Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-ethereum/core/tx_pool.go

739 lines
23 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
11 years ago
import (
"errors"
11 years ago
"fmt"
"math/big"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/event"
10 years ago
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"gopkg.in/karalabe/cookiejar.v2/collections/prque"
11 years ago
)
var (
// Transaction Pool Errors
ErrInvalidSender = errors.New("Invalid sender")
ErrNonce = errors.New("Nonce too low")
ErrCheap = errors.New("Gas price too low for acceptance")
ErrBalance = errors.New("Insufficient balance")
ErrNonExistentAccount = errors.New("Account does not exist or account balance too low")
ErrInsufficientFunds = errors.New("Insufficient funds for gas * price + value")
ErrIntrinsicGas = errors.New("Intrinsic gas too low")
ErrGasLimit = errors.New("Exceeds block gas limit")
ErrNegativeValue = errors.New("Negative value")
)
var (
minPendingPerAccount = uint64(16) // Min number of guaranteed transaction slots per address
maxPendingTotal = uint64(4096) // Max limit of pending transactions from all accounts (soft)
maxQueuedPerAccount = uint64(64) // Max limit of queued transactions per address
maxQueuedInTotal = uint64(1024) // Max limit of queued transactions from all accounts
maxQueuedLifetime = 3 * time.Hour // Max amount of time transactions from idle accounts are queued
evictionInterval = time.Minute // Time interval to check for evictable transactions
)
type stateFn func() (*state.StateDB, error)
// TxPool contains all currently known transactions. Transactions
// enter the pool when they are received from the network or submitted
// locally. They exit the pool when they are included in the blockchain.
//
// The pool separates processable transactions (which can be applied to the
// current state) and future transactions. Transactions move between those
// two states over time as they are received and processed.
11 years ago
type TxPool struct {
config *ChainConfig
currentState stateFn // The state function which will allow us to do some pre checks
pendingState *state.ManagedState
gasLimit func() *big.Int // The current gas limit function callback
minGasPrice *big.Int
eventMux *event.TypeMux
events event.Subscription
localTx *txSet
mu sync.RWMutex
pending map[common.Address]*txList // All currently processable transactions
queue map[common.Address]*txList // Queued but non-processable transactions
all map[common.Hash]*types.Transaction // All transactions to allow lookups
beats map[common.Address]time.Time // Last heartbeat from each known account
wg sync.WaitGroup // for shutdown sync
quit chan struct{}
homestead bool
11 years ago
}
func NewTxPool(config *ChainConfig, eventMux *event.TypeMux, currentStateFn stateFn, gasLimitFn func() *big.Int) *TxPool {
pool := &TxPool{
config: config,
pending: make(map[common.Address]*txList),
queue: make(map[common.Address]*txList),
all: make(map[common.Hash]*types.Transaction),
beats: make(map[common.Address]time.Time),
eventMux: eventMux,
currentState: currentStateFn,
gasLimit: gasLimitFn,
minGasPrice: new(big.Int),
pendingState: nil,
localTx: newTxSet(),
events: eventMux.Subscribe(ChainHeadEvent{}, GasPriceChanged{}, RemovedTransactionEvent{}),
quit: make(chan struct{}),
11 years ago
}
pool.wg.Add(2)
go pool.eventLoop()
go pool.expirationLoop()
return pool
}
func (pool *TxPool) eventLoop() {
defer pool.wg.Done()
// Track chain events. When a chain events occurs (new chain canon block)
// we need to know the new state. The new state will help us determine
// the nonces in the managed state
for ev := range pool.events.Chan() {
switch ev := ev.Data.(type) {
case ChainHeadEvent:
pool.mu.Lock()
if ev.Block != nil && pool.config.IsHomestead(ev.Block.Number()) {
pool.homestead = true
}
pool.resetState()
pool.mu.Unlock()
case GasPriceChanged:
pool.mu.Lock()
pool.minGasPrice = ev.Price
pool.mu.Unlock()
case RemovedTransactionEvent:
pool.AddBatch(ev.Txs)
}
}
11 years ago
}
func (pool *TxPool) resetState() {
currentState, err := pool.currentState()
if err != nil {
glog.V(logger.Error).Infof("Failed to get current state: %v", err)
return
}
managedState := state.ManageState(currentState)
if err != nil {
glog.V(logger.Error).Infof("Failed to get managed state: %v", err)
return
}
pool.pendingState = managedState
// validate the pool of pending transactions, this will remove
// any transactions that have been included in the block or
// have been invalidated because of another transaction (e.g.
