eth/downloader: refactor downloader + queue (#21263)

* eth/downloader: refactor downloader + queue

downloader, fetcher: throttle-metrics, fetcher filter improvements, standalone resultcache

downloader: more accurate deliverytime calculation, less mem overhead in state requests

downloader/queue: increase underlying buffer of results, new throttle mechanism

eth/downloader: updates to tests

eth/downloader: fix up some review concerns

eth/downloader/queue: minor fixes

eth/downloader: minor fixes after review call

eth/downloader: testcases for queue.go

eth/downloader: minor change, don't set progress unless progress...

eth/downloader: fix flaw which prevented useless peers from being dropped

eth/downloader: try to fix tests

eth/downloader: verify non-deliveries against advertised remote head

eth/downloader: fix flaw with checking closed-status causing hang

eth/downloader: hashing avoidance

eth/downloader: review concerns + simplify resultcache and queue

eth/downloader: add back some locks, address review concerns

downloader/queue: fix remaining lock flaw

* eth/downloader: nitpick fixes

* eth/downloader: remove the *2*3/4 throttling threshold dance

* eth/downloader: print correct throttle threshold in stats

Co-authored-by: Péter Szilágyi <peterke@gmail.com>
pull/21368/head
Martin Holst Swende 4 years ago committed by GitHub
parent 3a57eecc69
commit 105922180f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 11
      core/types/block.go
  2. 86
      eth/downloader/downloader.go
  3. 37
      eth/downloader/downloader_test.go
  4. 2
      eth/downloader/metrics.go
  5. 67
      eth/downloader/peer.go
  6. 53
      eth/downloader/peer_test.go
  7. 424
      eth/downloader/queue.go
  8. 426
      eth/downloader/queue_test.go
  9. 194
      eth/downloader/resultstore.go
  10. 32
      eth/downloader/statesync.go
  11. 37
      eth/fetcher/block_fetcher.go

@ -147,6 +147,17 @@ func rlpHash(x interface{}) (h common.Hash) {
return h return h
} }
// EmptyBody returns true if there is no additional 'body' to complete the header
// that is: no transactions and no uncles.
func (h *Header) EmptyBody() bool {
return h.TxHash == EmptyRootHash && h.UncleHash == EmptyUncleHash
}
// EmptyReceipts returns true if there are no receipts for this header/block.
func (h *Header) EmptyReceipts() bool {
return h.ReceiptHash == EmptyRootHash
}
// Body is a simple (mutable, non-safe) data container for storing and moving // Body is a simple (mutable, non-safe) data container for storing and moving
// a block's data contents (transactions and uncles) together. // a block's data contents (transactions and uncles) together.
type Body struct { type Body struct {

