|
|
|
// Copyright 2024 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package snap
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"math/rand"
|
|
|
|
"slices"
|
|
|
|
"testing"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
|
|
"github.com/ethereum/go-ethereum/internal/testrand"
|
|
|
|
"github.com/ethereum/go-ethereum/trie"
|
|
|
|
)
|
|
|
|
|
|
|
|
type replayer struct {
|
|
|
|
paths []string // sort in fifo order
|
|
|
|
hashes []common.Hash // empty for deletion
|
|
|
|
unknowns int // counter for unknown write
|
|
|
|
}
|
|
|
|
|
|
|
|
func newBatchReplay() *replayer {
|
|
|
|
return &replayer{}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (r *replayer) decode(key []byte, value []byte) {
|
|
|
|
account := rawdb.IsAccountTrieNode(key)
|
|
|
|
storage := rawdb.IsStorageTrieNode(key)
|
|
|
|
if !account && !storage {
|
|
|
|
r.unknowns += 1
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var path []byte
|
|
|
|
if account {
|
|
|
|
_, path = rawdb.ResolveAccountTrieNodeKey(key)
|
|
|
|
} else {
|
|
|
|
_, owner, inner := rawdb.ResolveStorageTrieNode(key)
|
|
|
|
path = append(owner.Bytes(), inner...)
|
|
|
|
}
|
|
|
|
r.paths = append(r.paths, string(path))
|
|
|
|
|
|
|
|
if len(value) == 0 {
|
|
|
|
r.hashes = append(r.hashes, common.Hash{})
|
|
|
|
} else {
|
|
|
|
r.hashes = append(r.hashes, crypto.Keccak256Hash(value))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// updates returns a set of effective mutations. Multiple mutations targeting
|
|
|
|
// the same node path will be merged in FIFO order.
|
|
|
|
func (r *replayer) modifies() map[string]common.Hash {
|
|
|
|
set := make(map[string]common.Hash)
|
|
|
|
for i, path := range r.paths {
|
|
|
|
set[path] = r.hashes[i]
|
|
|
|
}
|
|
|
|
return set
|
|
|
|
}
|
|
|
|
|
|
|
|
// updates returns the number of updates.
|
|
|
|
func (r *replayer) updates() int {
|
|
|
|
var count int
|
|
|
|
for _, hash := range r.modifies() {
|
|
|
|
if hash == (common.Hash{}) {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
count++
|
|
|
|
}
|
|
|
|
return count
|
|
|
|
}
|
|
|
|
|
|
|
|
// Put inserts the given value into the key-value data store.
|
|
|
|
func (r *replayer) Put(key []byte, value []byte) error {
|
|
|
|
r.decode(key, value)
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Delete removes the key from the key-value data store.
|
|
|
|
func (r *replayer) Delete(key []byte) error {
|
|
|
|
r.decode(key, nil)
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func byteToHex(str []byte) []byte {
|
|
|
|
l := len(str) * 2
|
|
|
|
var nibbles = make([]byte, l)
|
|
|
|
for i, b := range str {
|
|
|
|
nibbles[i*2] = b / 16
|
|
|
|
nibbles[i*2+1] = b % 16
|
|
|
|
}
|
|
|
|
return nibbles
|
|
|
|
}
|
|
|
|
|
|
|
|
// innerNodes returns the internal nodes narrowed by two boundaries along with
|
|
|
|
// the leftmost and rightmost sub-trie roots.
|
|
|
|
func innerNodes(first, last []byte, includeLeft, includeRight bool, nodes map[string]common.Hash, t *testing.T) (map[string]common.Hash, []byte, []byte) {
|
|
|
|
var (
|
|
|
|
leftRoot []byte
|
|
|
|
rightRoot []byte
|
|
|
|
firstHex = byteToHex(first)
|
|
|
|
lastHex = byteToHex(last)
|
|
|
|
inner = make(map[string]common.Hash)
|
|
|
|
)
|
|
|
|
for path, hash := range nodes {
|
|
|
|
if hash == (common.Hash{}) {
|
|
|
|
t.Fatalf("Unexpected deletion, %v", []byte(path))
|
|
|
|
}
|
|
|
|
// Filter out the siblings on the left side or the left boundary nodes.
|
|
|
|
if !includeLeft && (bytes.Compare(firstHex, []byte(path)) > 0 || bytes.HasPrefix(firstHex, []byte(path))) {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
// Filter out the siblings on the right side or the right boundary nodes.