// higher gas price)
pool.demoteUnexecutables()
// Update all accounts to the latest known pending nonce
for addr, list := range pool.pending {
txs := list.Flatten() // Heavy but will be cached and is needed by the miner anyway
pool.pendingState.SetNonce(addr, txs[len(txs)-1].Nonce()+1)
}
// Check the queue and move transactions over to the pending if possible
// or remove those that have become invalid
pool.promoteExecutables()
}
func (pool *TxPool) Stop() {
pool.events.Unsubscribe()
close(pool.quit)
pool.wg.Wait()
glog.V(logger.Info).Infoln("Transaction pool stopped")
}
func (pool *TxPool) State() *state.ManagedState {
pool.mu.RLock()
defer pool.mu.RUnlock()
return pool.pendingState
}
// Stats retrieves the current pool stats, namely the number of pending and the
// number of queued (non-executable) transactions.
func (pool *TxPool) Stats() (pending int, queued int) {
pool.mu.RLock()
defer pool.mu.RUnlock()
for _, list := range pool.pending {
pending += list.Len()
}
for _, list := range pool.queue {
queued += list.Len()
}
return
}
// Content retrieves the data content of the transaction pool, returning all the
// pending as well as queued transactions, grouped by account and sorted by nonce.
func (pool *TxPool) Content() (map[common.Address]types.Transactions, map[common.Address]types.Transactions) {
pool.mu.RLock()
defer pool.mu.RUnlock()
pending := make(map[common.Address]types.Transactions)
for addr, list := range pool.pending {
pending[addr] = list.Flatten()
}
queued := make(map[common.Address]types.Transactions)
for addr, list := range pool.queue {
queued[addr] = list.Flatten()
}
return pending, queued
}
// Pending retrieves all currently processable transactions, groupped by origin
// account and sorted by nonce. The returned transaction set is a copy and can be
// freely modified by calling code.
func (pool *TxPool) Pending() map[common.Address]types.Transactions {
pool.mu.Lock()
defer pool.mu.Unlock()
// check queue first
pool.promoteExecutables()
// invalidate any txs
pool.demoteUnexecutables()
pending := make(map[common.Address]types.Transactions)
for addr, list := range pool.pending {
pending[addr] = list.Flatten()
}
return pending
}
// SetLocal marks a transaction as local, skipping gas price
// check against local miner minimum in the future
func (pool *TxPool) SetLocal(tx *types.Transaction) {
pool.mu.Lock()
defer pool.mu.Unlock()
pool.localTx.add(tx.Hash())
}
// validateTx checks whether a transaction is valid according
// to the consensus rules.
func (pool *TxPool) validateTx(tx *types.Transaction) error {
local := pool.localTx.contains(tx.Hash())
// Drop transactions under our own minimal accepted gas price
if !local && pool.minGasPrice.Cmp(tx.GasPrice()) > 0 {
return ErrCheap
}
currentState, err := pool.currentState()
if err != nil {
return err
}
from, err := tx.From()
if err != nil {
10 years ago
return ErrInvalidSender
}
// Make sure the account exist. Non existent accounts
// haven't got funds and well therefor never pass.
if !currentState.Exist(from) {
return ErrNonExistentAccount
}
// Last but not least check for nonce errors
if currentState.GetNonce(from) > tx.Nonce() {
return ErrNonce
}
// Check the transaction doesn't exceed the current
// block limit gas.
if pool.gasLimit().Cmp(tx.Gas()) < 0 {
return ErrGasLimit
}
// Transactions can't be negative. This may never happen
// using RLP decoded transactions but may occur if you create
// a transaction using the RPC for example.
if tx.Value().Cmp(common.Big0) < 0 {
return ErrNegativeValue
}
// Transactor should have enough funds to cover the costs
// cost == V + GP * GL
if currentState.GetBalance(from).Cmp(tx.Cost()) < 0 {
return ErrInsufficientFunds
}
intrGas := IntrinsicGas(tx.Data(), MessageCreatesContract(tx), pool.homestead)
if tx.Gas().Cmp(intrGas) < 0 {
return ErrIntrinsicGas
}
return nil
11 years ago
}
// add validates a transaction and inserts it into the non-executable queue for
// later pending promotion and execution.