@ -219,7 +219,7 @@ func New(checkpoint uint64, stateDb ethdb.Database, stateBloom *trie.SyncBloom,
stateBloom: stateBloom, stateBloom: stateBloom,
mux: mux, mux: mux,
checkpoint: checkpoint, checkpoint: checkpoint,
queue: newQueue(), queue: newQueue(blockCacheItems),
peers: newPeerSet(), peers: newPeerSet(),
rttEstimate: uint64(rttMaxEstimate), rttEstimate: uint64(rttMaxEstimate),
rttConfidence: uint64(1000000), rttConfidence: uint64(1000000),
@ -370,7 +370,7 @@ func (d *Downloader) synchronise(id string, hash common.Hash, td *big.Int, mode
d.stateBloom.Close() d.stateBloom.Close()
} }
// Reset the queue, peer set and wake channels to clean any internal leftover state // Reset the queue, peer set and wake channels to clean any internal leftover state
d.queue.Reset() d.queue.Reset(blockCacheItems)
d.peers.Reset() d.peers.Reset()
for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} { for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
@ -597,6 +597,9 @@ func (d *Downloader) Terminate() {
default: default:
close(d.quitCh) close(d.quitCh)
} }
if d.stateBloom != nil {
d.stateBloom.Close()
}
d.quitLock.Unlock() d.quitLock.Unlock()
// Cancel any pending download requests // Cancel any pending download requests
@ -629,7 +632,7 @@ func (d *Downloader) fetchHeight(p *peerConnection) (*types.Header, error) {
// Make sure the peer actually gave something valid // Make sure the peer actually gave something valid
headers := packet.(*headerPack).headers headers := packet.(*headerPack).headers
if len(headers) != 1 { if len(headers) != 1 {
p.log.Debug("Multiple headers for single request", "headers", len(headers)) p.log.Warn("Multiple headers for single request", "headers", len(headers))
return nil, fmt.Errorf("%w: multiple headers (%d) for single request", errBadPeer, len(headers)) return nil, fmt.Errorf("%w: multiple headers (%d) for single request", errBadPeer, len(headers))
} }
head := headers[0] head := headers[0]
@ -866,7 +869,7 @@ func (d *Downloader) findAncestor(p *peerConnection, remoteHeader *types.Header)
// Make sure the peer actually gave something valid // Make sure the peer actually gave something valid
headers := packer.(*headerPack).headers headers := packer.(*headerPack).headers
if len(headers) != 1 { if len(headers) != 1 {
p.log.Debug("Multiple headers for single request", "headers", len(headers)) p.log.Warn("Multiple headers for single request", "headers", len(headers))
return 0, fmt.Errorf("%w: multiple headers (%d) for single request", errBadPeer, len(headers)) return 0, fmt.Errorf("%w: multiple headers (%d) for single request", errBadPeer, len(headers))
} }
arrived = true arrived = true
@ -890,7 +893,7 @@ func (d *Downloader) findAncestor(p *peerConnection, remoteHeader *types.Header)
} }
header := d.lightchain.GetHeaderByHash(h) // Independent of sync mode, header surely exists header := d.lightchain.GetHeaderByHash(h) // Independent of sync mode, header surely exists
if header.Number.Uint64() != check { if header.Number.Uint64() != check {
p.log.Debug("Received non requested header", "number", header.Number, "hash", header.Hash(), "request", check) p.log.Warn("Received non requested header", "number", header.Number, "hash", header.Hash(), "request", check)
return 0, fmt.Errorf("%w: non-requested header (%d)", errBadPeer, header.Number) return 0, fmt.Errorf("%w: non-requested header (%d)", errBadPeer, header.Number)
} }
start = check start = check
@ -1107,16 +1110,17 @@ func (d *Downloader) fillHeaderSkeleton(from uint64, skeleton []*types.Header) (
return d.queue.DeliverHeaders(pack.peerID, pack.headers, d.headerProcCh) return d.queue.DeliverHeaders(pack.peerID, pack.headers, d.headerProcCh)
} }
expire = func() map[string]int { return d.queue.ExpireHeaders(d.requestTTL()) } expire = func() map[string]int { return d.queue.ExpireHeaders(d.requestTTL()) }
throttle = func() bool { return false } reserve = func(p *peerConnection, count int) (*fetchRequest, bool, bool) {
reserve = func(p *peerConnection, count int) (*fetchRequest, bool, error) { return d.queue.ReserveHeaders(p, count), false, false
return d.queue.ReserveHeaders(p, count), false, nil
} }
fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchHeaders(req.From, MaxHeaderFetch) } fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchHeaders(req.From, MaxHeaderFetch) }
capacity = func(p *peerConnection) int { return p.HeaderCapacity(d.requestRTT()) } capacity = func(p *peerConnection) int { return p.HeaderCapacity(d.requestRTT()) }
setIdle = func(p *peerConnection, accepted int) { p.SetHeadersIdle(accepted) } setIdle = func(p *peerConnection, accepted int, deliveryTime time.Time) {
p.SetHeadersIdle(accepted, deliveryTime)
}
) )
err := d.fetchParts(d.headerCh, deliver, d.queue.headerContCh, expire, err := d.fetchParts(d.headerCh, deliver, d.queue.headerContCh, expire,
d.queue.PendingHeaders, d.queue.InFlightHeaders, throttle, reserve, d.queue.PendingHeaders, d.queue.InFlightHeaders, reserve,
nil, fetch, d.queue.CancelHeaders, capacity, d.peers.HeaderIdlePeers, setIdle, "headers") nil, fetch, d.queue.CancelHeaders, capacity, d.peers.HeaderIdlePeers, setIdle, "headers")
log.Debug("Skeleton fill terminated", "err", err) log.Debug("Skeleton fill terminated", "err", err)
@ -1139,10 +1143,10 @@ func (d *Downloader) fetchBodies(from uint64) error {
expire = func() map[string]int { return d.queue.ExpireBodies(d.requestTTL()) } expire = func() map[string]int { return d.queue.ExpireBodies(d.requestTTL()) }
fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchBodies(req) } fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchBodies(req) }
capacity = func(p *peerConnection) int { return p.BlockCapacity(d.requestRTT()) } capacity = func(p *peerConnection) int { return p.BlockCapacity(d.requestRTT()) }
setIdle = func(p *peerConnection, accepted int) { p.SetBodiesIdle(accepted) } setIdle = func(p *peerConnection, accepted int, deliveryTime time.Time) { p.SetBodiesIdle(accepted, deliveryTime) }
) )