|
|
|
|
if !includeRight && (bytes.Compare(lastHex, []byte(path)) < 0 || bytes.HasPrefix(lastHex, []byte(path))) {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
inner[path] = hash
|
|
|
|
|
|
|
|
// Track the path of the leftmost sub trie root
|
|
|
|
if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 {
|
|
|
|
leftRoot = []byte(path)
|
|
|
|
}
|
|
|
|
// Track the path of the rightmost sub trie root
|
|
|
|
if rightRoot == nil ||
|
|
|
|
(bytes.Compare(rightRoot, []byte(path)) < 0) ||
|
|
|
|
(bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) {
|
|
|
|
rightRoot = []byte(path)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return inner, leftRoot, rightRoot
|
|
|
|
}
|
|
|
|
|
|
|
|
func buildPartial(owner common.Hash, db ethdb.KeyValueReader, batch ethdb.Batch, entries []*kv, first, last int) *replayer {
|
|
|
|
tr := newPathTrie(owner, first != 0, db, batch)
|
|
|
|
for i := first; i <= last; i++ {
|
|
|
|
tr.update(entries[i].k, entries[i].v)
|
|
|
|
}
|
|
|
|
tr.commit(last == len(entries)-1)
|
|
|
|
|
|
|
|
replay := newBatchReplay()
|
|
|
|
batch.Replay(replay)
|
|
|
|
|
|
|
|
return replay
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestPartialGentree verifies if the trie constructed with partial states can
|
|
|
|
// generate consistent trie nodes that match those of the full trie.
|
|
|
|
func TestPartialGentree(t *testing.T) {
|
|
|
|
for round := 0; round < 100; round++ {
|
|
|
|
var (
|
|
|
|
n = rand.Intn(1024) + 10
|
|
|
|
entries []*kv
|
|
|
|
)
|
|
|
|
for i := 0; i < n; i++ {
|
|
|
|
var val []byte
|
|
|
|
if rand.Intn(3) == 0 {
|
|
|
|
val = testrand.Bytes(3)
|
|
|
|
} else {
|
|
|
|
val = testrand.Bytes(32)
|
|
|
|
}
|
|
|
|
entries = append(entries, &kv{
|
|
|
|
k: testrand.Bytes(32),
|
|
|
|
v: val,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
slices.SortFunc(entries, (*kv).cmp)
|
|
|
|
|
|
|
|
nodes := make(map[string]common.Hash)
|
|
|
|
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
|
|
|
|
nodes[string(path)] = hash
|
|
|
|
})
|
|
|
|
for i := 0; i < len(entries); i++ {
|
|
|
|
tr.Update(entries[i].k, entries[i].v)
|
|
|
|
}
|
|
|
|
tr.Hash()
|
|
|
|
|
|
|
|
check := func(first, last int) {
|
|
|
|
var (
|
|
|
|
db = rawdb.NewMemoryDatabase()
|
|
|
|
batch = db.NewBatch()
|
|
|
|
)
|
|
|
|
// Build the partial tree with specific boundaries
|
|
|
|
r := buildPartial(common.Hash{}, db, batch, entries, first, last)
|
|
|
|
if r.unknowns > 0 {
|
|
|
|
t.Fatalf("Unknown database write: %d", r.unknowns)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure all the internal nodes are produced
|
|
|
|
var (
|
|
|
|
set = r.modifies()
|
|
|
|
inner, _, _ = innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t)
|
|
|
|
)
|
|
|
|
for path, hash := range inner {
|
|
|
|
if _, ok := set[path]; !ok {
|
|
|
|
t.Fatalf("Missing nodes %v", []byte(path))
|
|
|
|
}
|
|
|
|
if hash != set[path] {
|
|
|
|
t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if r.updates() != len(inner) {
|
|
|
|
t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for j := 0; j < 100; j++ {
|
|
|
|
var (
|
|
|
|
first int
|
|
|
|
last int
|
|
|
|
)
|
|
|
|
for {
|
|
|
|
first = rand.Intn(len(entries))
|
|
|
|
last = rand.Intn(len(entries))
|
|
|
|
if first <= last {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
check(first, last)
|
|
|
|
}
|
|
|
|
var cases = []struct {
|
|
|
|
first int
|
|
|
|
last int
|
|
|
|
}{
|
|
|
|
{0, len(entries) - 1}, // full
|
|
|
|
{1, len(entries) - 1}, // no left
|
|
|
|
{2, len(entries) - 1}, // no left
|
|
|
|
{2, len(entries) - 2}, // no left and right
|
|
|
|
{2, len(entries) - 2}, // no left and right
|
|
|
|
{len(entries) / 2, len(entries) / 2}, // single
|
|
|
|
{0, 0}, // single first
|
|
|
|
{len(entries) - 1, len(entries) - 1}, // single last
|
|
|
|
}
|
|
|
|
for _, c := range cases {
|
|
|
|
check(c.first, c.last)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestGentreeDanglingClearing tests if the dangling nodes falling within the
|
|
|
|
// path space of constructed tree can be correctly removed.
