|
|
|
package p2p
|
|
|
|
|
|
|
|
import (
|
|
|
|
// "binary"
|
|
|
|
"crypto/ecdsa"
|
|
|
|
"crypto/rand"
|
|
|
|
"fmt"
|
|
|
|
"io"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
|
|
ethlogger "github.com/ethereum/go-ethereum/logger"
|
|
|
|
"github.com/ethereum/go-ethereum/p2p/discover"
|
|
|
|
"github.com/obscuren/ecies"
|
|
|
|
)
|
|
|
|
|
|
|
|
var clogger = ethlogger.NewLogger("CRYPTOID")
|
|
|
|
|
|
|
|
const (
|
|
|
|
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
|
|
|
|
sigLen = 65 // elliptic S256
|
|
|
|
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
|
|
|
|
shaLen = 32 // hash length (for nonce etc)
|
|
|
|
|
|
|
|
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
|
|
|
|
authRespLen = pubLen + shaLen + 1
|
|
|
|
|
|
|
|
eciesBytes = 65 + 16 + 32
|
|
|
|
iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
|
|
|
|
rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
|
|
|
|
)
|
|
|
|
|
|
|
|
type hexkey []byte
|
|
|
|
|
|
|
|
func (self hexkey) String() string {
|
|
|
|
return fmt.Sprintf("(%d) %x", len(self), []byte(self))
|
|
|
|
}
|
|
|
|
|
|
|
|
func encHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, dial *discover.Node) (
|
|
|
|
remoteID discover.NodeID,
|
|
|
|
sessionToken []byte,
|
|
|
|
err error,
|
|
|
|
) {
|
|
|
|
if dial == nil {
|
|
|
|
var remotePubkey []byte
|
|
|
|
sessionToken, remotePubkey, err = inboundEncHandshake(conn, prv, nil)
|
|
|
|
copy(remoteID[:], remotePubkey)
|
|
|
|
} else {
|
|
|
|
remoteID = dial.ID
|
|
|
|
sessionToken, err = outboundEncHandshake(conn, prv, remoteID[:], nil)
|
|
|
|
}
|
|
|
|
return remoteID, sessionToken, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// outboundEncHandshake negotiates a session token on conn.
|
|
|
|
// it should be called on the dialing side of the connection.
|
|
|
|
//
|
|
|
|
// privateKey is the local client's private key
|
|
|
|
// remotePublicKey is the remote peer's node ID
|
|
|
|
// sessionToken is the token from a previous session with this node.
|
|
|
|
func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
|
|
|
|
newSessionToken []byte,
|
|
|
|
err error,
|
|
|
|
) {
|
|
|
|
auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
if sessionToken != nil {
|
|
|
|
clogger.Debugf("session-token: %v", hexkey(sessionToken))
|
|
|
|
}
|
|
|
|
|
|
|
|
clogger.Debugf("initiator-nonce: %v", hexkey(initNonce))
|
|
|
|
clogger.Debugf("initiator-random-private-key: %v", hexkey(crypto.FromECDSA(randomPrivKey)))
|
|
|
|
randomPublicKeyS, _ := exportPublicKey(&randomPrivKey.PublicKey)
|
|
|
|
clogger.Debugf("initiator-random-public-key: %v", hexkey(randomPublicKeyS))
|
|
|
|
if _, err = conn.Write(auth); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
clogger.Debugf("initiator handshake: %v", hexkey(auth))
|
|
|
|
|
|
|
|
response := make([]byte, rHSLen)
|
|
|
|
if _, err = io.ReadFull(conn, response); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
clogger.Debugf("receiver-nonce: %v", hexkey(recNonce))
|
|
|
|
remoteRandomPubKeyS, _ := exportPublicKey(remoteRandomPubKey)
|
|
|
|
clogger.Debugf("receiver-random-public-key: %v", hexkey(remoteRandomPubKeyS))
|
|
|
|
return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
|
|
|
}
|
|
|
|
|
|
|
|
// authMsg creates the initiator handshake.
|
|
|
|
func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
|
|
|
|
auth, initNonce []byte,
|
|
|
|
randomPrvKey *ecdsa.PrivateKey,
|
|
|
|
err error,
|
|
|
|
) {
|
|
|
|
// session init, common to both parties
|
|
|
|
remotePubKey, err := importPublicKey(remotePubKeyS)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
var tokenFlag byte // = 0x00
|
|
|
|
if sessionToken == nil {
|
|
|
|
// no session token found means we need to generate shared secret.