err := d.fetchParts(d.bodyCh, deliver, d.bodyWakeCh, expire, err := d.fetchParts(d.bodyCh, deliver, d.bodyWakeCh, expire,
d.queue.PendingBlocks, d.queue.InFlightBlocks, d.queue.ShouldThrottleBlocks, d.queue.ReserveBodies, d.queue.PendingBlocks, d.queue.InFlightBlocks, d.queue.ReserveBodies,
d.bodyFetchHook, fetch, d.queue.CancelBodies, capacity, d.peers.BodyIdlePeers, setIdle, "bodies") d.bodyFetchHook, fetch, d.queue.CancelBodies, capacity, d.peers.BodyIdlePeers, setIdle, "bodies")
log.Debug("Block body download terminated", "err", err) log.Debug("Block body download terminated", "err", err)
@ -1163,10 +1167,12 @@ func (d *Downloader) fetchReceipts(from uint64) error {
expire = func() map[string]int { return d.queue.ExpireReceipts(d.requestTTL()) } expire = func() map[string]int { return d.queue.ExpireReceipts(d.requestTTL()) }
fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchReceipts(req) } fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchReceipts(req) }
capacity = func(p *peerConnection) int { return p.ReceiptCapacity(d.requestRTT()) } capacity = func(p *peerConnection) int { return p.ReceiptCapacity(d.requestRTT()) }
setIdle = func(p *peerConnection, accepted int) { p.SetReceiptsIdle(accepted) } setIdle = func(p *peerConnection, accepted int, deliveryTime time.Time) {
p.SetReceiptsIdle(accepted, deliveryTime)
}
) )
err := d.fetchParts(d.receiptCh, deliver, d.receiptWakeCh, expire, err := d.fetchParts(d.receiptCh, deliver, d.receiptWakeCh, expire,
d.queue.PendingReceipts, d.queue.InFlightReceipts, d.queue.ShouldThrottleReceipts, d.queue.ReserveReceipts, d.queue.PendingReceipts, d.queue.InFlightReceipts, d.queue.ReserveReceipts,
d.receiptFetchHook, fetch, d.queue.CancelReceipts, capacity, d.peers.ReceiptIdlePeers, setIdle, "receipts") d.receiptFetchHook, fetch, d.queue.CancelReceipts, capacity, d.peers.ReceiptIdlePeers, setIdle, "receipts")
log.Debug("Transaction receipt download terminated", "err", err) log.Debug("Transaction receipt download terminated", "err", err)
@ -1199,9 +1205,9 @@ func (d *Downloader) fetchReceipts(from uint64) error {
// - setIdle: network callback to set a peer back to idle and update its estimated capacity (traffic shaping) // - setIdle: network callback to set a peer back to idle and update its estimated capacity (traffic shaping)
// - kind: textual label of the type being downloaded to display in log messages // - kind: textual label of the type being downloaded to display in log messages
func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack) (int, error), wakeCh chan bool, func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack) (int, error), wakeCh chan bool,
expire func() map[string]int, pending func() int, inFlight func() bool, throttle func() bool, reserve func(*peerConnection, int) (*fetchRequest, bool, error), expire func() map[string]int, pending func() int, inFlight func() bool, reserve func(*peerConnection, int) (*fetchRequest, bool, bool),
fetchHook func([]*types.Header), fetch func(*peerConnection, *fetchRequest) error, cancel func(*fetchRequest), capacity func(*peerConnection) int, fetchHook func([]*types.Header), fetch func(*peerConnection, *fetchRequest) error, cancel func(*fetchRequest), capacity func(*peerConnection) int,
idle func() ([]*peerConnection, int), setIdle func(*peerConnection, int), kind string) error { idle func() ([]*peerConnection, int), setIdle func(*peerConnection, int, time.Time), kind string) error {
// Create a ticker to detect expired retrieval tasks // Create a ticker to detect expired retrieval tasks
ticker := time.NewTicker(100 * time.Millisecond) ticker := time.NewTicker(100 * time.Millisecond)
@ -1217,6 +1223,7 @@ func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack)
return errCanceled return errCanceled
case packet := <-deliveryCh: case packet := <-deliveryCh:
deliveryTime := time.Now()
// If the peer was previously banned and failed to deliver its pack // If the peer was previously banned and failed to deliver its pack
// in a reasonable time frame, ignore its message. // in a reasonable time frame, ignore its message.
if peer := d.peers.Peer(packet.PeerId()); peer != nil { if peer := d.peers.Peer(packet.PeerId()); peer != nil {
@ -1229,7 +1236,7 @@ func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack)
// caused by a timed out request which came through in the end), set it to // caused by a timed out request which came through in the end), set it to
// idle. If the delivery's stale, the peer should have already been idled. // idle. If the delivery's stale, the peer should have already been idled.
if !errors.Is(err, errStaleDelivery) { if !errors.Is(err, errStaleDelivery) {
setIdle(peer, accepted) setIdle(peer, accepted, deliveryTime)
} }
// Issue a log to the user to see what's going on // Issue a log to the user to see what's going on
switch { switch {
@ -1282,7 +1289,7 @@ func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack)
// how response times reacts, to it always requests one more than the minimum (i.e. min 2). // how response times reacts, to it always requests one more than the minimum (i.e. min 2).
if fails > 2 { if fails > 2 {
peer.log.Trace("Data delivery timed out", "type", kind) peer.log.Trace("Data delivery timed out", "type", kind)
setIdle(peer, 0) setIdle(peer, 0, time.Now())
} else { } else {
peer.log.Debug("Stalling delivery, dropping", "type", kind) peer.log.Debug("Stalling delivery, dropping", "type", kind)
@ -1317,27 +1324,27 @@ func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack)
// Send a download request to all idle peers, until throttled // Send a download request to all idle peers, until throttled
progressed, throttled, running := false, false, inFlight() progressed, throttled, running := false, false, inFlight()
idles, total := idle() idles, total := idle()
pendCount := pending()
for _, peer := range idles { for _, peer := range idles {
// Short circuit if throttling activated // Short circuit if throttling activated
if throttle() { if throttled {
throttled = true
break break
} }
