les: rework clientpool (#20077)

* les: rework clientpool
pull/20233/head
gary rong 5 years ago committed by Felföldi Zsolt
parent 44b74cfc40
commit 0ce5e113be
  1. 2
      les/balance.go
  2. 260
      les/balance_test.go
  3. 554
      les/clientpool.go
  4. 398
      les/clientpool_test.go
  5. 6
      les/odr_test.go
  6. 7
      les/request_test.go
  7. 4
      les/server.go
  8. 3
      les/sync_test.go
  9. 4
      les/test_helper.go

@ -67,7 +67,7 @@ type balanceCallback struct {
// init initializes balanceTracker // init initializes balanceTracker
func (bt *balanceTracker) init(clock mclock.Clock, capacity uint64) { func (bt *balanceTracker) init(clock mclock.Clock, capacity uint64) {
bt.clock = clock bt.clock = clock
bt.initTime = clock.Now() bt.initTime, bt.lastUpdate = clock.Now(), clock.Now() // Init timestamps
for i := range bt.callbackIndex { for i := range bt.callbackIndex {
bt.callbackIndex[i] = -1 bt.callbackIndex[i] = -1
} }

@ -0,0 +1,260 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"testing"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
func TestSetBalance(t *testing.T) {
var clock = &mclock.Simulated{}
var inputs = []struct {
pos uint64
neg uint64
}{
{1000, 0},
{0, 1000},
{1000, 1000},
}
tracker := balanceTracker{}
tracker.init(clock, 1000)
defer tracker.stop(clock.Now())
for _, i := range inputs {
tracker.setBalance(i.pos, i.neg)
pos, neg := tracker.getBalance(clock.Now())
if pos != i.pos {
t.Fatalf("Positive balance mismatch, want %v, got %v", i.pos, pos)
}
if neg != i.neg {
t.Fatalf("Negative balance mismatch, want %v, got %v", i.neg, neg)
}
}
}
func TestBalanceTimeCost(t *testing.T) {
var (
clock = &mclock.Simulated{}
tracker = balanceTracker{}
)
tracker.init(clock, 1000)
defer tracker.stop(clock.Now())
tracker.setFactors(false, 1, 1)
tracker.setFactors(true, 1, 1)
tracker.setBalance(uint64(time.Minute), 0) // 1 minute time allowance
var inputs = []struct {
runTime time.Duration
expPos uint64
expNeg uint64
}{
{time.Second, uint64(time.Second * 59), 0},
{0, uint64(time.Second * 59), 0},
{time.Second * 59, 0, 0},
{time.Second, 0, uint64(time.Second)},
}
for _, i := range inputs {
clock.Run(i.runTime)
if pos, _ := tracker.getBalance(clock.Now()); pos != i.expPos {
t.Fatalf("Positive balance mismatch, want %v, got %v", i.expPos, pos)
}
if _, neg := tracker.getBalance(clock.Now()); neg != i.expNeg {
t.Fatalf("Negative balance mismatch, want %v, got %v", i.expNeg, neg)
}
}
tracker.setBalance(uint64(time.Minute), 0) // Refill 1 minute time allowance
for _, i := range inputs {
clock.Run(i.runTime)
if pos, _ := tracker.getBalance(clock.Now()); pos != i.expPos {
t.Fatalf("Positive balance mismatch, want %v, got %v", i.expPos, pos)
}
if _, neg := tracker.getBalance(clock.Now()); neg != i.expNeg {
t.Fatalf("Negative balance mismatch, want %v, got %v", i.expNeg, neg)
}
}
}
func TestBalanceReqCost(t *testing.T) {
var (
clock = &mclock.Simulated{}
tracker = balanceTracker{}
)
tracker.init(clock, 1000)
defer tracker.stop(clock.Now())
tracker.setFactors(false, 1, 1)
tracker.setFactors(true, 1, 1)
tracker.setBalance(uint64(time.Minute), 0) // 1 minute time serving time allowance
var inputs = []struct {
reqCost uint64
expPos uint64
expNeg uint64
}{
{uint64(time.Second), uint64(time.Second * 59), 0},
{0, uint64(time.Second * 59), 0},
{uint64(time.Second * 59), 0, 0},
{uint64(time.Second), 0, uint64(time.Second)},
}
for _, i := range inputs {
tracker.requestCost(i.reqCost)
if pos, _ := tracker.getBalance(clock.Now()); pos != i.expPos {
t.Fatalf("Positive balance mismatch, want %v, got %v", i.expPos, pos)
}
if _, neg := tracker.getBalance(clock.Now()); neg != i.expNeg {
t.Fatalf("Negative balance mismatch, want %v, got %v", i.expNeg, neg)
}
}
}
func TestBalanceToPriority(t *testing.T) {
var (
clock = &mclock.Simulated{}
tracker = balanceTracker{}
)
tracker.init(clock, 1000) // cap = 1000
defer tracker.stop(clock.Now())
tracker.setFactors(false, 1, 1)
tracker.setFactors(true, 1, 1)
var inputs = []struct {
pos uint64
neg uint64
priority int64
}{
{1000, 0, ^int64(1)},
{2000, 0, ^int64(2)}, // Higher balance, lower priority value
{0, 0, 0},
{0, 1000, 1000},
}
for _, i := range inputs {
tracker.setBalance(i.pos, i.neg)
priority := tracker.getPriority(clock.Now())
if priority != i.priority {
t.Fatalf("Priority mismatch, want %v, got %v", i.priority, priority)
}
}
}
func TestEstimatedPriority(t *testing.T) {
var (
clock = &mclock.Simulated{}
tracker = balanceTracker{}
)
tracker.init(clock, 1000000000) // cap = 1000,000,000
defer tracker.stop(clock.Now())
tracker.setFactors(false, 1, 1)
tracker.setFactors(true, 1, 1)
tracker.setBalance(uint64(time.Minute), 0)
var inputs = []struct {
runTime time.Duration // time cost
futureTime time.Duration // diff of future time
reqCost uint64 // single request cost
priority int64 // expected estimated priority
}{
{time.Second, time.Second, 0, ^int64(58)},
{0, time.Second, 0, ^int64(58)},
// 2 seconds time cost, 1 second estimated time cost, 10^9 request cost,
// 10^9 estimated request cost per second.
{time.Second, time.Second, 1000000000, ^int64(55)},
// 3 seconds time cost, 3 second estimated time cost, 10^9*2 request cost,
// 4*10^9 estimated request cost.
{time.Second, 3 * time.Second, 1000000000, ^int64(48)},
// All positive balance is used up
{time.Second * 55, 0, 0, 0},
// 1 minute estimated time cost, 4/58 * 10^9 estimated request cost per sec.