|
|
|
|
func TestGentreeDanglingClearing(t *testing.T) {
|
|
|
|
for round := 0; round < 100; round++ {
|
|
|
|
var (
|
|
|
|
n = rand.Intn(1024) + 10
|
|
|
|
entries []*kv
|
|
|
|
)
|
|
|
|
for i := 0; i < n; i++ {
|
|
|
|
var val []byte
|
|
|
|
if rand.Intn(3) == 0 {
|
|
|
|
val = testrand.Bytes(3)
|
|
|
|
} else {
|
|
|
|
val = testrand.Bytes(32)
|
|
|
|
}
|
|
|
|
entries = append(entries, &kv{
|
|
|
|
k: testrand.Bytes(32),
|
|
|
|
v: val,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
slices.SortFunc(entries, (*kv).cmp)
|
|
|
|
|
|
|
|
nodes := make(map[string]common.Hash)
|
|
|
|
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
|
|
|
|
nodes[string(path)] = hash
|
|
|
|
})
|
|
|
|
for i := 0; i < len(entries); i++ {
|
|
|
|
tr.Update(entries[i].k, entries[i].v)
|
|
|
|
}
|
|
|
|
tr.Hash()
|
|
|
|
|
|
|
|
check := func(first, last int) {
|
|
|
|
var (
|
|
|
|
db = rawdb.NewMemoryDatabase()
|
|
|
|
batch = db.NewBatch()
|
|
|
|
)
|
|
|
|
// Write the junk nodes as the dangling
|
|
|
|
var injects []string
|
|
|
|
for path := range nodes {
|
|
|
|
for i := 0; i < len(path); i++ {
|
|
|
|
_, ok := nodes[path[:i]]
|
|
|
|
if ok {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
injects = append(injects, path[:i])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if len(injects) == 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
for _, path := range injects {
|
|
|
|
rawdb.WriteAccountTrieNode(db, []byte(path), testrand.Bytes(32))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Build the partial tree with specific range
|
|
|
|
replay := buildPartial(common.Hash{}, db, batch, entries, first, last)
|
|
|
|
if replay.unknowns > 0 {
|
|
|
|
t.Fatalf("Unknown database write: %d", replay.unknowns)
|
|
|
|
}
|
|
|
|
set := replay.modifies()
|
|
|
|
|
|
|
|
// Make sure the injected junks falling within the path space of
|
|
|
|
// committed trie nodes are correctly deleted.
|
|
|
|
_, leftRoot, rightRoot := innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t)
|
|
|
|
for _, path := range injects {
|
|
|
|
if bytes.Compare([]byte(path), leftRoot) < 0 && !bytes.HasPrefix(leftRoot, []byte(path)) {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
if bytes.Compare([]byte(path), rightRoot) > 0 {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
if hash, ok := set[path]; !ok || hash != (common.Hash{}) {
|
|
|
|
t.Fatalf("Missing delete, %v", []byte(path))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for j := 0; j < 100; j++ {
|
|
|
|
var (
|
|
|
|
first int
|
|
|
|
last int
|
|
|
|
)
|
|
|
|
for {
|
|
|
|
first = rand.Intn(len(entries))
|
|
|
|
last = rand.Intn(len(entries))
|
|
|
|
if first <= last {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
check(first, last)
|
|
|
|
}
|
|
|
|
var cases = []struct {
|
|
|
|
first int
|
|
|
|
last int
|
|
|
|
}{
|
|
|
|
{0, len(entries) - 1}, // full
|
|
|
|
{1, len(entries) - 1}, // no left
|
|
|
|
{2, len(entries) - 1}, // no left
|
|
|
|
{2, len(entries) - 2}, // no left and right
|
|
|
|
{2, len(entries) - 2}, // no left and right
|
|
|
|
{len(entries) / 2, len(entries) / 2}, // single
|
|
|
|
{0, 0}, // single first
|
|
|
|
{len(entries) - 1, len(entries) - 1}, // single last
|
|
|
|
}
|
|
|
|
for _, c := range cases {
|
|
|
|
check(c.first, c.last)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestFlushPartialTree tests the gentrie can produce complete inner trie nodes
|
|
|
|
// even with lots of batch flushes.