// Short circuit if there is no more available task. // Short circuit if there is no more available task.
if pending() == 0 { if pendCount = pending(); pendCount == 0 {
break break
} }
// Reserve a chunk of fetches for a peer. A nil can mean either that // Reserve a chunk of fetches for a peer. A nil can mean either that
// no more headers are available, or that the peer is known not to // no more headers are available, or that the peer is known not to
// have them. // have them.
request, progress, err := reserve(peer, capacity(peer)) request, progress, throttle := reserve(peer, capacity(peer))
if err != nil {
return err
}
if progress { if progress {
progressed = true progressed = true
} }
if throttle {
throttled = true
throttleCounter.Inc(1)
}
if request == nil { if request == nil {
continue continue
} }
@ -1362,7 +1369,7 @@ func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack)
} }
// Make sure that we have peers available for fetching. If all peers have been tried // Make sure that we have peers available for fetching. If all peers have been tried
// and all failed throw an error // and all failed throw an error
if !progressed && !throttled && !running && len(idles) == total && pending() > 0 { if !progressed && !throttled && !running && len(idles) == total && pendCount > 0 {
return errPeersUnavailable return errPeersUnavailable
} }
} }
@ -1374,8 +1381,11 @@ func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack)
// queue until the stream ends or a failure occurs. // queue until the stream ends or a failure occurs.
func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) error { func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) error {
// Keep a count of uncertain headers to roll back // Keep a count of uncertain headers to roll back
var rollback []*types.Header var (
mode := d.getMode() rollback []*types.Header
rollbackErr error
mode = d.getMode()
)
defer func() { defer func() {
if len(rollback) > 0 { if len(rollback) > 0 {
// Flatten the headers and roll them back // Flatten the headers and roll them back
@ -1397,7 +1407,7 @@ func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) er
log.Warn("Rolled back headers", "count", len(hashes), log.Warn("Rolled back headers", "count", len(hashes),
"header", fmt.Sprintf("%d->%d", lastHeader, d.lightchain.CurrentHeader().Number), "header", fmt.Sprintf("%d->%d", lastHeader, d.lightchain.CurrentHeader().Number),
"fast", fmt.Sprintf("%d->%d", lastFastBlock, curFastBlock), "fast", fmt.Sprintf("%d->%d", lastFastBlock, curFastBlock),
"block", fmt.Sprintf("%d->%d", lastBlock, curBlock)) "block", fmt.Sprintf("%d->%d", lastBlock, curBlock), "reason", rollbackErr)
} }
}() }()
@ -1407,6 +1417,7 @@ func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) er
for { for {
select { select {
case <-d.cancelCh: case <-d.cancelCh:
rollbackErr = errCanceled
return errCanceled return errCanceled
case headers := <-d.headerProcCh: case headers := <-d.headerProcCh:
@ -1460,6 +1471,7 @@ func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) er
// Terminate if something failed in between processing chunks // Terminate if something failed in between processing chunks
select { select {
case <-d.cancelCh: case <-d.cancelCh:
rollbackErr = errCanceled
return errCanceled return errCanceled
default: default:
} }
@ -1484,11 +1496,12 @@ func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) er
frequency = 1 frequency = 1
} }
if n, err := d.lightchain.InsertHeaderChain(chunk, frequency); err != nil { if n, err := d.lightchain.InsertHeaderChain(chunk, frequency); err != nil {
rollbackErr = err
// If some headers were inserted, add them too to the rollback list // If some headers were inserted, add them too to the rollback list
if n > 0 { if n > 0 {
rollback = append(rollback, chunk[:n]...) rollback = append(rollback, chunk[:n]...)
} }
log.Debug("Invalid header encountered", "number", chunk[n].Number, "hash", chunk[n].Hash(), "err", err) log.Debug("Invalid header encountered", "number", chunk[n].Number, "hash", chunk[n].Hash(), "parent", chunk[n].ParentHash, "err", err)
return fmt.Errorf("%w: %v", errInvalidChain, err) return fmt.Errorf("%w: %v", errInvalidChain, err)
} }
// All verifications passed, store newly found uncertain headers // All verifications passed, store newly found uncertain headers
@ -1503,6 +1516,7 @@ func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) er
for d.queue.PendingBlocks() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders { for d.queue.PendingBlocks() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders {
select { select {
case <-d.cancelCh: case <-d.cancelCh:
rollbackErr = errCanceled
return errCanceled return errCanceled
case <-time.After(time.Second): case <-time.After(time.Second):
} }
@ -1510,7 +1524,7 @@ func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) er
// Otherwise insert the headers for content retrieval // Otherwise insert the headers for content retrieval
inserts := d.queue.Schedule(chunk, origin) inserts := d.queue.Schedule(chunk, origin)
if len(inserts) != len(chunk) { if len(inserts) != len(chunk) {
log.Debug("Stale headers") rollbackErr = fmt.Errorf("stale headers: len inserts %v len(chunk) %v", len(inserts), len(chunk))
return fmt.Errorf("%w: stale headers", errBadPeer) return fmt.Errorf("%w: stale headers", errBadPeer)
} }
} }
@ -1680,6 +1694,14 @@ func (d *Downloader) processFastSyncContent(latest *types.Header) error {
} }
func splitAroundPivot(pivot uint64, results []*fetchResult) (p *fetchResult, before, after []*fetchResult) { func splitAroundPivot(pivot uint64, results []*fetchResult) (p *fetchResult, before, after []*fetchResult) {
if len(results) == 0 {
return nil, nil, nil
}
if lastNum := results[len(results)-1].Header.Number.Uint64(); lastNum < pivot {
// the pivot is somewhere in the future
return nil, results, nil
}
// This can also be optimized, but only happens very seldom
for _, result := range results { for _, result := range results {
num := result.Header.Number.Uint64() num := result.Header.Number.Uint64()
switch { switch {