|
|
|
|
// ecies shared secret is used as initial session token for new peers
|
|
|
|
// generate shared key from prv and remote pubkey
|
|
|
|
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// tokenFlag = 0x00 // redundant
|
|
|
|
} else {
|
|
|
|
// for known peers, we use stored token from the previous session
|
|
|
|
tokenFlag = 0x01
|
|
|
|
}
|
|
|
|
|
|
|
|
//E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
|
|
|
|
// E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
|
|
|
|
// allocate msgLen long message,
|
|
|
|
var msg []byte = make([]byte, authMsgLen)
|
|
|
|
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
|
|
|
if _, err = rand.Read(initNonce); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// create known message
|
|
|
|
// ecdh-shared-secret^nonce for new peers
|
|
|
|
// token^nonce for old peers
|
|
|
|
var sharedSecret = xor(sessionToken, initNonce)
|
|
|
|
|
|
|
|
// generate random keypair to use for signing
|
|
|
|
if randomPrvKey, err = crypto.GenerateKey(); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// sign shared secret (message known to both parties): shared-secret
|
|
|
|
var signature []byte
|
|
|
|
// signature = sign(ecdhe-random, shared-secret)
|
|
|
|
// uses secp256k1.Sign
|
|
|
|
if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// message
|
|
|
|
// signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
|
|
|
|
copy(msg, signature) // copy signed-shared-secret
|
|
|
|
// H(ecdhe-random-pubk)
|
|
|
|
var randomPubKey64 []byte
|
|
|
|
if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var pubKey64 []byte
|
|
|
|
if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64))
|
|
|
|
// pubkey copied to the correct segment.
|
|
|
|
copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64)
|
|
|
|
// nonce is already in the slice
|
|
|
|
// stick tokenFlag byte to the end
|
|
|
|
msg[authMsgLen-1] = tokenFlag
|
|
|
|
|
|
|
|
// encrypt using remote-pubk
|
|
|
|
// auth = eciesEncrypt(remote-pubk, msg)
|
|
|
|
if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// completeHandshake is called when the initiator receives an
|
|
|
|
// authentication response (aka receiver handshake). It completes the
|
|
|
|
// handshake by reading off parameters the remote peer provides needed
|
|
|
|
// to set up the secure session.
|
|
|
|
func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
|
|
|
|
respNonce []byte,
|
|
|
|
remoteRandomPubKey *ecdsa.PublicKey,
|
|
|
|
tokenFlag bool,
|
|
|
|
err error,
|
|
|
|
) {
|
|
|
|
var msg []byte
|
|
|
|
// they prove that msg is meant for me,
|
|
|
|
// I prove I possess private key if i can read it
|
|
|
|
if msg, err = crypto.Decrypt(prvKey, auth); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
respNonce = msg[pubLen : pubLen+shaLen]
|
|
|
|
var remoteRandomPubKeyS = msg[:pubLen]
|
|
|
|
if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if msg[authRespLen-1] == 0x01 {
|
|
|
|
tokenFlag = true
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// inboundEncHandshake negotiates a session token on conn.
|
|
|
|
// it should be called on the listening side of the connection.
|
|
|
|
//
|
|
|
|
// privateKey is the local client's private key
|
|
|
|
// sessionToken is the token from a previous session with this node.
|
|
|
|
func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
|
|
|
|
token, remotePubKey []byte,
|
|
|
|
err error,
|
|
|
|
) {
|
|
|
|
// we are listening connection. we are responders in the
|
|
|
|
// handshake. Extract info from the authentication. The initiator
|
|
|
|
// starts by sending us a handshake that we need to respond to. so
|
|
|
|
// we read auth message first, then respond.
|
|
|
|
auth := make([]byte, iHSLen)
|
|
|
|
if _, err := io.ReadFull(conn, auth); err != nil {
|
|
|
|
return nil, nil, err
|
|
|
|
}
|
|
|
|
response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
|
|
|
|
if err != nil {
|
|
|
|
return nil, nil, err
|
|
|
|
}
|
|
|
|
clogger.Debugf("receiver-nonce: %v", hexkey(recNonce))
|
|
|
|
clogger.Debugf("receiver-random-priv-key: %v", hexkey(crypto.FromECDSA(randomPrivKey)))
|
|
|
|
if _, err = conn.Write(response); err != nil {
|
|
|
|
return nil, nil, err
|
|
|
|
}
|
|
|
|
clogger.Debugf("receiver handshake:\n%v", hexkey(response))
|
|
|
|
token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
|
|
|
|
return token, remotePubKey, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// authResp is called by peer if it accepted (but not
|
|
|
|
// initiated) the connection from the remote. It is passed the initiator
|
|
|
|
// handshake received and the session token belonging to the
|
|
|
|
// remote initiator.