func (pool *TxPool) add(tx *types.Transaction) error {
// If the transaction is alreayd known, discard it
hash := tx.Hash()
if pool.all[hash] != nil {
return fmt.Errorf("Known transaction: %x", hash[:4])
}
// Otherwise ensure basic validation passes and queue it up
if err := pool.validateTx(tx); err != nil {
return err
}
pool.enqueueTx(hash, tx)
// Print a log message if low enough level is set
if glog.V(logger.Debug) {
rcpt := "[NEW_CONTRACT]"
if to := tx.To(); to != nil {
rcpt = common.Bytes2Hex(to[:4])
}
from, _ := tx.From() // from already verified during tx validation
glog.Infof("(t) 0x%x => %s (%v) %x\n", from[:4], rcpt, tx.Value, hash)
}
return nil
}
// enqueueTx inserts a new transaction into the non-executable transaction queue.
//
// Note, this method assumes the pool lock is held!
func (pool *TxPool) enqueueTx(hash common.Hash, tx *types.Transaction) {
// Try to insert the transaction into the future queue
from, _ := tx.From() // already validated
if pool.queue[from] == nil {
pool.queue[from] = newTxList(false)
}
inserted, old := pool.queue[from].Add(tx)
if !inserted {
return // An older transaction was better, discard this
}
// Discard any previous transaction and mark this
if old != nil {
delete(pool.all, old.Hash())
}
pool.all[hash] = tx
}
// promoteTx adds a transaction to the pending (processable) list of transactions.
//
// Note, this method assumes the pool lock is held!
func (pool *TxPool) promoteTx(addr common.Address, hash common.Hash, tx *types.Transaction) {
// Init delayed since tx pool could have been started before any state sync
if pool.pendingState == nil {
pool.resetState()
}
// Try to insert the transaction into the pending queue
if pool.pending[addr] == nil {
pool.pending[addr] = newTxList(true)
}
list := pool.pending[addr]
inserted, old := list.Add(tx)
if !inserted {
// An older transaction was better, discard this
delete(pool.all, hash)
return
}
// Otherwise discard any previous transaction and mark this
if old != nil {
delete(pool.all, old.Hash())
}
pool.all[hash] = tx // Failsafe to work around direct pending inserts (tests)
// Set the potentially new pending nonce and notify any subsystems of the new tx
pool.beats[addr] = time.Now()
pool.pendingState.SetNonce(addr, tx.Nonce()+1)
go pool.eventMux.Post(TxPreEvent{tx})
}
// Add queues a single transaction in the pool if it is valid.
func (pool *TxPool) Add(tx *types.Transaction) error {
pool.mu.Lock()
defer pool.mu.Unlock()
if err := pool.add(tx); err != nil {
return err
}
pool.promoteExecutables()
return nil
}
// AddBatch attempts to queue a batch of transactions.
func (pool *TxPool) AddBatch(txs []*types.Transaction) {
pool.mu.Lock()
defer pool.mu.Unlock()
for _, tx := range txs {
if err := pool.add(tx); err != nil {
glog.V(logger.Debug).Infoln("tx error:", err)
}
}
pool.promoteExecutables()
}
// Get returns a transaction if it is contained in the pool
// and nil otherwise.
func (pool *TxPool) Get(hash common.Hash) *types.Transaction {
pool.mu.RLock()
defer pool.mu.RUnlock()
return pool.all[hash]
}
// Remove removes the transaction with the given hash from the pool.
func (pool *TxPool) Remove(hash common.Hash) {
pool.mu.Lock()
defer pool.mu.Unlock()
pool.removeTx(hash)
}
// RemoveBatch removes all given transactions from the pool.
func (pool *TxPool) RemoveBatch(txs types.Transactions) {
pool.mu.Lock()
defer pool.mu.Unlock()
for _, tx := range txs {
pool.removeTx(tx.Hash())
}
}
// removeTx removes a single transaction from the queue, moving all subsequent
// transactions back to the future queue.