|
|
|
|
func TestFlushPartialTree(t *testing.T) {
|
|
|
|
var entries []*kv
|
|
|
|
for i := 0; i < 1024; i++ {
|
|
|
|
var val []byte
|
|
|
|
if rand.Intn(3) == 0 {
|
|
|
|
val = testrand.Bytes(3)
|
|
|
|
} else {
|
|
|
|
val = testrand.Bytes(32)
|
|
|
|
}
|
|
|
|
entries = append(entries, &kv{
|
|
|
|
k: testrand.Bytes(32),
|
|
|
|
v: val,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
slices.SortFunc(entries, (*kv).cmp)
|
|
|
|
|
|
|
|
nodes := make(map[string]common.Hash)
|
|
|
|
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
|
|
|
|
nodes[string(path)] = hash
|
|
|
|
})
|
|
|
|
for i := 0; i < len(entries); i++ {
|
|
|
|
tr.Update(entries[i].k, entries[i].v)
|
|
|
|
}
|
|
|
|
tr.Hash()
|
|
|
|
|
|
|
|
var cases = []struct {
|
|
|
|
first int
|
|
|
|
last int
|
|
|
|
}{
|
|
|
|
{0, len(entries) - 1}, // full
|
|
|
|
{1, len(entries) - 1}, // no left
|
|
|
|
{10, len(entries) - 1}, // no left
|
|
|
|
{10, len(entries) - 2}, // no left and right
|
|
|
|
{10, len(entries) - 10}, // no left and right
|
|
|
|
{11, 11}, // single
|
|
|
|
{0, 0}, // single first
|
|
|
|
{len(entries) - 1, len(entries) - 1}, // single last
|
|
|
|
}
|
|
|
|
for _, c := range cases {
|
|
|
|
var (
|
|
|
|
db = rawdb.NewMemoryDatabase()
|
|
|
|
batch = db.NewBatch()
|
|
|
|
combined = db.NewBatch()
|
|
|
|
)
|
|
|
|
inner, _, _ := innerNodes(entries[c.first].k, entries[c.last].k, c.first == 0, c.last == len(entries)-1, nodes, t)
|
|
|
|
|
|
|
|
tr := newPathTrie(common.Hash{}, c.first != 0, db, batch)
|
|
|
|
for i := c.first; i <= c.last; i++ {
|
|
|
|
tr.update(entries[i].k, entries[i].v)
|
|
|
|
if rand.Intn(2) == 0 {
|
|
|
|
tr.commit(false)
|
|
|
|
|
|
|
|
batch.Replay(combined)
|
|
|
|
batch.Write()
|
|
|
|
batch.Reset()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
tr.commit(c.last == len(entries)-1)
|
|
|
|
|
|
|
|
batch.Replay(combined)
|
|
|
|
batch.Write()
|
|
|
|
batch.Reset()
|
|
|
|
|
|
|
|
r := newBatchReplay()
|
|
|
|
combined.Replay(r)
|
|
|
|
|
|
|
|
// Ensure all the internal nodes are produced
|
|
|
|
set := r.modifies()
|
|
|
|
for path, hash := range inner {
|
|
|
|
if _, ok := set[path]; !ok {
|
|
|
|
t.Fatalf("Missing nodes %v", []byte(path))
|
|
|
|
}
|
|
|
|
if hash != set[path] {
|
|
|
|
t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if r.updates() != len(inner) {
|
|
|
|
t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestBoundSplit ensures two consecutive trie chunks are not overlapped with
|
|
|
|
// each other.