{0, time.Minute, 0, int64(time.Minute) + int64(time.Second)*120/29},
}
for _, i := range inputs {
clock.Run(i.runTime)
tracker.requestCost(i.reqCost)
priority := tracker.estimatedPriority(clock.Now()+mclock.AbsTime(i.futureTime), true)
if priority != i.priority {
t.Fatalf("Estimated priority mismatch, want %v, got %v", i.priority, priority)
}
}
}
func TestCallbackChecking(t *testing.T) {
var (
clock = &mclock.Simulated{}
tracker = balanceTracker{}
)
tracker.init(clock, 1000000) // cap = 1000,000
defer tracker.stop(clock.Now())
tracker.setFactors(false, 1, 1)
tracker.setFactors(true, 1, 1)
var inputs = []struct {
priority int64
expDiff time.Duration
}{
{^int64(500), time.Millisecond * 500},
{0, time.Second},
{int64(time.Second), 2 * time.Second},
}
tracker.setBalance(uint64(time.Second), 0)
for _, i := range inputs {
diff, _ := tracker.timeUntil(i.priority)
if diff != i.expDiff {
t.Fatalf("Time difference mismatch, want %v, got %v", i.expDiff, diff)
}
}
}
func TestCallback(t *testing.T) {
var (
clock = &mclock.Simulated{}
tracker = balanceTracker{}
)
tracker.init(clock, 1000) // cap = 1000
defer tracker.stop(clock.Now())
tracker.setFactors(false, 1, 1)
tracker.setFactors(true, 1, 1)
callCh := make(chan struct{}, 1)
tracker.setBalance(uint64(time.Minute), 0)
tracker.addCallback(balanceCallbackZero, 0, func() { callCh <- struct{}{} })
clock.Run(time.Minute)
select {
case <-callCh:
case <-time.NewTimer(time.Second).C:
t.Fatalf("Callback hasn't been called yet")
}
tracker.setBalance(uint64(time.Minute), 0)
tracker.addCallback(balanceCallbackZero, 0, func() { callCh <- struct{}{} })
tracker.removeCallback(balanceCallbackZero)
clock.Run(time.Minute)
select {
case <-callCh:
t.Fatalf("Callback shouldn't be called")
case <-time.NewTimer(time.Millisecond * 100).C:
}
}

@ -17,67 +17,81 @@
package les package les
import ( import (
"encoding/binary"
"io" "io"
"math" "math"
"sync" "sync"
"time" "time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rlp"
"github.com/hashicorp/golang-lru"
) )
const ( const (
negBalanceExpTC = time.Hour // time constant for exponentially reducing negative balance negBalanceExpTC = time.Hour // time constant for exponentially reducing negative balance
fixedPointMultiplier = 0x1000000 // constant to convert logarithms to fixed point format fixedPointMultiplier = 0x1000000 // constant to convert logarithms to fixed point format
connectedBias = time.Minute * 5 // this bias is applied in favor of already connected clients in order to avoid kicking them out very soon lazyQueueRefresh = time.Second * 10 // refresh period of the connected queue
lazyQueueRefresh = time.Second * 10 // refresh period of the connected queue persistCumulativeTimeRefresh = time.Minute * 5 // refresh period of the cumulative running time persistence
) posBalanceCacheLimit = 8192 // the maximum number of cached items in positive balance queue
negBalanceCacheLimit = 8192 // the maximum number of cached items in negative balance queue
var (
clientPoolDbKey = []byte("clientPool") // connectedBias is applied to already connected clients So that
clientBalanceDbKey = []byte("clientPool-balance") // already connected client won't be kicked out very soon and we
// can ensure all connected clients can have enough time to request
// or sync some data.
//
// todo(rjl493456442) make it configurable. It can be the option of
// free trial time!
connectedBias = time.Minute * 3
) )
// clientPool implements a client database that assigns a priority to each client // clientPool implements a client database that assigns a priority to each client
// based on a positive and negative balance. Positive balance is externally assigned // based on a positive and negative balance. Positive balance is externally assigned
// to prioritized clients and is decreased with connection time and processed // to prioritized clients and is decreased with connection time and processed
// requests (unless the price factors are zero). If the positive balance is zero // requests (unless the price factors are zero). If the positive balance is zero
// then negative balance is accumulated. Balance tracking and priority calculation // then negative balance is accumulated.
// for connected clients is done by balanceTracker. connectedQueue ensures that //
// clients with the lowest positive or highest negative balance get evicted when // Balance tracking and priority calculation for connected clients is done by
// the total capacity allowance is full and new clients with a better balance want // balanceTracker. connectedQueue ensures that clients with the lowest positive or
// to connect. Already connected nodes receive a small bias in their favor in order // highest negative balance get evicted when the total capacity allowance is full
// to avoid accepting and instantly kicking out clients. // and new clients with a better balance want to connect.
// Balances of disconnected clients are stored in posBalanceQueue and negBalanceQueue //
// and are also saved in the database. Negative balance is transformed into a // Already connected nodes receive a small bias in their favor in order to avoid
// logarithmic form with a constantly shifting linear offset in order to implement // accepting and instantly kicking out clients. In theory, we try to ensure that
// an exponential decrease. negBalanceQueue has a limited size and drops the smallest // each client can have several minutes of connection time.
// values when necessary. Positive balances are stored in the database as long as //
// they exist, posBalanceQueue only acts as a cache for recently accessed entries. // Balances of disconnected clients are stored in nodeDB including positive balance
// and negative banalce. Negative balance is transformed into a logarithmic form
// with a constantly shifting linear offset in order to implement an exponential
// decrease. Besides nodeDB will have a background thread to check the negative
// balance of disconnected client. If the balance is low enough, then the record
// will be dropped.
type clientPool struct { type clientPool struct {
db ethdb.Database ndb *nodeDB
lock sync.Mutex lock sync.Mutex
clock mclock.Clock clock mclock.Clock
stopCh chan chan struct{} stopCh chan struct{}
closed bool closed bool
removePeer func(enode.ID) removePeer func(enode.ID)
queueLimit, countLimit int connectedMap map[enode.ID]*clientInfo
freeClientCap, capacityLimit, connectedCapacity uint64 connectedQueue *prque.LazyQueue
posFactors, negFactors priceFactors
connectedMap map[enode.ID]*clientInfo connLimit int // The maximum number of connections that clientpool can support
posBalanceMap map[enode.ID]*posBalance capLimit uint64 // The maximum cumulative capacity that clientpool can support
negBalanceMap map[string]*negBalance connectedCap uint64 // The sum of the capacity of the current clientpool connected
connectedQueue *prque.LazyQueue freeClientCap uint64 // The capacity value of each free client
posBalanceQueue, negBalanceQueue *prque.Prque startTime mclock.AbsTime // The timestamp at which the clientpool started running
posFactors, negFactors priceFactors cumulativeTime int64 // The cumulative running time of clientpool at the start point.
posBalanceAccessCounter int64 disableBias bool // Disable connection bias(used in testing)
startupTime mclock.AbsTime
logOffsetAtStartup int64
} }
// clientPeer represents a client in the pool. // clientPeer represents a client in the pool.
@ -138,22 +152,25 @@ type priceFactors struct {
} }
// newClientPool creates a new client pool // newClientPool creates a new client pool
func newClientPool(db ethdb.Database, freeClientCap uint64, queueLimit int, clock mclock.Clock, removePeer func(enode.ID)) *clientPool { func newClientPool(db ethdb.Database, freeClientCap uint64, clock mclock.Clock, removePeer func(enode.ID)) *clientPool {
ndb := newNodeDB(db, clock)
pool := &clientPool{ pool := &clientPool{
db: db, ndb: ndb,
clock: clock, clock: clock,
connectedMap: make(map[enode.ID]*clientInfo), connectedMap: make(map[enode.ID]*clientInfo),
posBalanceMap: make(map[enode.ID]*posBalance), connectedQueue: prque.NewLazyQueue(connSetIndex, connPriority, connMaxPriority, clock, lazyQueueRefresh),
negBalanceMap: make(map[string]*negBalance), freeClientCap: freeClientCap,
connectedQueue: prque.NewLazyQueue(connSetIndex, connPriority, connMaxPriority, clock, lazyQueueRefresh), removePeer: removePeer,
negBalanceQueue: prque.New(negSetIndex), startTime: clock.Now(),
posBalanceQueue: prque.New(posSetIndex), cumulativeTime: ndb.getCumulativeTime(),
freeClientCap: freeClientCap, stopCh: make(chan struct{}),
queueLimit: queueLimit, }
removePeer: removePeer, // If the negative balance of free client is even lower than 1,
stopCh: make(chan chan struct{}), // delete this entry.