@ -297,14 +297,13 @@ func (dl *downloadTester) InsertChain(blocks types.Blocks) (i int, err error) {
} else if _, err := dl.stateDb.Get(parent.Root().Bytes()); err != nil { } else if _, err := dl.stateDb.Get(parent.Root().Bytes()); err != nil {
return i, fmt.Errorf("InsertChain: unknown parent state %x: %v", parent.Root(), err) return i, fmt.Errorf("InsertChain: unknown parent state %x: %v", parent.Root(), err)
} }
if _, ok := dl.ownHeaders[block.Hash()]; !ok { if hdr := dl.getHeaderByHash(block.Hash()); hdr == nil {
dl.ownHashes = append(dl.ownHashes, block.Hash()) dl.ownHashes = append(dl.ownHashes, block.Hash())
dl.ownHeaders[block.Hash()] = block.Header() dl.ownHeaders[block.Hash()] = block.Header()
} }
dl.ownBlocks[block.Hash()] = block dl.ownBlocks[block.Hash()] = block
dl.ownReceipts[block.Hash()] = make(types.Receipts, 0) dl.ownReceipts[block.Hash()] = make(types.Receipts, 0)
dl.stateDb.Put(block.Root().Bytes(), []byte{0x00}) dl.stateDb.Put(block.Root().Bytes(), []byte{0x00})
td := dl.getTd(block.ParentHash()) td := dl.getTd(block.ParentHash())
dl.ownChainTd[block.Hash()] = new(big.Int).Add(td, block.Difficulty()) dl.ownChainTd[block.Hash()] = new(big.Int).Add(td, block.Difficulty())
} }
@ -538,7 +537,6 @@ func TestThrottling64Fast(t *testing.T) { testThrottling(t, 64, FastSync) }
func testThrottling(t *testing.T, protocol int, mode SyncMode) { func testThrottling(t *testing.T, protocol int, mode SyncMode) {
t.Parallel() t.Parallel()
tester := newTester() tester := newTester()
defer tester.terminate()
// Create a long block chain to download and the tester // Create a long block chain to download and the tester
targetBlocks := testChainBase.len() - 1 targetBlocks := testChainBase.len() - 1
@ -570,31 +568,32 @@ func testThrottling(t *testing.T, protocol int, mode SyncMode) {
time.Sleep(25 * time.Millisecond) time.Sleep(25 * time.Millisecond)
tester.lock.Lock() tester.lock.Lock()
tester.downloader.queue.lock.Lock() {
cached = len(tester.downloader.queue.blockDonePool) tester.downloader.queue.resultCache.lock.Lock()
if mode == FastSync { cached = tester.downloader.queue.resultCache.countCompleted()
if receipts := len(tester.downloader.queue.receiptDonePool); receipts < cached { tester.downloader.queue.resultCache.lock.Unlock()
cached = receipts
}
}
frozen = int(atomic.LoadUint32(&blocked)) frozen = int(atomic.LoadUint32(&blocked))
retrieved = len(tester.ownBlocks) retrieved = len(tester.ownBlocks)
tester.downloader.queue.lock.Unlock()
}
tester.lock.Unlock() tester.lock.Unlock()
if cached == blockCacheItems || cached == blockCacheItems-reorgProtHeaderDelay || retrieved+cached+frozen == targetBlocks+1 || retrieved+cached+frozen == targetBlocks+1-reorgProtHeaderDelay { if cached == blockCacheItems ||
cached == blockCacheItems-reorgProtHeaderDelay ||
retrieved+cached+frozen == targetBlocks+1 ||
retrieved+cached+frozen == targetBlocks+1-reorgProtHeaderDelay {
break break
} }
} }
// Make sure we filled up the cache, then exhaust it // Make sure we filled up the cache, then exhaust it
time.Sleep(25 * time.Millisecond) // give it a chance to screw up time.Sleep(25 * time.Millisecond) // give it a chance to screw up
tester.lock.RLock() tester.lock.RLock()
retrieved = len(tester.ownBlocks) retrieved = len(tester.ownBlocks)
tester.lock.RUnlock() tester.lock.RUnlock()
if cached != blockCacheItems && cached != blockCacheItems-reorgProtHeaderDelay && retrieved+cached+frozen != targetBlocks+1 && retrieved+cached+frozen != targetBlocks+1-reorgProtHeaderDelay { if cached != blockCacheItems && cached != blockCacheItems-reorgProtHeaderDelay && retrieved+cached+frozen != targetBlocks+1 && retrieved+cached+frozen != targetBlocks+1-reorgProtHeaderDelay {
t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheItems, retrieved, frozen, targetBlocks+1) t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheItems, retrieved, frozen, targetBlocks+1)
} }
// Permit the blocked blocks to import // Permit the blocked blocks to import
if atomic.LoadUint32(&blocked) > 0 { if atomic.LoadUint32(&blocked) > 0 {
atomic.StoreUint32(&blocked, uint32(0)) atomic.StoreUint32(&blocked, uint32(0))
@ -606,6 +605,8 @@ func testThrottling(t *testing.T, protocol int, mode SyncMode) {
if err := <-errc; err != nil { if err := <-errc; err != nil {
t.Fatalf("block synchronization failed: %v", err) t.Fatalf("block synchronization failed: %v", err)
} }
tester.terminate()
} }
// Tests that simple synchronization against a forked chain works correctly. In // Tests that simple synchronization against a forked chain works correctly. In
@ -628,7 +629,6 @@ func testForkedSync(t *testing.T, protocol int, mode SyncMode) {
chainB := testChainForkLightB.shorten(testChainBase.len() + 80) chainB := testChainForkLightB.shorten(testChainBase.len() + 80)
tester.newPeer("fork A", protocol, chainA) tester.newPeer("fork A", protocol, chainA)
tester.newPeer("fork B", protocol, chainB) tester.newPeer("fork B", protocol, chainB)
// Synchronise with the peer and make sure all blocks were retrieved // Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("fork A", nil, mode); err != nil { if err := tester.sync("fork A", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err) t.Fatalf("failed to synchronise blocks: %v", err)
@ -720,15 +720,12 @@ func TestBoundedHeavyForkedSync64Light(t *testing.T) { testBoundedHeavyForkedSyn
func testBoundedHeavyForkedSync(t *testing.T, protocol int, mode SyncMode) { func testBoundedHeavyForkedSync(t *testing.T, protocol int, mode SyncMode) {
t.Parallel() t.Parallel()
tester := newTester() tester := newTester()
defer tester.terminate()
// Create a long enough forked chain // Create a long enough forked chain
chainA := testChainForkLightA chainA := testChainForkLightA
chainB := testChainForkHeavy chainB := testChainForkHeavy
tester.newPeer("original", protocol, chainA) tester.newPeer("original", protocol, chainA)
tester.newPeer("heavy-rewriter", protocol, chainB)
// Synchronise with the peer and make sure all blocks were retrieved // Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil { if err := tester.sync("original", nil, mode); err != nil {
@ -736,10 +733,12 @@ func testBoundedHeavyForkedSync(t *testing.T, protocol int, mode SyncMode) {
} }
assertOwnChain(t, tester, chainA.len()) assertOwnChain(t, tester, chainA.len())
tester.newPeer("heavy-rewriter", protocol, chainB)
// Synchronise with the second peer and ensure that the fork is rejected to being too old // Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor { if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor) t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
} }
tester.terminate()
} }
// Tests that an inactive downloader will not accept incoming block headers and // Tests that an inactive downloader will not accept incoming block headers and
@ -1007,7 +1006,6 @@ func testInvalidHeaderRollback(t *testing.T, protocol int, mode SyncMode) {
t.Parallel() t.Parallel()
tester := newTester() tester := newTester()
defer tester.terminate()
// Create a small enough block chain to download // Create a small enough block chain to download
targetBlocks := 3*fsHeaderSafetyNet + 256 + fsMinFullBlocks targetBlocks := 3*fsHeaderSafetyNet + 256 + fsMinFullBlocks
@ -1087,6 +1085,7 @@ func testInvalidHeaderRollback(t *testing.T, protocol int, mode SyncMode) {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, chain.len()) t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, chain.len())
} }
} }
tester.terminate()
} }
// Tests that a peer advertising a high TD doesn't get to stall the downloader // Tests that a peer advertising a high TD doesn't get to stall the downloader
@ -1102,13 +1101,13 @@ func testHighTDStarvationAttack(t *testing.T, protocol int, mode SyncMode) {
t.Parallel() t.Parallel()
tester := newTester() tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(1) chain := testChainBase.shorten(1)
tester.newPeer("attack", protocol, chain) tester.newPeer("attack", protocol, chain)
if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer { if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer) t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
} }
tester.terminate()
} }
// Tests that misbehaving peers are disconnected, whilst behaving ones are not. // Tests that misbehaving peers are disconnected, whilst behaving ones are not.