|
|
|
|
func TestBoundSplit(t *testing.T) {
|
|
|
|
var entries []*kv
|
|
|
|
for i := 0; i < 1024; i++ {
|
|
|
|
var val []byte
|
|
|
|
if rand.Intn(3) == 0 {
|
|
|
|
val = testrand.Bytes(3)
|
|
|
|
} else {
|
|
|
|
val = testrand.Bytes(32)
|
|
|
|
}
|
|
|
|
entries = append(entries, &kv{
|
|
|
|
k: testrand.Bytes(32),
|
|
|
|
v: val,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
slices.SortFunc(entries, (*kv).cmp)
|
|
|
|
|
|
|
|
for j := 0; j < 100; j++ {
|
|
|
|
var (
|
|
|
|
next int
|
|
|
|
last int
|
|
|
|
db = rawdb.NewMemoryDatabase()
|
|
|
|
|
|
|
|
lastRightRoot []byte
|
|
|
|
)
|
|
|
|
for {
|
|
|
|
if next == len(entries) {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
last = rand.Intn(len(entries)-next) + next
|
|
|
|
|
|
|
|
r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last)
|
|
|
|
set := r.modifies()
|
|
|
|
|
|
|
|
// Skip if the chunk is zero-size
|
|
|
|
if r.updates() == 0 {
|
|
|
|
next = last + 1
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure the updates in two consecutive chunks are not overlapped.
|
|
|
|
// The only overlapping part should be deletion.
|
|
|
|
if lastRightRoot != nil && len(set) > 0 {
|
|
|
|
// Derive the path of left-most node in this chunk
|
|
|
|
var leftRoot []byte
|
|
|
|
for path, hash := range r.modifies() {
|
|
|
|
if hash == (common.Hash{}) {
|
|
|
|
t.Fatalf("Unexpected deletion %v", []byte(path))
|
|
|
|
}
|
|
|
|
if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 {
|
|
|
|
leftRoot = []byte(path)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if bytes.HasPrefix(lastRightRoot, leftRoot) || bytes.HasPrefix(leftRoot, lastRightRoot) {
|
|
|
|
t.Fatalf("Two chunks are not correctly separated, lastRight: %v, left: %v", lastRightRoot, leftRoot)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Track the updates as the last chunk
|
|
|
|
var rightRoot []byte
|
|
|
|
for path := range set {
|
|
|
|
if rightRoot == nil ||
|
|
|
|
(bytes.Compare(rightRoot, []byte(path)) < 0) ||
|
|
|
|
(bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) {
|
|
|
|
rightRoot = []byte(path)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lastRightRoot = rightRoot
|
|
|
|
next = last + 1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestTinyPartialTree tests if the partial tree is too tiny(has less than two
|
|
|
|
// states), then nothing should be committed.
|
|
|
|
func TestTinyPartialTree(t *testing.T) {
|
|
|
|
var entries []*kv
|
|
|
|
for i := 0; i < 1024; i++ {
|
|
|
|
var val []byte
|
|
|
|
if rand.Intn(3) == 0 {
|
|
|
|
val = testrand.Bytes(3)
|
|
|
|
} else {
|
|
|
|
val = testrand.Bytes(32)
|
|
|
|
}
|
|
|
|
entries = append(entries, &kv{
|
|
|
|
k: testrand.Bytes(32),
|
|
|
|
v: val,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
slices.SortFunc(entries, (*kv).cmp)
|
|
|
|
|
|
|
|
for i := 0; i < len(entries); i++ {
|
|
|
|
next := i
|
|
|
|
last := i + 1
|
|
|
|
if last >= len(entries) {
|
|
|
|
last = len(entries) - 1
|
|
|
|
}
|
|
|
|
db := rawdb.NewMemoryDatabase()
|
|
|
|
r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last)
|
|
|
|
|
|
|
|
if next != 0 && last != len(entries)-1 {
|
|
|
|
if r.updates() != 0 {
|
|
|
|
t.Fatalf("Unexpected data writes, got: %d", r.updates())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestTrieDelete(t *testing.T) {
|
|
|
|
var entries []*kv
|
|
|
|
for i := 0; i < 1024; i++ {
|
|
|
|
entries = append(entries, &kv{
|
|
|
|
k: testrand.Bytes(32),
|
|
|
|
v: testrand.Bytes(32),
|
|
|
|
})
|
|
|
|
}
|
|
|
|
slices.SortFunc(entries, (*kv).cmp)
|
|
|
|
|
|
|
|
nodes := make(map[string]common.Hash)
|
|
|
|
tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) {
|
|
|
|
nodes[string(path)] = hash
|
|
|
|
})
|
|
|
|
for i := 0; i < len(entries); i++ {
|
|
|
|
tr.Update(entries[i].k, entries[i].v)
|
|
|
|
}
|
|
|
|
tr.Hash()
|
|
|
|
|
|
|
|
check := func(index []int) {
|
|
|
|
var (
|
|
|
|
db = rawdb.NewMemoryDatabase()
|
|
|
|
batch = db.NewBatch()
|
|
|
|
marks = map[int]struct{}{}
|
|
|
|
neighbors = map[int]struct{}{}
|
|
|
|
)
|
|
|
|
for _, n := range index {
|
|
|
|
marks[n] = struct{}{}
|
|
|
|
}
|
|
|
|
for _, n := range index {
|
|
|
|
if n != 0 {
|
|
|
|
if _, ok := marks[n-1]; !ok {
|
|
|
|
neighbors[n-1] = struct{}{}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if n != len(entries)-1 {
|
|
|
|
if _, ok := neighbors[n+1]; !ok {
|
|
|
|
neighbors[n+1] = struct{}{}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Write the junk nodes as the dangling
|
|
|
|
var injects []string
|
|
|
|
for _, n := range index {
|
|
|
|
nibbles := byteToHex(entries[n].k)
|
|
|
|
for i := 0; i <= len(nibbles); i++ {
|
|
|
|
injects = append(injects, string(nibbles[:i]))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for _, path := range injects {
|
|
|
|
rawdb.WriteAccountTrieNode(db, []byte(path), testrand.Bytes(32))
|
|
|
|
}
|
|
|
|
tr := newPathTrie(common.Hash{}, false, db, batch)
|
|
|
|
for i := 0; i < len(entries); i++ {
|
|
|
|
if _, ok := marks[i]; ok {
|
|
|
|
tr.delete(entries[i].k)
|
|
|
|
} else {
|
|
|
|
tr.update(entries[i].k, entries[i].v)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
tr.commit(true)
|
|
|
|
|
|
|
|
r := newBatchReplay()
|
|
|
|
batch.Replay(r)
|
|
|
|
batch.Write()
|
|
|
|
|
|
|
|
for _, path := range injects {
|
|
|
|
if rawdb.HasAccountTrieNode(db, []byte(path)) {
|
|
|
|
t.Fatalf("Unexpected leftover node %v", []byte(path))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ensure all the written nodes match with the complete tree
|
|
|
|
set := make(map[string]common.Hash)
|
|
|
|
for path, hash := range r.modifies() {
|
|
|
|
if hash == (common.Hash{}) {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
n, ok := nodes[path]
|
|
|
|
if !ok {
|
|
|
|
t.Fatalf("Unexpected trie node: %v", []byte(path))
|
|
|
|
}
|
|
|
|
if n != hash {
|
|
|
|
t.Fatalf("Unexpected trie node content: %v, want: %x, got: %x", []byte(path), n, hash)
|
|
|
|
}
|
|
|
|
set[path] = hash
|
|
|
|
}
|
|
|
|
|
|
|
|
// ensure all the missing nodes either on the deleted path, or
|
|
|
|
// on the neighbor paths.
|
|
|
|
isMissing := func(path []byte) bool {
|
|
|
|
for n := range marks {
|
|
|
|
key := byteToHex(entries[n].k)
|
|
|
|
if bytes.HasPrefix(key, path) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for n := range neighbors {
|
|
|
|
key := byteToHex(entries[n].k)
|
|
|
|
if bytes.HasPrefix(key, path) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
for path := range nodes {
|
|
|
|
if _, ok := set[path]; ok {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
if !isMissing([]byte(path)) {
|
|
|
|
t.Fatalf("Missing node %v", []byte(path))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
var cases = []struct {
|
|
|
|
index []int
|
|
|
|
}{
|
|
|
|
// delete the first
|
|
|
|
{[]int{0}},
|
|
|
|
|
|
|
|
// delete the last
|
|
|
|
{[]int{len(entries) - 1}},
|
|
|
|
|
|
|
|
// delete the first two
|
|
|
|
{[]int{0, 1}},
|
|
|
|
|
|
|
|
// delete the last two
|
|
|
|
{[]int{len(entries) - 2, len(entries) - 1}},
|
|
|
|
|
|
|
|
{[]int{
|
|
|
|
0, 2, 4, 6,
|
|
|
|
len(entries) - 1,
|
|
|
|
len(entries) - 3,
|
|
|
|
len(entries) - 5,
|
|
|
|
len(entries) - 7,
|
|
|
|
}},
|
|
|
|
}
|
|
|
|
for _, c := range cases {
|
|
|
|
check(c.index)
|
|
|
|
}
|
|
|
|
}
|