} ndb.nbEvictCallBack = func(now mclock.AbsTime, b negBalance) bool {
pool.loadFromDb() balance := math.Exp(float64(b.logValue-pool.logOffset(now)) / fixedPointMultiplier)
return balance <= 1
}
go func() { go func() {
for { for {
select { select {
@ -161,8 +178,9 @@ func newClientPool(db ethdb.Database, freeClientCap uint64, queueLimit int, cloc
pool.lock.Lock() pool.lock.Lock()
pool.connectedQueue.Refresh() pool.connectedQueue.Refresh()
pool.lock.Unlock() pool.lock.Unlock()
case stop := <-pool.stopCh: case <-clock.After(persistCumulativeTimeRefresh):
close(stop) pool.ndb.setCumulativeTime(pool.logOffset(clock.Now()))
case <-pool.stopCh:
return return
} }
} }
@ -172,13 +190,12 @@ func newClientPool(db ethdb.Database, freeClientCap uint64, queueLimit int, cloc
// stop shuts the client pool down // stop shuts the client pool down
func (f *clientPool) stop() { func (f *clientPool) stop() {
stop := make(chan struct{}) close(f.stopCh)
f.stopCh <- stop
<-stop
f.lock.Lock() f.lock.Lock()
f.closed = true f.closed = true
f.saveToDb()
f.lock.Unlock() f.lock.Unlock()
f.ndb.setCumulativeTime(f.logOffset(f.clock.Now()))
f.ndb.close()
} }
// connect should be called after a successful handshake. If the connection was // connect should be called after a successful handshake. If the connection was
@ -187,7 +204,7 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
f.lock.Lock() f.lock.Lock()
defer f.lock.Unlock() defer f.lock.Unlock()
// Short circuit is clientPool is already closed. // Short circuit if clientPool is already closed.
if f.closed { if f.closed {
return false return false
} }
@ -199,14 +216,19 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
return false return false
} }
// Create a clientInfo but do not add it yet // Create a clientInfo but do not add it yet
now := f.clock.Now() var (
posBalance := f.getPosBalance(id).value posBalance uint64
negBalance uint64
now = f.clock.Now()
)
pb := f.ndb.getOrNewPB(id)
posBalance = pb.value
e := &clientInfo{pool: f, peer: peer, address: freeID, queueIndex: -1, id: id, priority: posBalance != 0} e := &clientInfo{pool: f, peer: peer, address: freeID, queueIndex: -1, id: id, priority: posBalance != 0}
var negBalance uint64 nb := f.ndb.getOrNewNB(freeID)
nb := f.negBalanceMap[freeID] if nb.logValue != 0 {
if nb != nil {
negBalance = uint64(math.Exp(float64(nb.logValue-f.logOffset(now)) / fixedPointMultiplier)) negBalance = uint64(math.Exp(float64(nb.logValue-f.logOffset(now)) / fixedPointMultiplier))
negBalance *= uint64(time.Second)
} }
// If the client is a free client, assign with a low free capacity, // If the client is a free client, assign with a low free capacity,
// Otherwise assign with the given value(priority client) // Otherwise assign with the given value(priority client)
@ -219,6 +241,7 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
} }
e.capacity = capacity e.capacity = capacity
// Starts a balance tracker
e.balanceTracker.init(f.clock, capacity) e.balanceTracker.init(f.clock, capacity)
e.balanceTracker.setBalance(posBalance, negBalance) e.balanceTracker.setBalance(posBalance, negBalance)
f.setClientPriceFactors(e) f.setClientPriceFactors(e)
@ -228,9 +251,9 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
// //
// If the priority of the newly added client is lower than the priority of // If the priority of the newly added client is lower than the priority of
// all connected clients, the client is rejected. // all connected clients, the client is rejected.
newCapacity := f.connectedCapacity + capacity newCapacity := f.connectedCap + capacity
newCount := f.connectedQueue.Size() + 1 newCount := f.connectedQueue.Size() + 1
if newCapacity > f.capacityLimit || newCount > f.countLimit { if newCapacity > f.capLimit || newCount > f.connLimit {
var ( var (
kickList []*clientInfo kickList []*clientInfo
kickPriority int64 kickPriority int64
@ -241,10 +264,13 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
kickPriority = priority kickPriority = priority
newCapacity -= c.capacity newCapacity -= c.capacity
newCount-- newCount--
return newCapacity > f.capacityLimit || newCount > f.countLimit return newCapacity > f.capLimit || newCount > f.connLimit
}) })
if newCapacity > f.capacityLimit || newCount > f.countLimit || (e.balanceTracker.estimatedPriority(now+mclock.AbsTime(connectedBias), false)-kickPriority) > 0 { bias := connectedBias
// reject client if f.disableBias {
bias = 0
}
if newCapacity > f.capLimit || newCount > f.connLimit || (e.balanceTracker.estimatedPriority(now+mclock.AbsTime(bias), false)-kickPriority) > 0 {
for _, c := range kickList { for _, c := range kickList {
f.connectedQueue.Push(c) f.connectedQueue.Push(c)
} }
@ -257,21 +283,22 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
f.dropClient(c, now, true) f.dropClient(c, now, true)
} }
} }
// client accepted, finish setting it up // Register new client to connection queue.
if nb != nil { f.connectedMap[id] = e
delete(f.negBalanceMap, freeID) f.connectedQueue.Push(e)
f.negBalanceQueue.Remove(nb.queueIndex) f.connectedCap += e.capacity
}
// If the current client is a paid client, monitor the status of client,
// downgrade it to normal client if positive balance is used up.
if e.priority { if e.priority {
e.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) }) e.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) })
} }
f.connectedMap[id] = e // If the capacity of client is not the default value(free capacity), notify
f.connectedQueue.Push(e) // it to update capacity.
f.connectedCapacity += e.capacity
totalConnectedGauge.Update(int64(f.connectedCapacity))
if e.capacity != f.freeClientCap { if e.capacity != f.freeClientCap {
e.peer.updateCapacity(e.capacity) e.peer.updateCapacity(e.capacity)
} }
totalConnectedGauge.Update(int64(f.connectedCap))
clientConnectedMeter.Mark(1) clientConnectedMeter.Mark(1)
log.Debug("Client accepted", "address", freeID) log.Debug("Client accepted", "address", freeID)
return true return true
@ -284,15 +311,14 @@ func (f *clientPool) disconnect(p clientPeer) {
f.lock.Lock() f.lock.Lock()
defer f.lock.Unlock() defer f.lock.Unlock()
// Short circuit if client pool is already closed.
if f.closed { if f.closed {
return return
} }
address := p.freeClientId()
id := p.ID()
// Short circuit if the peer hasn't been registered. // Short circuit if the peer hasn't been registered.
e := f.connectedMap[id] e := f.connectedMap[p.ID()]
if e == nil { if e == nil {
log.Debug("Client not connected", "address", address, "id", peerIdToString(id)) log.Debug("Client not connected", "address", p.freeClientId(), "id", peerIdToString(p.ID()))
return return
} }
f.dropClient(e, f.clock.Now(), false) f.dropClient(e, f.clock.Now(), false)
@ -307,8 +333,8 @@ func (f *clientPool) dropClient(e *clientInfo, now mclock.AbsTime, kick bool) {
f.finalizeBalance(e, now) f.finalizeBalance(e, now)
f.connectedQueue.Remove(e.queueIndex) f.connectedQueue.Remove(e.queueIndex)
delete(f.connectedMap, e.id) delete(f.connectedMap, e.id)
f.connectedCapacity -= e.capacity f.connectedCap -= e.capacity
totalConnectedGauge.Update(int64(f.connectedCapacity)) totalConnectedGauge.Update(int64(f.connectedCap))
if kick { if kick {
clientKickedMeter.Mark(1) clientKickedMeter.Mark(1)
log.Debug("Client kicked out", "address", e.address) log.Debug("Client kicked out", "address", e.address)
@ -324,18 +350,17 @@ func (f *clientPool) dropClient(e *clientInfo, now mclock.AbsTime, kick bool) {
func (f *clientPool) finalizeBalance(c *clientInfo, now mclock.AbsTime) { func (f *clientPool) finalizeBalance(c *clientInfo, now mclock.AbsTime) {
c.balanceTracker.stop(now) c.balanceTracker.stop(now)
pos, neg := c.balanceTracker.getBalance(now) pos, neg := c.balanceTracker.getBalance(now)
pb := f.getPosBalance(c.id)
pb, nb := f.ndb.getOrNewPB(c.id), f.ndb.getOrNewNB(c.address)
pb.value = pos pb.value = pos
f.storePosBalance(pb) f.ndb.setPB(c.id, pb)
if neg < 1 {
neg = 1 neg /= uint64(time.Second) // Convert the expanse to second level.