func (pool *TxPool) removeTx(hash common.Hash) {
// Fetch the transaction we wish to delete
tx, ok := pool.all[hash]
if !ok {
return
}
addr, _ := tx.From() // already validated during insertion
// Remove it from the list of known transactions
delete(pool.all, hash)
// Remove the transaction from the pending lists and reset the account nonce
if pending := pool.pending[addr]; pending != nil {
if removed, invalids := pending.Remove(tx); removed {
// If no more transactions are left, remove the list
if pending.Empty() {
delete(pool.pending, addr)
delete(pool.beats, addr)
} else {
// Otherwise postpone any invalidated transactions
for _, tx := range invalids {
pool.enqueueTx(tx.Hash(), tx)
}
}
// Update the account nonce if needed
if nonce := tx.Nonce(); pool.pendingState.GetNonce(addr) > nonce {
pool.pendingState.SetNonce(addr, tx.Nonce())
}
}
}
// Transaction is in the future queue
if future := pool.queue[addr]; future != nil {
future.Remove(tx)
if future.Empty() {
delete(pool.queue, addr)
}
}
}
// promoteExecutables moves transactions that have become processable from the
// future queue to the set of pending transactions. During this process, all
// invalidated transactions (low nonce, low balance) are deleted.
func (pool *TxPool) promoteExecutables() {
// Init delayed since tx pool could have been started before any state sync
if pool.pendingState == nil {
pool.resetState()
}
// Retrieve the current state to allow nonce and balance checking
state, err := pool.currentState()
if err != nil {
glog.Errorf("Could not get current state: %v", err)
return
}
// Iterate over all accounts and promote any executable transactions
queued := uint64(0)
for addr, list := range pool.queue {
// Drop all transactions that are deemed too old (low nonce)
for _, tx := range list.Forward(state.GetNonce(addr)) {
if glog.V(logger.Core) {
glog.Infof("Removed old queued transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
// Drop all transactions that are too costly (low balance)
drops, _ := list.Filter(state.GetBalance(addr))
for _, tx := range drops {
if glog.V(logger.Core) {
glog.Infof("Removed unpayable queued transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
// Gather all executable transactions and promote them
for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) {
if glog.V(logger.Core) {
glog.Infof("Promoting queued transaction: %v", tx)
}
pool.promoteTx(addr, tx.Hash(), tx)
}
// Drop all transactions over the allowed limit
for _, tx := range list.Cap(int(maxQueuedPerAccount)) {
if glog.V(logger.Core) {
glog.Infof("Removed cap-exceeding queued transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
queued += uint64(list.Len())
// Delete the entire queue entry if it became empty.
if list.Empty() {
delete(pool.queue, addr)
}
}
// If the pending limit is overflown, start equalizing allowances
pending := uint64(0)
for _, list := range pool.pending {
pending += uint64(list.Len())
}
if pending > maxPendingTotal {
// Assemble a spam order to penalize large transactors first
spammers := prque.New()
for addr, list := range pool.pending {
// Only evict transactions from high rollers
if uint64(list.Len()) > minPendingPerAccount {
// Skip local accounts as pools should maintain backlogs for themselves
for _, tx := range list.txs.items {
if !pool.localTx.contains(tx.Hash()) {
spammers.Push(addr, float32(list.Len()))
}
break // Checking on transaction for locality is enough
}
}
}
// Gradually drop transactions from offenders
offenders := []common.Address{}
for pending > maxPendingTotal && !spammers.Empty() {
// Retrieve the next offender if not local address
offender, _ := spammers.Pop()
offenders = append(offenders, offender.(common.Address))
// Equalize balances until all the same or below threshold
if len(offenders) > 1 {
// Calculate the equalization threshold for all current offenders
threshold := pool.pending[offender.(common.Address)].Len()
// Iteratively reduce all offenders until below limit or threshold reached
for pending > maxPendingTotal && pool.pending[offenders[len(offenders)-2]].Len() > threshold {
for i := 0; i < len(offenders)-1; i++ {
list := pool.pending[offenders[i]]
list.Cap(list.Len() - 1)
pending--
}
}
}
}
// If still above threshold, reduce to limit or min allowance
if pending > maxPendingTotal && len(offenders) > 0 {
for pending > maxPendingTotal && uint64(pool.pending[offenders[len(offenders)-1]].Len()) > minPendingPerAccount {
for _, addr := range offenders {
list := pool.pending[addr]
list.Cap(list.Len() - 1)
pending--
}
}
}
}
// If we've queued more transactions than the hard limit, drop oldest ones
if queued > maxQueuedInTotal {
// Sort all accounts with queued transactions by heartbeat
addresses := make(addresssByHeartbeat, 0, len(pool.queue))
for addr, _ := range pool.queue {
addresses = append(addresses, addressByHeartbeat{addr, pool.beats[addr]})
}
sort.Sort(addresses)
// Drop transactions until the total is below the limit
for drop := queued - maxQueuedInTotal; drop > 0; {
addr := addresses[len(addresses)-1]
list := pool.queue[addr.address]
addresses = addresses[:len(addresses)-1]
// Drop all transactions if they are less than the overflow
if size := uint64(list.Len()); size <= drop {
for _, tx := range list.Flatten() {
pool.removeTx(tx.Hash())
}
drop -= size
continue
}
// Otherwise drop only last few transactions
txs := list.Flatten()
for i := len(txs) - 1; i >= 0 && drop > 0; i-- {
pool.removeTx(txs[i].Hash())
drop--
}
}
}
}
// demoteUnexecutables removes invalid and processed transactions from the pools
// executable/pending queue and any subsequent transactions that become unexecutable
// are moved back into the future queue.