@ -40,4 +40,6 @@ var (
stateInMeter = metrics.NewRegisteredMeter("eth/downloader/states/in", nil) stateInMeter = metrics.NewRegisteredMeter("eth/downloader/states/in", nil)
stateDropMeter = metrics.NewRegisteredMeter("eth/downloader/states/drop", nil) stateDropMeter = metrics.NewRegisteredMeter("eth/downloader/states/drop", nil)
throttleCounter = metrics.NewRegisteredCounter("eth/downloader/throttle", nil)
) )

@ -117,9 +117,7 @@ func newPeerConnection(id string, version int, peer Peer, logger log.Logger) *pe
return &peerConnection{ return &peerConnection{
id: id, id: id,
lacking: make(map[common.Hash]struct{}), lacking: make(map[common.Hash]struct{}),
peer: peer, peer: peer,
version: version, version: version,
log: logger, log: logger,
} }
@ -173,12 +171,14 @@ func (p *peerConnection) FetchBodies(request *fetchRequest) error {
} }
p.blockStarted = time.Now() p.blockStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice // Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers)) hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers { for _, header := range request.Headers {
hashes = append(hashes, header.Hash()) hashes = append(hashes, header.Hash())
} }
go p.peer.RequestBodies(hashes) p.peer.RequestBodies(hashes)
}()
return nil return nil
} }
@ -195,12 +195,14 @@ func (p *peerConnection) FetchReceipts(request *fetchRequest) error {
} }
p.receiptStarted = time.Now() p.receiptStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice // Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers)) hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers { for _, header := range request.Headers {
hashes = append(hashes, header.Hash()) hashes = append(hashes, header.Hash())
} }
go p.peer.RequestReceipts(hashes) p.peer.RequestReceipts(hashes)
}()
return nil return nil
} }
@ -225,34 +227,34 @@ func (p *peerConnection) FetchNodeData(hashes []common.Hash) error {
// SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval // SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval
// requests. Its estimated header retrieval throughput is updated with that measured // requests. Its estimated header retrieval throughput is updated with that measured
// just now. // just now.
func (p *peerConnection) SetHeadersIdle(delivered int) { func (p *peerConnection) SetHeadersIdle(delivered int, deliveryTime time.Time) {
p.setIdle(p.headerStarted, delivered, &p.headerThroughput, &p.headerIdle) p.setIdle(deliveryTime.Sub(p.headerStarted), delivered, &p.headerThroughput, &p.headerIdle)
} }
// SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval // SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval
// requests. Its estimated body retrieval throughput is updated with that measured // requests. Its estimated body retrieval throughput is updated with that measured
// just now. // just now.
func (p *peerConnection) SetBodiesIdle(delivered int) { func (p *peerConnection) SetBodiesIdle(delivered int, deliveryTime time.Time) {
p.setIdle(p.blockStarted, delivered, &p.blockThroughput, &p.blockIdle) p.setIdle(deliveryTime.Sub(p.blockStarted), delivered, &p.blockThroughput, &p.blockIdle)
} }
// SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt // SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt
// retrieval requests. Its estimated receipt retrieval throughput is updated // retrieval requests. Its estimated receipt retrieval throughput is updated
// with that measured just now. // with that measured just now.
func (p *peerConnection) SetReceiptsIdle(delivered int) { func (p *peerConnection) SetReceiptsIdle(delivered int, deliveryTime time.Time) {
p.setIdle(p.receiptStarted, delivered, &p.receiptThroughput, &p.receiptIdle) p.setIdle(deliveryTime.Sub(p.receiptStarted), delivered, &p.receiptThroughput, &p.receiptIdle)
} }
// SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie // SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie
// data retrieval requests. Its estimated state retrieval throughput is updated // data retrieval requests. Its estimated state retrieval throughput is updated
// with that measured just now. // with that measured just now.
func (p *peerConnection) SetNodeDataIdle(delivered int) { func (p *peerConnection) SetNodeDataIdle(delivered int, deliveryTime time.Time) {
p.setIdle(p.stateStarted, delivered, &p.stateThroughput, &p.stateIdle) p.setIdle(deliveryTime.Sub(p.stateStarted), delivered, &p.stateThroughput, &p.stateIdle)
} }
// setIdle sets the peer to idle, allowing it to execute new retrieval requests. // setIdle sets the peer to idle, allowing it to execute new retrieval requests.
// Its estimated retrieval throughput is updated with that measured just now. // Its estimated retrieval throughput is updated with that measured just now.
func (p *peerConnection) setIdle(started time.Time, delivered int, throughput *float64, idle *int32) { func (p *peerConnection) setIdle(elapsed time.Duration, delivered int, throughput *float64, idle *int32) {
// Irrelevant of the scaling, make sure the peer ends up idle // Irrelevant of the scaling, make sure the peer ends up idle
defer atomic.StoreInt32(idle, 0) defer atomic.StoreInt32(idle, 0)
@ -265,7 +267,9 @@ func (p *peerConnection) setIdle(started time.Time, delivered int, throughput *f
return return
} }
// Otherwise update the throughput with a new measurement // Otherwise update the throughput with a new measurement
elapsed := time.Since(started) + 1 // +1 (ns) to ensure non-zero divisor if elapsed <= 0 {
elapsed = 1 // +1 (ns) to ensure non-zero divisor
}
measured := float64(delivered) / (float64(elapsed) / float64(time.Second)) measured := float64(delivered) / (float64(elapsed) / float64(time.Second))
*throughput = (1-measurementImpact)*(*throughput) + measurementImpact*measured *throughput = (1-measurementImpact)*(*throughput) + measurementImpact*measured
@ -523,22 +527,20 @@ func (ps *peerSet) idlePeers(minProtocol, maxProtocol int, idleCheck func(*peerC
defer ps.lock.RUnlock() defer ps.lock.RUnlock()
idle, total := make([]*peerConnection, 0, len(ps.peers)), 0 idle, total := make([]*peerConnection, 0, len(ps.peers)), 0
tps := make([]float64, 0, len(ps.peers))
for _, p := range ps.peers { for _, p := range ps.peers {
if p.version >= minProtocol && p.version <= maxProtocol { if p.version >= minProtocol && p.version <= maxProtocol {
if idleCheck(p) { if idleCheck(p) {
idle = append(idle, p) idle = append(idle, p)
tps = append(tps, throughput(p))
} }
total++ total++
} }
} }
for i := 0; i < len(idle); i++ { // And sort them
for j := i + 1; j < len(idle); j++ { sortPeers := &peerThroughputSort{idle, tps}
if throughput(idle[i]) < throughput(idle[j]) { sort.Sort(sortPeers)
idle[i], idle[j] = idle[j], idle[i] return sortPeers.p, total
}
}
}
return idle, total
} }
// medianRTT returns the median RTT of the peerset, considering only the tuning // medianRTT returns the median RTT of the peerset, considering only the tuning
@ -571,3 +573,24 @@ func (ps *peerSet) medianRTT() time.Duration {
} }
return median return median
} }
// peerThroughputSort implements the Sort interface, and allows for
// sorting a set of peers by their throughput
// The sorted data is with the _highest_ throughput first
type peerThroughputSort struct {
p []*peerConnection
tp []float64
}
func (ps *peerThroughputSort) Len() int {
return len(ps.p)
}
func (ps *peerThroughputSort) Less(i, j int) bool {
return ps.tp[i] > ps.tp[j]
}
func (ps *peerThroughputSort) Swap(i, j int) {
ps.p[i], ps.p[j] = ps.p[j], ps.p[i]
ps.tp[i], ps.tp[j] = ps.tp[j], ps.tp[i]
}