} if neg > 1 {
nb := &negBalance{address: c.address, queueIndex: -1, logValue: int64(math.Log(float64(neg))*fixedPointMultiplier) + f.logOffset(now)} nb.logValue = int64(math.Log(float64(neg))*fixedPointMultiplier) + f.logOffset(now)
f.negBalanceMap[c.address] = nb f.ndb.setNB(c.address, nb)
f.negBalanceQueue.Push(nb, -nb.logValue) } else {
if f.negBalanceQueue.Size() > f.queueLimit { f.ndb.delNB(c.address) // Negative balance is small enough, drop it directly.
nn := f.negBalanceQueue.PopItem().(*negBalance)
delete(f.negBalanceMap, nn.address)
} }
} }
@ -351,27 +376,26 @@ func (f *clientPool) balanceExhausted(id enode.ID) {
} }
c.priority = false c.priority = false
if c.capacity != f.freeClientCap { if c.capacity != f.freeClientCap {
f.connectedCapacity += f.freeClientCap - c.capacity f.connectedCap += f.freeClientCap - c.capacity
totalConnectedGauge.Update(int64(f.connectedCapacity)) totalConnectedGauge.Update(int64(f.connectedCap))
c.capacity = f.freeClientCap c.capacity = f.freeClientCap
c.peer.updateCapacity(c.capacity) c.peer.updateCapacity(c.capacity)
} }
f.ndb.delPB(id)
} }
// setConnLimit sets the maximum number and total capacity of connected clients, // setConnLimit sets the maximum number and total capacity of connected clients,
// dropping some of them if necessary. // dropping some of them if necessary.
func (f *clientPool) setLimits(count int, totalCap uint64) { func (f *clientPool) setLimits(totalConn int, totalCap uint64) {
f.lock.Lock() f.lock.Lock()
defer f.lock.Unlock() defer f.lock.Unlock()
f.countLimit = count f.connLimit = totalConn
f.capacityLimit = totalCap f.capLimit = totalCap
if f.connectedCapacity > f.capacityLimit || f.connectedQueue.Size() > f.countLimit { if f.connectedCap > f.capLimit || f.connectedQueue.Size() > f.connLimit {
now := mclock.Now()
f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool { f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool {
c := data.(*clientInfo) f.dropClient(data.(*clientInfo), mclock.Now(), true)
f.dropClient(c, now, true) return f.connectedCap > f.capLimit || f.connectedQueue.Size() > f.connLimit
return f.connectedCapacity > f.capacityLimit || f.connectedQueue.Size() > f.countLimit
}) })
} }
} }
@ -390,11 +414,14 @@ func (f *clientPool) requestCost(p *peer, cost uint64) {
// logOffset calculates the time-dependent offset for the logarithmic // logOffset calculates the time-dependent offset for the logarithmic
// representation of negative balance // representation of negative balance
//
// From another point of view, the result returned by the function represents
// the total time that the clientpool is cumulatively running(total_hours/multiplier).
func (f *clientPool) logOffset(now mclock.AbsTime) int64 { func (f *clientPool) logOffset(now mclock.AbsTime) int64 {
// Note: fixedPointMultiplier acts as a multiplier here; the reason for dividing the divisor // Note: fixedPointMultiplier acts as a multiplier here; the reason for dividing the divisor
// is to avoid int64 overflow. We assume that int64(negBalanceExpTC) >> fixedPointMultiplier. // is to avoid int64 overflow. We assume that int64(negBalanceExpTC) >> fixedPointMultiplier.
logDecay := int64((time.Duration(now - f.startupTime)) / (negBalanceExpTC / fixedPointMultiplier)) cumulativeTime := int64((time.Duration(now - f.startTime)) / (negBalanceExpTC / fixedPointMultiplier))
return f.logOffsetAtStartup + logDecay return f.cumulativeTime + cumulativeTime
} }
// setPriceFactors changes pricing factors for both positive and negative balances. // setPriceFactors changes pricing factors for both positive and negative balances.
@ -415,100 +442,6 @@ func (f *clientPool) setClientPriceFactors(c *clientInfo) {
c.balanceTracker.setFactors(false, f.posFactors.timeFactor+float64(c.capacity)*f.posFactors.capacityFactor/1000000, f.posFactors.requestFactor) c.balanceTracker.setFactors(false, f.posFactors.timeFactor+float64(c.capacity)*f.posFactors.capacityFactor/1000000, f.posFactors.requestFactor)
} }
// clientPoolStorage is the RLP representation of the pool's database storage
type clientPoolStorage struct {
LogOffset uint64
List []*negBalance
}
// loadFromDb restores pool status from the database storage
// (automatically called at initialization)
func (f *clientPool) loadFromDb() {
enc, err := f.db.Get(clientPoolDbKey)
if err != nil {
return
}
var storage clientPoolStorage
err = rlp.DecodeBytes(enc, &storage)
if err != nil {
log.Error("Failed to decode client list", "err", err)
return
}
f.logOffsetAtStartup = int64(storage.LogOffset)
f.startupTime = f.clock.Now()
for _, e := range storage.List {
log.Debug("Loaded free client record", "address", e.address, "logValue", e.logValue)
f.negBalanceMap[e.address] = e
f.negBalanceQueue.Push(e, -e.logValue)
}
}
// saveToDb saves pool status to the database storage
// (automatically called during shutdown)
func (f *clientPool) saveToDb() {
now := f.clock.Now()
storage := clientPoolStorage{
LogOffset: uint64(f.logOffset(now)),
}
for _, c := range f.connectedMap {
f.finalizeBalance(c, now)
}
i := 0
storage.List = make([]*negBalance, len(f.negBalanceMap))
for _, e := range f.negBalanceMap {
storage.List[i] = e
i++
}
enc, err := rlp.EncodeToBytes(storage)
if err != nil {
log.Error("Failed to encode negative balance list", "err", err)
} else {
f.db.Put(clientPoolDbKey, enc)
}
}
// storePosBalance stores a single positive balance entry in the database
func (f *clientPool) storePosBalance(b *posBalance) {
if b.value == b.lastStored {
return
}
enc, err := rlp.EncodeToBytes(b)
if err != nil {
log.Error("Failed to encode client balance", "err", err)
} else {
f.db.Put(append(clientBalanceDbKey, b.id[:]...), enc)
b.lastStored = b.value
}
}
// getPosBalance retrieves a single positive balance entry from cache or the database
func (f *clientPool) getPosBalance(id enode.ID) *posBalance {
if b, ok := f.posBalanceMap[id]; ok {
f.posBalanceQueue.Remove(b.queueIndex)
f.posBalanceAccessCounter--
f.posBalanceQueue.Push(b, f.posBalanceAccessCounter)
return b
}
balance := &posBalance{}
if enc, err := f.db.Get(append(clientBalanceDbKey, id[:]...)); err == nil {
if err := rlp.DecodeBytes(enc, balance); err != nil {
log.Error("Failed to decode client balance", "err", err)
balance = &posBalance{}
}
}
balance.id = id
balance.queueIndex = -1
if f.posBalanceQueue.Size() >= f.queueLimit {
b := f.posBalanceQueue.PopItem().(*posBalance)
f.storePosBalance(b)
delete(f.posBalanceMap, b.id)
}
f.posBalanceAccessCounter--
f.posBalanceQueue.Push(balance, f.posBalanceAccessCounter)
f.posBalanceMap[id] = balance
return balance
}
// addBalance updates the positive balance of a client. // addBalance updates the positive balance of a client.
// If setTotal is false then the given amount is added to the balance. // If setTotal is false then the given amount is added to the balance.
