_4_11 }, ballot_test: { name: 'tests/4_Ballot_test.sol', content: ballotTest } }