@ -0,0 +1,53 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of go-ethereum.
//
// go-ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// go-ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"sort"
"testing"
)
func TestPeerThroughputSorting(t *testing.T) {
a := &peerConnection{
id: "a",
headerThroughput: 1.25,
}
b := &peerConnection{
id: "b",
headerThroughput: 1.21,
}
c := &peerConnection{
id: "c",
headerThroughput: 1.23,
}
peers := []*peerConnection{a, b, c}
tps := []float64{a.headerThroughput,
b.headerThroughput, c.headerThroughput}
sortPeers := &peerThroughputSort{peers, tps}
sort.Sort(sortPeers)
if got, exp := sortPeers.p[0].id, "a"; got != exp {
t.Errorf("sort fail, got %v exp %v", got, exp)
}
if got, exp := sortPeers.p[1].id, "c"; got != exp {
t.Errorf("sort fail, got %v exp %v", got, exp)
}
if got, exp := sortPeers.p[2].id, "b"; got != exp {
t.Errorf("sort fail, got %v exp %v", got, exp)
}
}

@ -23,6 +23,7 @@ import (
"errors" "errors"
"fmt" "fmt"
"sync" "sync"
"sync/atomic"
"time" "time"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
@ -32,6 +33,11 @@ import (
"github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/metrics"
) )
const (
bodyType = uint(0)
receiptType = uint(1)
)
var ( var (
blockCacheItems = 8192 // Maximum number of blocks to cache before throttling the download blockCacheItems = 8192 // Maximum number of blocks to cache before throttling the download
blockCacheMemory = 64 * 1024 * 1024 // Maximum amount of memory to use for block caching blockCacheMemory = 64 * 1024 * 1024 // Maximum amount of memory to use for block caching
@ -54,8 +60,7 @@ type fetchRequest struct {
// fetchResult is a struct collecting partial results from data fetchers until // fetchResult is a struct collecting partial results from data fetchers until
// all outstanding pieces complete and the result as a whole can be processed. // all outstanding pieces complete and the result as a whole can be processed.
type fetchResult struct { type fetchResult struct {
Pending int // Number of data fetches still pending pending int32 // Flag telling what deliveries are outstanding
Hash common.Hash // Hash of the header to prevent recalculating
Header *types.Header Header *types.Header
Uncles []*types.Header Uncles []*types.Header
@ -63,6 +68,44 @@ type fetchResult struct {
Receipts types.Receipts Receipts types.Receipts
} }
func newFetchResult(header *types.Header, fastSync bool) *fetchResult {
item := &fetchResult{
Header: header,
}
if !header.EmptyBody() {
item.pending |= (1 << bodyType)
}
if fastSync && !header.EmptyReceipts() {
item.pending |= (1 << receiptType)
}
return item
}
// SetBodyDone flags the body as finished.
func (f *fetchResult) SetBodyDone() {
if v := atomic.LoadInt32(&f.pending); (v & (1 << bodyType)) != 0 {
atomic.AddInt32(&f.pending, -1)
}
}
// AllDone checks if item is done.
func (f *fetchResult) AllDone() bool {
return atomic.LoadInt32(&f.pending) == 0
}
// SetReceiptsDone flags the receipts as finished.
func (f *fetchResult) SetReceiptsDone() {
if v := atomic.LoadInt32(&f.pending); (v & (1 << receiptType)) != 0 {
atomic.AddInt32(&f.pending, -2)
}
}
// Done checks if the given type is done already
func (f *fetchResult) Done(kind uint) bool {
v := atomic.LoadInt32(&f.pending)
return v&(1<<kind) == 0
}
// queue represents hashes that are either need fetching or are being fetched // queue represents hashes that are either need fetching or are being fetched
type queue struct { type queue struct {
mode SyncMode // Synchronisation mode to decide on the block parts to schedule for fetching mode SyncMode // Synchronisation mode to decide on the block parts to schedule for fetching
@ -82,44 +125,37 @@ type queue struct {
blockTaskPool map[common.Hash]*types.Header // [eth/62] Pending block (body) retrieval tasks, mapping hashes to headers blockTaskPool map[common.Hash]*types.Header // [eth/62] Pending block (body) retrieval tasks, mapping hashes to headers
blockTaskQueue *prque.Prque // [eth/62] Priority queue of the headers to fetch the blocks (bodies) for blockTaskQueue *prque.Prque // [eth/62] Priority queue of the headers to fetch the blocks (bodies) for
blockPendPool map[string]*fetchRequest // [eth/62] Currently pending block (body) retrieval operations blockPendPool map[string]*fetchRequest // [eth/62] Currently pending block (body) retrieval operations
blockDonePool map[common.Hash]struct{} // [eth/62] Set of the completed block (body) fetches
receiptTaskPool map[common.Hash]*types.Header // [eth/63] Pending receipt retrieval tasks, mapping hashes to headers receiptTaskPool map[common.Hash]*types.Header // [eth/63] Pending receipt retrieval tasks, mapping hashes to headers
receiptTaskQueue *prque.Prque // [eth/63] Priority queue of the headers to fetch the receipts for receiptTaskQueue *prque.Prque // [eth/63] Priority queue of the headers to fetch the receipts for
receiptPendPool map[string]*fetchRequest // [eth/63] Currently pending receipt retrieval operations receiptPendPool map[string]*fetchRequest // [eth/63] Currently pending receipt retrieval operations
receiptDonePool map[common.Hash]struct{} // [eth/63] Set of the completed receipt fetches
resultCache []*fetchResult // Downloaded but not yet delivered fetch results resultCache *resultStore // Downloaded but not yet delivered fetch results
resultOffset uint64 // Offset of the first cached fetch result in the block chain
resultSize common.StorageSize // Approximate size of a block (exponential moving average) resultSize common.StorageSize // Approximate size of a block (exponential moving average)
lock *sync.Mutex lock *sync.RWMutex
active *sync.Cond active *sync.Cond
closed bool closed bool
lastStatLog time.Time
} }
// newQueue creates a new download queue for scheduling block retrieval. // newQueue creates a new download queue for scheduling block retrieval.
func newQueue() *queue { func newQueue(blockCacheLimit int) *queue {
lock := new(sync.Mutex) lock := new(sync.RWMutex)
return &queue{ q := &queue{
headerPendPool: make(map[string]*fetchRequest),
headerContCh: make(chan bool), headerContCh: make(chan bool),