// If setTotal is true then amount represents the total amount ever added to the // If setTotal is true then amount represents the total amount ever added to the
@ -518,11 +451,18 @@ func (f *clientPool) addBalance(id enode.ID, amount uint64, setTotal bool) {
f.lock.Lock() f.lock.Lock()
defer f.lock.Unlock() defer f.lock.Unlock()
pb := f.getPosBalance(id) pb := f.ndb.getOrNewPB(id)
c := f.connectedMap[id] c := f.connectedMap[id]
var negBalance uint64
if c != nil { if c != nil {
pb.value, negBalance = c.balanceTracker.getBalance(f.clock.Now()) posBalance, negBalance := c.balanceTracker.getBalance(f.clock.Now())
pb.value = posBalance
defer func() {
c.balanceTracker.setBalance(pb.value, negBalance)
if !c.priority && pb.value > 0 {
c.priority = true
c.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) })
}
}()
} }
if setTotal { if setTotal {
if pb.value+amount > pb.lastTotal { if pb.value+amount > pb.lastTotal {
@ -535,21 +475,12 @@ func (f *clientPool) addBalance(id enode.ID, amount uint64, setTotal bool) {
pb.value += amount pb.value += amount
pb.lastTotal += amount pb.lastTotal += amount
} }
f.storePosBalance(pb) f.ndb.setPB(id, pb)
if c != nil {
c.balanceTracker.setBalance(pb.value, negBalance)
if !c.priority && pb.value > 0 {
c.priority = true
c.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) })
}
}
} }
// posBalance represents a recently accessed positive balance entry // posBalance represents a recently accessed positive balance entry
type posBalance struct { type posBalance struct {
id enode.ID value, lastTotal uint64
value, lastStored, lastTotal uint64
queueIndex int // position in posBalanceQueue
} }
// EncodeRLP implements rlp.Encoder // EncodeRLP implements rlp.Encoder
@ -566,44 +497,207 @@ func (e *posBalance) DecodeRLP(s *rlp.Stream) error {
return err return err
} }
e.value = entry.Value e.value = entry.Value
e.lastStored = entry.Value
e.lastTotal = entry.LastTotal e.lastTotal = entry.LastTotal
return nil return nil
} }
// posSetIndex callback updates posBalance item index in posBalanceQueue
func posSetIndex(a interface{}, index int) {
a.(*posBalance).queueIndex = index
}
// negBalance represents a negative balance entry of a disconnected client // negBalance represents a negative balance entry of a disconnected client
type negBalance struct { type negBalance struct{ logValue int64 }
address string
logValue int64
queueIndex int // position in negBalanceQueue
}
// EncodeRLP implements rlp.Encoder // EncodeRLP implements rlp.Encoder
func (e *negBalance) EncodeRLP(w io.Writer) error { func (e *negBalance) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, []interface{}{e.address, uint64(e.logValue)}) return rlp.Encode(w, []interface{}{uint64(e.logValue)})
} }
// DecodeRLP implements rlp.Decoder // DecodeRLP implements rlp.Decoder
func (e *negBalance) DecodeRLP(s *rlp.Stream) error { func (e *negBalance) DecodeRLP(s *rlp.Stream) error {
var entry struct { var entry struct {
Address string
LogValue uint64 LogValue uint64
} }
if err := s.Decode(&entry); err != nil { if err := s.Decode(&entry); err != nil {
return err return err
} }
e.address = entry.Address
e.logValue = int64(entry.LogValue) e.logValue = int64(entry.LogValue)
e.queueIndex = -1
return nil return nil
} }
// negSetIndex callback updates negBalance item index in negBalanceQueue const (
func negSetIndex(a interface{}, index int) { // nodeDBVersion is the version identifier of the node data in db
a.(*negBalance).queueIndex = index nodeDBVersion = 0
// dbCleanupCycle is the cycle of db for useless data cleanup
dbCleanupCycle = time.Hour
)
var (
positiveBalancePrefix = []byte("pb:") // dbVersion(uint16 big endian) + positiveBalancePrefix + id -> balance
negativeBalancePrefix = []byte("nb:") // dbVersion(uint16 big endian) + negativeBalancePrefix + ip -> balance
cumulativeRunningTimeKey = []byte("cumulativeTime:") // dbVersion(uint16 big endian) + cumulativeRunningTimeKey -> cumulativeTime
)
type nodeDB struct {
db ethdb.Database
pcache *lru.Cache
ncache *lru.Cache
auxbuf []byte // 37-byte auxiliary buffer for key encoding
verbuf [2]byte // 2-byte auxiliary buffer for db version
nbEvictCallBack func(mclock.AbsTime, negBalance) bool // Callback to determine whether the negative balance can be evicted.
clock mclock.Clock
closeCh chan struct{}
cleanupHook func() // Test hook used for testing
}
func newNodeDB(db ethdb.Database, clock mclock.Clock) *nodeDB {
pcache, _ := lru.New(posBalanceCacheLimit)
ncache, _ := lru.New(negBalanceCacheLimit)
ndb := &nodeDB{
db: db,
pcache: pcache,
ncache: ncache,
auxbuf: make([]byte, 37),
clock: clock,
closeCh: make(chan struct{}),
}
binary.BigEndian.PutUint16(ndb.verbuf[:], uint16(nodeDBVersion))
go ndb.expirer()
return ndb
}
func (db *nodeDB) close() {
close(db.closeCh)
}
func (db *nodeDB) key(id []byte, neg bool) []byte {
prefix := positiveBalancePrefix
if neg {
prefix = negativeBalancePrefix
}
if len(prefix)+len(db.verbuf)+len(id) > len(db.auxbuf) {
db.auxbuf = append(db.auxbuf, make([]byte, len(prefix)+len(db.verbuf)+len(id)-len(db.auxbuf))...)
}
copy(db.auxbuf[:len(db.verbuf)], db.verbuf[:])
copy(db.auxbuf[len(db.verbuf):len(db.verbuf)+len(prefix)], prefix)
copy(db.auxbuf[len(prefix)+len(db.verbuf):len(prefix)+len(db.verbuf)+len(id)], id)
return db.auxbuf[:len(prefix)+len(db.verbuf)+len(id)]
}
func (db *nodeDB) getCumulativeTime() int64 {
blob, err := db.db.Get(append(cumulativeRunningTimeKey, db.verbuf[:]...))
if err != nil || len(blob) == 0 {
return 0
}
return int64(binary.BigEndian.Uint64(blob))
}
func (db *nodeDB) setCumulativeTime(v int64) {
binary.BigEndian.PutUint64(db.auxbuf[:8], uint64(v))
db.db.Put(append(cumulativeRunningTimeKey, db.verbuf[:]...), db.auxbuf[:8])
}
func (db *nodeDB) getOrNewPB(id enode.ID) posBalance {
key := db.key(id.Bytes(), false)
item, exist := db.pcache.Get(string(key))
if exist {
return item.(posBalance)
}
var balance posBalance
if enc, err := db.db.Get(key); err == nil {
if err := rlp.DecodeBytes(enc, &balance); err != nil {
log.Error("Failed to decode positive balance", "err", err)
}
}
db.pcache.Add(string(key), balance)
return balance
}
func (db *nodeDB) setPB(id enode.ID, b posBalance) {
key := db.key(id.Bytes(), false)
enc, err := rlp.EncodeToBytes(&(b))
if err != nil {
log.Error("Failed to encode positive balance", "err", err)
return
}
db.db.Put(key, enc)
db.pcache.Add(string(key), b)
}
func (db *nodeDB) delPB(id enode.ID) {
key := db.key(id.Bytes(), false)
db.db.Delete(key)
db.pcache.Remove(string(key))
}
func (db *nodeDB) getOrNewNB(id string) negBalance {
key := db.key([]byte(id), true)
item, exist := db.ncache.Get(string(key))
if exist {
return item.(negBalance)
}
var balance negBalance
if enc, err := db.db.Get(key); err == nil {
if err := rlp.DecodeBytes(enc, &balance); err != nil {
log.Error("Failed to decode negative balance", "err", err)
}
}
db.ncache.Add(string(key), balance)
return balance
}
func (db *nodeDB) setNB(id string, b negBalance) {
key := db.key([]byte(id), true)
enc, err := rlp.EncodeToBytes(&(b))
if err != nil {
log.Error("Failed to encode negative balance", "err", err)
return
}
db.db.Put(key, enc)
db.ncache.Add(string(key), b)
}
func (db *nodeDB) delNB(id string) {
key := db.key([]byte(id), true)
db.db.Delete(key)
db.ncache.Remove(string(key))
}
func (db *nodeDB) expirer() {
for {
select {
case <-db.clock.After(dbCleanupCycle):
db.expireNodes()
case <-db.closeCh:
return
}
}
}
// expireNodes iterates the whole node db and checks whether the negative balance
// entry can deleted.