|
|
|
|
//
|
|
|
|
// The first return value is the authentication response (aka receiver
|
|
|
|
// handshake) that is to be sent to the remote initiator.
|
|
|
|
func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
|
|
|
|
authResp, respNonce, initNonce, remotePubKeyS []byte,
|
|
|
|
randomPrivKey *ecdsa.PrivateKey,
|
|
|
|
remoteRandomPubKey *ecdsa.PublicKey,
|
|
|
|
err error,
|
|
|
|
) {
|
|
|
|
// they prove that msg is meant for me,
|
|
|
|
// I prove I possess private key if i can read it
|
|
|
|
msg, err := crypto.Decrypt(prvKey, auth)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen]
|
|
|
|
remotePubKey, _ := importPublicKey(remotePubKeyS)
|
|
|
|
|
|
|
|
var tokenFlag byte
|
|
|
|
if sessionToken == nil {
|
|
|
|
// no session token found means we need to generate shared secret.
|
|
|
|
// ecies shared secret is used as initial session token for new peers
|
|
|
|
// generate shared key from prv and remote pubkey
|
|
|
|
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// tokenFlag = 0x00 // redundant
|
|
|
|
} else {
|
|
|
|
// for known peers, we use stored token from the previous session
|
|
|
|
tokenFlag = 0x01
|
|
|
|
}
|
|
|
|
|
|
|
|
// the initiator nonce is read off the end of the message
|
|
|
|
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
|
|
|
// I prove that i own prv key (to derive shared secret, and read
|
|
|
|
// nonce off encrypted msg) and that I own shared secret they
|
|
|
|
// prove they own the private key belonging to ecdhe-random-pubk
|
|
|
|
// we can now reconstruct the signed message and recover the peers
|
|
|
|
// pubkey
|
|
|
|
var signedMsg = xor(sessionToken, initNonce)
|
|
|
|
var remoteRandomPubKeyS []byte
|
|
|
|
if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// convert to ECDSA standard
|
|
|
|
if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// now we find ourselves a long task too, fill it random
|
|
|
|
var resp = make([]byte, authRespLen)
|
|
|
|
// generate shaLen long nonce
|
|
|
|
respNonce = resp[pubLen : pubLen+shaLen]
|
|
|
|
if _, err = rand.Read(respNonce); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// generate random keypair for session
|
|
|
|
if randomPrivKey, err = crypto.GenerateKey(); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// responder auth message
|
|
|
|
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
|
|
|
|
var randomPubKeyS []byte
|
|
|
|
if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
copy(resp[:pubLen], randomPubKeyS)
|
|
|
|
// nonce is already in the slice
|
|
|
|
resp[authRespLen-1] = tokenFlag
|
|
|
|
|
|
|
|
// encrypt using remote-pubk
|
|
|
|
// auth = eciesEncrypt(remote-pubk, msg)
|
|
|
|
// why not encrypt with ecdhe-random-remote
|
|
|
|
if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// newSession is called after the handshake is completed. The
|
|
|
|
// arguments are values negotiated in the handshake. The return value
|
|
|
|
// is a new session Token to be remembered for the next time we
|
|
|
|
// connect with this peer.
|
|
|
|
func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
|
|
|
|
// 3) Now we can trust ecdhe-random-pubk to derive new keys
|
|
|
|
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
|
|
|
|
pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
|
|
|
|
dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
|
|
|
|
sessionToken := crypto.Sha3(sharedSecret)
|
|
|
|
return sessionToken, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// importPublicKey unmarshals 512 bit public keys.
|
|
|
|
func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
|
|
|
|
var pubKey65 []byte
|
|
|
|
switch len(pubKey) {
|
|
|
|
case 64:
|
|
|
|
// add 'uncompressed key' flag
|
|
|
|
pubKey65 = append([]byte{0x04}, pubKey...)
|
|
|
|
case 65:
|
|
|
|
pubKey65 = pubKey
|
|
|
|
default:
|
|
|
|
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
|
|
|
|
}
|
|
|
|
return crypto.ToECDSAPub(pubKey65), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) {
|
|
|
|
if pubKeyEC == nil {
|
|
|
|
return nil, fmt.Errorf("no ECDSA public key given")
|
|
|
|
}
|
|
|
|
return crypto.FromECDSAPub(pubKeyEC)[1:], nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func xor(one, other []byte) (xor []byte) {
|
|
|
|
xor = make([]byte, len(one))
|
|
|
|
for i := 0; i < len(one); i++ {
|
|
|
|
xor[i] = one[i] ^ other[i]
|
|
|
|
}
|
|
|
|
return xor
|
|
|
|
}
|