func (pool *TxPool) demoteUnexecutables() {
// Retrieve the current state to allow nonce and balance checking
state, err := pool.currentState()
if err != nil {
glog.V(logger.Info).Infoln("failed to get current state: %v", err)
return
}
// Iterate over all accounts and demote any non-executable transactions
for addr, list := range pool.pending {
nonce := state.GetNonce(addr)
// Drop all transactions that are deemed too old (low nonce)
for _, tx := range list.Forward(nonce) {
if glog.V(logger.Core) {
glog.Infof("Removed old pending transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
// Drop all transactions that are too costly (low balance), and queue any invalids back for later
drops, invalids := list.Filter(state.GetBalance(addr))
for _, tx := range drops {
if glog.V(logger.Core) {
glog.Infof("Removed unpayable pending transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
for _, tx := range invalids {
if glog.V(logger.Core) {
glog.Infof("Demoting pending transaction: %v", tx)
}
pool.enqueueTx(tx.Hash(), tx)
}
// Delete the entire queue entry if it became empty.
if list.Empty() {
delete(pool.pending, addr)
delete(pool.beats, addr)
}
}
}
// expirationLoop is a loop that periodically iterates over all accounts with
// queued transactions and drop all that have been inactive for a prolonged amount
// of time.
func (pool *TxPool) expirationLoop() {
defer pool.wg.Done()
evict := time.NewTicker(evictionInterval)
defer evict.Stop()
for {
select {
case <-evict.C:
pool.mu.Lock()
for addr := range pool.queue {
if time.Since(pool.beats[addr]) > maxQueuedLifetime {
for _, tx := range pool.queue[addr].Flatten() {
pool.removeTx(tx.Hash())
}
}
}
pool.mu.Unlock()
case <-pool.quit:
return
}
}
}
// addressByHeartbeat is an account address tagged with its last activity timestamp.
type addressByHeartbeat struct {
address common.Address
heartbeat time.Time
}
type addresssByHeartbeat []addressByHeartbeat
func (a addresssByHeartbeat) Len() int { return len(a) }
func (a addresssByHeartbeat) Less(i, j int) bool { return a[i].heartbeat.Before(a[j].heartbeat) }
func (a addresssByHeartbeat) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// txSet represents a set of transaction hashes in which entries
// are automatically dropped after txSetDuration time
type txSet struct {
txMap map[common.Hash]struct{}
txOrd map[uint64]txOrdType
addPtr, delPtr uint64
}
const txSetDuration = time.Hour * 2
// txOrdType represents an entry in the time-ordered list of transaction hashes
type txOrdType struct {
hash common.Hash
time time.Time
}
// newTxSet creates a new transaction set
func newTxSet() *txSet {
return &txSet{
txMap: make(map[common.Hash]struct{}),
txOrd: make(map[uint64]txOrdType),
}
}
// contains returns true if the set contains the given transaction hash
// (not thread safe, should be called from a locked environment)
func (self *txSet) contains(hash common.Hash) bool {
_, ok := self.txMap[hash]
return ok
}
// add adds a transaction hash to the set, then removes entries older than txSetDuration
// (not thread safe, should be called from a locked environment)
func (self *txSet) add(hash common.Hash) {
self.txMap[hash] = struct{}{}
now := time.Now()
self.txOrd[self.addPtr] = txOrdType{hash: hash, time: now}
self.addPtr++
delBefore := now.Add(-txSetDuration)
for self.delPtr < self.addPtr && self.txOrd[self.delPtr].time.Before(delBefore) {
delete(self.txMap, self.txOrd[self.delPtr].hash)
delete(self.txOrd, self.delPtr)
self.delPtr++
}
}