//
// The rationale behind this is: server doesn't need to keep the negative balance
// records if they are low enough.
func (db *nodeDB) expireNodes() {
var (
visited int
deleted int
start = time.Now()
)
iter := db.db.NewIteratorWithPrefix(append(db.verbuf[:], negativeBalancePrefix...))
for iter.Next() {
visited += 1
var balance negBalance
if err := rlp.DecodeBytes(iter.Value(), &balance); err != nil {
log.Error("Failed to decode negative balance", "err", err)
continue
}
if db.nbEvictCallBack != nil && db.nbEvictCallBack(db.clock.Now(), balance) {
deleted += 1
db.db.Delete(iter.Key())
}
}
// Invoke testing hook if it's not nil.
if db.cleanupHook != nil {
db.cleanupHook()
}
log.Debug("Expire nodes", "visited", visited, "deleted", deleted, "elapsed", common.PrettyDuration(time.Since(start)))
} }

@ -17,8 +17,11 @@
package les package les
import ( import (
"bytes"
"fmt" "fmt"
"math"
"math/rand" "math/rand"
"reflect"
"testing" "testing"
"time" "time"
@ -51,7 +54,7 @@ func TestClientPoolL100C300P20(t *testing.T) {
testClientPool(t, 100, 300, 20, false) testClientPool(t, 100, 300, 20, false)
} }
const testClientPoolTicks = 500000 const testClientPoolTicks = 100000
type poolTestPeer int type poolTestPeer int
@ -76,8 +79,9 @@ func testClientPool(t *testing.T, connLimit, clientCount, paidCount int, randomD
disconnFn = func(id enode.ID) { disconnFn = func(id enode.ID) {
disconnCh <- int(id[0]) + int(id[1])<<8 disconnCh <- int(id[0]) + int(id[1])<<8
} }
pool = newClientPool(db, 1, 10000, &clock, disconnFn) pool = newClientPool(db, 1, &clock, disconnFn)
) )
pool.disableBias = true
pool.setLimits(connLimit, uint64(connLimit)) pool.setLimits(connLimit, uint64(connLimit))
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1}) pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
@ -89,16 +93,9 @@ func testClientPool(t *testing.T, connLimit, clientCount, paidCount int, randomD
t.Fatalf("Test peer #%d rejected", i) t.Fatalf("Test peer #%d rejected", i)
} }
} }
// since all accepted peers are new and should not be kicked out, the next one should be rejected
if pool.connect(poolTestPeer(connLimit), 0) {
connected[connLimit] = true
t.Fatalf("Peer accepted over connected limit")
}
// randomly connect and disconnect peers, expect to have a similar total connection time at the end // randomly connect and disconnect peers, expect to have a similar total connection time at the end
for tickCounter := 0; tickCounter < testClientPoolTicks; tickCounter++ { for tickCounter := 0; tickCounter < testClientPoolTicks; tickCounter++ {
clock.Run(1 * time.Second) clock.Run(1 * time.Second)
//time.Sleep(time.Microsecond * 100)
if tickCounter == testClientPoolTicks/4 { if tickCounter == testClientPoolTicks/4 {
// give a positive balance to some of the peers // give a positive balance to some of the peers
@ -137,11 +134,11 @@ func testClientPool(t *testing.T, connLimit, clientCount, paidCount int, randomD
} }
expTicks := testClientPoolTicks/2*connLimit/clientCount + testClientPoolTicks/2*(connLimit-paidCount)/(clientCount-paidCount) expTicks := testClientPoolTicks/2*connLimit/clientCount + testClientPoolTicks/2*(connLimit-paidCount)/(clientCount-paidCount)
expMin := expTicks - expTicks/10 expMin := expTicks - expTicks/5
expMax := expTicks + expTicks/10 expMax := expTicks + expTicks/5
paidTicks := testClientPoolTicks/2*connLimit/clientCount + testClientPoolTicks/2 paidTicks := testClientPoolTicks/2*connLimit/clientCount + testClientPoolTicks/2
paidMin := paidTicks - paidTicks/10 paidMin := paidTicks - paidTicks/5
paidMax := paidTicks + paidTicks/10 paidMax := paidTicks + paidTicks/5
// check if the total connected time of peers are all in the expected range // check if the total connected time of peers are all in the expected range
for i, c := range connected { for i, c := range connected {
@ -157,24 +154,371 @@ func testClientPool(t *testing.T, connLimit, clientCount, paidCount int, randomD
t.Errorf("Total connected time of test node #%d (%d) outside expected range (%d to %d)", i, connTicks[i], min, max) t.Errorf("Total connected time of test node #%d (%d) outside expected range (%d to %d)", i, connTicks[i], min, max)
} }
} }
pool.stop()
}
func TestConnectPaidClient(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
)
pool := newClientPool(db, 1, &clock, nil)
defer pool.stop()
pool.setLimits(10, uint64(10))
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
// a previously unknown peer should be accepted now // Add balance for an external client and mark it as paid client
if !pool.connect(poolTestPeer(54321), 0) { pool.addBalance(poolTestPeer(0).ID(), 1000, false)
t.Fatalf("Previously unknown peer rejected")
if !pool.connect(poolTestPeer(0), 10) {
t.Fatalf("Failed to connect paid client")
} }
}
// close and restart pool func TestConnectPaidClientToSmallPool(t *testing.T) {
pool.stop() var (
pool = newClientPool(db, 1, 10000, &clock, func(id enode.ID) {}) clock mclock.Simulated
pool.setLimits(connLimit, uint64(connLimit)) db = rawdb.NewMemoryDatabase()
)
pool := newClientPool(db, 1, &clock, nil)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
// Add balance for an external client and mark it as paid client
pool.addBalance(poolTestPeer(0).ID(), 1000, false)
// try connecting all known peers (connLimit should be filled up) // Connect a fat paid client to pool, should reject it.
for i := 0; i < clientCount; i++ { if pool.connect(poolTestPeer(0), 100) {
pool.connect(poolTestPeer(i), 0) t.Fatalf("Connected fat paid client, should reject it")
} }
// expect pool to remember known nodes and kick out one of them to accept a new one }
if !pool.connect(poolTestPeer(54322), 0) {
t.Errorf("Previously unknown peer rejected after restarting pool") func TestConnectPaidClientToFullPool(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
)
removeFn := func(enode.ID) {} // Noop
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
for i := 0; i < 10; i++ {
pool.addBalance(poolTestPeer(i).ID(), 1000000000, false)
pool.connect(poolTestPeer(i), 1)
}
pool.addBalance(poolTestPeer(11).ID(), 1000, false) // Add low balance to new paid client
if pool.connect(poolTestPeer(11), 1) {
t.Fatalf("Low balance paid client should be rejected")
}
clock.Run(time.Second)
pool.addBalance(poolTestPeer(12).ID(), 1000000000*60*3, false) // Add high balance to new paid client
if !pool.connect(poolTestPeer(12), 1) {
t.Fatalf("High balance paid client should be accpected")
}
}
func TestPaidClientKickedOut(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
kickedCh = make(chan int, 1)
)
removeFn := func(id enode.ID) { kickedCh <- int(id[0]) }
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
for i := 0; i < 10; i++ {
pool.addBalance(poolTestPeer(i).ID(), 1000000000, false) // 1 second allowance
pool.connect(poolTestPeer(i), 1)
clock.Run(time.Millisecond)
}
clock.Run(time.Second)
clock.Run(connectedBias)
if !pool.connect(poolTestPeer(11), 0) {
t.Fatalf("Free client should be accectped")
}
select {
case id := <-kickedCh:
if id != 0 {
t.Fatalf("Kicked client mismatch, want %v, got %v", 0, id)
}
case <-time.NewTimer(time.Second).C:
t.Fatalf("timeout")
}
}
func TestConnectFreeClient(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
)
pool := newClientPool(db, 1, &clock, nil)
defer pool.stop()
pool.setLimits(10, uint64(10))
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
if !pool.connect(poolTestPeer(0), 10) {
t.Fatalf("Failed to connect free client")
}
}
func TestConnectFreeClientToFullPool(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
)
removeFn := func(enode.ID) {} // Noop
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
for i := 0; i < 10; i++ {
pool.connect(poolTestPeer(i), 1)
}
if pool.connect(poolTestPeer(11), 1) {
t.Fatalf("New free client should be rejected")
}
clock.Run(time.Minute)
if pool.connect(poolTestPeer(12), 1) {
t.Fatalf("New free client should be rejected")
}
clock.Run(time.Millisecond)
clock.Run(4 * time.Minute)
if !pool.connect(poolTestPeer(13), 1) {
t.Fatalf("Old client connects more than 5min should be kicked")
}
}
func TestFreeClientKickedOut(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
kicked = make(chan int, 10)
)
removeFn := func(id enode.ID) { kicked <- int(id[0]) }
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
for i := 0; i < 10; i++ {
pool.connect(poolTestPeer(i), 1)
clock.Run(100 * time.Millisecond)
}
if pool.connect(poolTestPeer(11), 1) {
t.Fatalf("New free client should be rejected")
}
clock.Run(5 * time.Minute)
for i := 0; i < 10; i++ {
pool.connect(poolTestPeer(i+10), 1)
}
for i := 0; i < 10; i++ {
select {
case id := <-kicked:
if id != i {
t.Fatalf("Kicked client mismatch, want %v, got %v", i, id)
}
case <-time.NewTimer(time.Second).C:
t.Fatalf("timeout")
}
}
}
func TestPositiveBalanceCalculation(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
kicked = make(chan int, 10)
)
removeFn := func(id enode.ID) { kicked <- int(id[0]) } // Noop
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
pool.addBalance(poolTestPeer(0).ID(), uint64(time.Minute*3), false)
pool.connect(poolTestPeer(0), 10)
clock.Run(time.Minute)
pool.disconnect(poolTestPeer(0))
pb := pool.ndb.getOrNewPB(poolTestPeer(0).ID())
if pb.value != uint64(time.Minute*2) {
t.Fatalf("Positive balance mismatch, want %v, got %v", uint64(time.Minute*2), pb.value)
}
}
func TestDowngradePriorityClient(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
kicked = make(chan int, 10)
)
removeFn := func(id enode.ID) { kicked <- int(id[0]) } // Noop
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
pool.addBalance(poolTestPeer(0).ID(), uint64(time.Minute), false)
pool.connect(poolTestPeer(0), 10)
clock.Run(time.Minute) // All positive balance should be used up.
time.Sleep(300 * time.Millisecond) // Ensure the callback is called
pb := pool.ndb.getOrNewPB(poolTestPeer(0).ID())
if pb.value != 0 {
t.Fatalf("Positive balance mismatch, want %v, got %v", 0, pb.value)
}
pool.addBalance(poolTestPeer(0).ID(), uint64(time.Minute), false)
pb = pool.ndb.getOrNewPB(poolTestPeer(0).ID())
if pb.value != uint64(time.Minute) {
t.Fatalf("Positive balance mismatch, want %v, got %v", uint64(time.Minute), pb.value)
}
}
func TestNegativeBalanceCalculation(t *testing.T) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
kicked = make(chan int, 10)
)
removeFn := func(id enode.ID) { kicked <- int(id[0]) } // Noop
pool := newClientPool(db, 1, &clock, removeFn)
defer pool.stop()
pool.setLimits(10, uint64(10)) // Total capacity limit is 10
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
for i := 0; i < 10; i++ {
pool.connect(poolTestPeer(i), 1)
}
clock.Run(time.Second)
for i := 0; i < 10; i++ {
pool.disconnect(poolTestPeer(i))
nb := pool.ndb.getOrNewNB(poolTestPeer(i).freeClientId())
if nb.logValue != 0 {
t.Fatalf("Short connection shouldn't be recorded")
}
}
for i := 0; i < 10; i++ {
pool.connect(poolTestPeer(i), 1)
}
clock.Run(time.Minute)
for i := 0; i < 10; i++ {
pool.disconnect(poolTestPeer(i))
nb := pool.ndb.getOrNewNB(poolTestPeer(i).freeClientId())
nb.logValue -= pool.logOffset(clock.Now())
nb.logValue /= fixedPointMultiplier
if nb.logValue != int64(math.Log(float64(time.Minute/time.Second))) {
t.Fatalf("Negative balance mismatch, want %v, got %v", int64(math.Log(float64(time.Minute/time.Second))), nb.logValue)
}
}
}
func TestNodeDB(t *testing.T) {
ndb := newNodeDB(rawdb.NewMemoryDatabase(), mclock.System{})
defer ndb.close()
if !bytes.Equal(ndb.verbuf[:], []byte{0x00, 0x00}) {
t.Fatalf("version buffer mismatch, want %v, got %v", []byte{0x00, 0x00}, ndb.verbuf)
}
var cases = []struct {
id enode.ID
ip string
balance interface{}
positive bool
}{
{enode.ID{0x00, 0x01, 0x02}, "", posBalance{value: 100, lastTotal: 200}, true},
{enode.ID{0x00, 0x01, 0x02}, "", posBalance{value: 200, lastTotal: 300}, true},
{enode.ID{}, "127.0.0.1", negBalance{logValue: 10}, false},
{enode.ID{}, "127.0.0.1", negBalance{logValue: 20}, false},
}
for _, c := range cases {
if c.positive {
ndb.setPB(c.id, c.balance.(posBalance))
if pb := ndb.getOrNewPB(c.id); !reflect.DeepEqual(pb, c.balance.(posBalance)) {
t.Fatalf("Positive balance mismatch, want %v, got %v", c.balance.(posBalance), pb)
}
} else {
ndb.setNB(c.ip, c.balance.(negBalance))
if nb := ndb.getOrNewNB(c.ip); !reflect.DeepEqual(nb, c.balance.(negBalance)) {
t.Fatalf("Negative balance mismatch, want %v, got %v", c.balance.(negBalance), nb)
}
}
}
for _, c := range cases {
if c.positive {
ndb.delPB(c.id)
if pb := ndb.getOrNewPB(c.id); !reflect.DeepEqual(pb, posBalance{}) {
t.Fatalf("Positive balance mismatch, want %v, got %v", posBalance{}, pb)
}
} else {
ndb.delNB(c.ip)
if nb := ndb.getOrNewNB(c.ip); !reflect.DeepEqual(nb, negBalance{}) {
t.Fatalf("Negative balance mismatch, want %v, got %v", negBalance{}, nb)
}
}
}
ndb.setCumulativeTime(100)
if ndb.getCumulativeTime() != 100 {
t.Fatalf("Cumulative time mismatch, want %v, got %v", 100, ndb.getCumulativeTime())
}
}
func TestNodeDBExpiration(t *testing.T) {
var (
iterated int
done = make(chan struct{}, 1)
)
callback := func(now mclock.AbsTime, b negBalance) bool {
iterated += 1
return true
}
clock := &mclock.Simulated{}
ndb := newNodeDB(rawdb.NewMemoryDatabase(), clock)
defer ndb.close()
ndb.nbEvictCallBack = callback
ndb.cleanupHook = func() { done <- struct{}{} }
var cases = []struct {
ip string
balance negBalance
}{
{"127.0.0.1", negBalance{logValue: 1}},
{"127.0.0.2", negBalance{logValue: 1}},
{"127.0.0.3", negBalance{logValue: 1}},
{"127.0.0.4", negBalance{logValue: 1}},
}
for _, c := range cases {
ndb.setNB(c.ip, c.balance)
}
time.Sleep(100 * time.Millisecond) // Ensure the db expirer is registered.
clock.Run(time.Hour + time.Minute)
select {
case <-done:
case <-time.NewTimer(time.Second).C:
t.Fatalf("timeout")
}
if iterated != 4 {
t.Fatalf("Failed to evict useless negative balances, want %v, got %d", 4, iterated)
}
for _, c := range cases {
ndb.setNB(c.ip, c.balance)
}
clock.Run(time.Hour + time.Minute)
select {
case <-done:
case <-time.NewTimer(time.Second).C:
t.Fatalf("timeout")
}
if iterated != 8 {
t.Fatalf("Failed to evict useless negative balances, want %v, got %d", 4, iterated)
} }
pool.stop()
} }

@ -188,6 +188,12 @@ func testOdr(t *testing.T, protocol int, expFail uint64, checkCached bool, fn od
client.handler.synchronise(client.peer.peer) client.handler.synchronise(client.peer.peer)
// Ensure the client has synced all necessary data.
clientHead := client.handler.backend.blockchain.CurrentHeader()
if clientHead.Number.Uint64() != 4 {
t.Fatalf("Failed to sync the chain with server, head: %v", clientHead.Number.Uint64())
}
test := func(expFail uint64) { test := func(expFail uint64) {
// Mark this as a helper to put the failures at the correct lines // Mark this as a helper to put the failures at the correct lines
t.Helper() t.Helper()

@ -81,8 +81,15 @@ func testAccess(t *testing.T, protocol int, fn accessTestFn) {
// Assemble the test environment // Assemble the test environment
server, client, tearDown := newClientServerEnv(t, 4, protocol, nil, nil, 0, false, true) server, client, tearDown := newClientServerEnv(t, 4, protocol, nil, nil, 0, false, true)
defer tearDown() defer tearDown()
client.handler.synchronise(client.peer.peer) client.handler.synchronise(client.peer.peer)
// Ensure the client has synced all necessary data.
clientHead := client.handler.backend.blockchain.CurrentHeader()
if clientHead.Number.Uint64() != 4 {
t.Fatalf("Failed to sync the chain with server, head: %v", clientHead.Number.Uint64())
}
test := func(expFail uint64) { test := func(expFail uint64) {
for i := uint64(0); i <= server.handler.blockchain.CurrentHeader().Number.Uint64(); i++ { for i := uint64(0); i <= server.handler.blockchain.CurrentHeader().Number.Uint64(); i++ {
bhash := rawdb.ReadCanonicalHash(server.db, i) bhash := rawdb.ReadCanonicalHash(server.db, i)

@ -113,7 +113,7 @@ func NewLesServer(e *eth.Ethereum, config *eth.Config) (*LesServer, error) {
maxCapacity = totalRecharge maxCapacity = totalRecharge
} }
srv.fcManager.SetCapacityLimits(srv.freeCapacity, maxCapacity, srv.freeCapacity*2) srv.fcManager.SetCapacityLimits(srv.freeCapacity, maxCapacity, srv.freeCapacity*2)
srv.clientPool = newClientPool(srv.chainDb, srv.freeCapacity, 10000, mclock.System{}, func(id enode.ID) { go srv.peers.Unregister(peerIdToString(id)) }) srv.clientPool = newClientPool(srv.chainDb, srv.freeCapacity, mclock.System{}, func(id enode.ID) { go srv.peers.Unregister(peerIdToString(id)) })
srv.clientPool.setPriceFactors(priceFactors{0, 1, 1}, priceFactors{0, 1, 1}) srv.clientPool.setPriceFactors(priceFactors{0, 1, 1}, priceFactors{0, 1, 1})
checkpoint := srv.latestLocalCheckpoint() checkpoint := srv.latestLocalCheckpoint()
@ -183,9 +183,9 @@ func (s *LesServer) Stop() {
s.peers.Close() s.peers.Close()
s.fcManager.Stop() s.fcManager.Stop()
s.clientPool.stop()
s.costTracker.stop() s.costTracker.stop()
s.handler.stop() s.handler.stop()
s.clientPool.stop() // client pool should be closed after handler.
s.servingQueue.stop() s.servingQueue.stop()
// Note, bloom trie indexer is closed by parent bloombits indexer. // Note, bloom trie indexer is closed by parent bloombits indexer.

@ -30,17 +30,14 @@ import (
) )
// Test light syncing which will download all headers from genesis. // Test light syncing which will download all headers from genesis.
func TestLightSyncingLes2(t *testing.T) { testCheckpointSyncing(t, 2, 0) }
func TestLightSyncingLes3(t *testing.T) { testCheckpointSyncing(t, 3, 0) } func TestLightSyncingLes3(t *testing.T) { testCheckpointSyncing(t, 3, 0) }
// Test legacy checkpoint syncing which will download tail headers // Test legacy checkpoint syncing which will download tail headers
// based on a hardcoded checkpoint. // based on a hardcoded checkpoint.
func TestLegacyCheckpointSyncingLes2(t *testing.T) { testCheckpointSyncing(t, 2, 1) }
func TestLegacyCheckpointSyncingLes3(t *testing.T) { testCheckpointSyncing(t, 3, 1) } func TestLegacyCheckpointSyncingLes3(t *testing.T) { testCheckpointSyncing(t, 3, 1) }
// Test checkpoint syncing which will download tail headers based // Test checkpoint syncing which will download tail headers based
// on a verified checkpoint. // on a verified checkpoint.
func TestCheckpointSyncingLes2(t *testing.T) { testCheckpointSyncing(t, 2, 2) }
func TestCheckpointSyncingLes3(t *testing.T) { testCheckpointSyncing(t, 3, 2) } func TestCheckpointSyncingLes3(t *testing.T) { testCheckpointSyncing(t, 3, 2) }
func testCheckpointSyncing(t *testing.T, protocol int, syncMode int) { func testCheckpointSyncing(t *testing.T, protocol int, syncMode int) {

@ -280,7 +280,7 @@ func newTestServerHandler(blocks int, indexers []*core.ChainIndexer, db ethdb.Da
} }
server.costTracker, server.freeCapacity = newCostTracker(db, server.config) server.costTracker, server.freeCapacity = newCostTracker(db, server.config)
server.costTracker.testCostList = testCostList(0) // Disable flow control mechanism. server.costTracker.testCostList = testCostList(0) // Disable flow control mechanism.
server.clientPool = newClientPool(db, 1, 10000, clock, nil) server.clientPool = newClientPool(db, 1, clock, nil)
server.clientPool.setLimits(10000, 10000) // Assign enough capacity for clientpool server.clientPool.setLimits(10000, 10000) // Assign enough capacity for clientpool
server.handler = newServerHandler(server, simulation.Blockchain(), db, txpool, func() bool { return true }) server.handler = newServerHandler(server, simulation.Blockchain(), db, txpool, func() bool { return true })
if server.oracle != nil { if server.oracle != nil {
@ -517,7 +517,7 @@ func newClientServerEnv(t *testing.T, blocks int, protocol int, callback indexer
if connect { if connect {
cpeer, err1, speer, err2 = newTestPeerPair("peer", protocol, server, client) cpeer, err1, speer, err2 = newTestPeerPair("peer", protocol, server, client)
select { select {
case <-time.After(time.Millisecond * 100): case <-time.After(time.Millisecond * 300):
case err := <-err1: case err := <-err1:
t.Fatalf("peer 1 handshake error: %v", err) t.Fatalf("peer 1 handshake error: %v", err)
case err := <-err2: case err := <-err2:

Loading…
Cancel
Save