blockTaskPool: make(map[common.Hash]*types.Header),
blockTaskQueue: prque.New(nil), blockTaskQueue: prque.New(nil),
blockPendPool: make(map[string]*fetchRequest),
blockDonePool: make(map[common.Hash]struct{}),
receiptTaskPool: make(map[common.Hash]*types.Header),
receiptTaskQueue: prque.New(nil), receiptTaskQueue: prque.New(nil),
receiptPendPool: make(map[string]*fetchRequest),
receiptDonePool: make(map[common.Hash]struct{}),
resultCache: make([]*fetchResult, blockCacheItems),
active: sync.NewCond(lock), active: sync.NewCond(lock),
lock: lock, lock: lock,
} }
q.Reset(blockCacheLimit)
return q
} }
// Reset clears out the queue contents. // Reset clears out the queue contents.
func (q *queue) Reset() { func (q *queue) Reset(blockCacheLimit int) {
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
@ -132,15 +168,12 @@ func (q *queue) Reset() {
q.blockTaskPool = make(map[common.Hash]*types.Header) q.blockTaskPool = make(map[common.Hash]*types.Header)
q.blockTaskQueue.Reset() q.blockTaskQueue.Reset()
q.blockPendPool = make(map[string]*fetchRequest) q.blockPendPool = make(map[string]*fetchRequest)
q.blockDonePool = make(map[common.Hash]struct{})
q.receiptTaskPool = make(map[common.Hash]*types.Header) q.receiptTaskPool = make(map[common.Hash]*types.Header)
q.receiptTaskQueue.Reset() q.receiptTaskQueue.Reset()
q.receiptPendPool = make(map[string]*fetchRequest) q.receiptPendPool = make(map[string]*fetchRequest)
q.receiptDonePool = make(map[common.Hash]struct{})
q.resultCache = make([]*fetchResult, blockCacheItems) q.resultCache = newResultStore(blockCacheLimit)
q.resultOffset = 0
} }
// Close marks the end of the sync, unblocking Results. // Close marks the end of the sync, unblocking Results.
@ -148,8 +181,8 @@ func (q *queue) Reset() {
func (q *queue) Close() { func (q *queue) Close() {
q.lock.Lock() q.lock.Lock()
q.closed = true q.closed = true
q.active.Signal()
q.lock.Unlock() q.lock.Unlock()
q.active.Broadcast()
} }
// PendingHeaders retrieves the number of header requests pending for retrieval. // PendingHeaders retrieves the number of header requests pending for retrieval.
@ -210,58 +243,8 @@ func (q *queue) Idle() bool {
queued := q.blockTaskQueue.Size() + q.receiptTaskQueue.Size() queued := q.blockTaskQueue.Size() + q.receiptTaskQueue.Size()
pending := len(q.blockPendPool) + len(q.receiptPendPool) pending := len(q.blockPendPool) + len(q.receiptPendPool)
cached := len(q.blockDonePool) + len(q.receiptDonePool)
return (queued + pending + cached) == 0
}
// ShouldThrottleBlocks checks if the download should be throttled (active block (body) return (queued + pending) == 0
// fetches exceed block cache).
func (q *queue) ShouldThrottleBlocks() bool {
q.lock.Lock()
defer q.lock.Unlock()
return q.resultSlots(q.blockPendPool, q.blockDonePool) <= 0
}
// ShouldThrottleReceipts checks if the download should be throttled (active receipt
// fetches exceed block cache).
func (q *queue) ShouldThrottleReceipts() bool {
q.lock.Lock()
defer q.lock.Unlock()
return q.resultSlots(q.receiptPendPool, q.receiptDonePool) <= 0
}
// resultSlots calculates the number of results slots available for requests
// whilst adhering to both the item and the memory limits of the result cache.
func (q *queue) resultSlots(pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}) int {
// Calculate the maximum length capped by the memory limit
limit := len(q.resultCache)
if common.StorageSize(len(q.resultCache))*q.resultSize > common.StorageSize(blockCacheMemory) {
limit = int((common.StorageSize(blockCacheMemory) + q.resultSize - 1) / q.resultSize)
}
// Calculate the number of slots already finished
finished := 0
for _, result := range q.resultCache[:limit] {
if result == nil {
break
}
if _, ok := donePool[result.Hash]; ok {
finished++
}
}
// Calculate the number of slots currently downloading
pending := 0
for _, request := range pendPool {
for _, header := range request.Headers {
if header.Number.Uint64() < q.resultOffset+uint64(limit) {
pending++
}
}
}
// Return the free slots to distribute
return limit - finished - pending
} }
// ScheduleSkeleton adds a batch of header retrieval tasks to the queue to fill // ScheduleSkeleton adds a batch of header retrieval tasks to the queue to fill
@ -323,22 +306,23 @@ func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header {
break break
} }
// Make sure no duplicate requests are executed // Make sure no duplicate requests are executed
// We cannot skip this, even if the block is empty, since this is
// what triggers the fetchResult creation.
if _, ok := q.blockTaskPool[hash]; ok { if _, ok := q.blockTaskPool[hash]; ok {
log.Warn("Header already scheduled for block fetch", "number", header.Number, "hash", hash) log.Warn("Header already scheduled for block fetch", "number", header.Number, "hash", hash)
continue } else {
q.blockTaskPool[hash] = header
q.blockTaskQueue.Push(header, -int64(header.Number.Uint64()))
} }
// Queue for receipt retrieval
if q.mode == FastSync && !header.EmptyReceipts() {
if _, ok := q.receiptTaskPool[hash]; ok { if _, ok := q.receiptTaskPool[hash]; ok {
log.Warn("Header already scheduled for receipt fetch", "number", header.Number, "hash", hash) log.Warn("Header already scheduled for receipt fetch", "number", header.Number, "hash", hash)
continue } else {
}
// Queue the header for content retrieval
q.blockTaskPool[hash] = header
q.blockTaskQueue.Push(header, -int64(header.Number.Uint64()))
if q.mode == FastSync {
q.receiptTaskPool[hash] = header q.receiptTaskPool[hash] = header
q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64())) q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64()))
} }
}
inserts = append(inserts, header) inserts = append(inserts, header)
q.headerHead = hash q.headerHead = hash
from++ from++
@ -347,43 +331,37 @@ func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header {
} }
// Results retrieves and permanently removes a batch of fetch results from // Results retrieves and permanently removes a batch of fetch results from
// the cache. The result slice will be empty if the queue has been closed. // the cache. the result slice will be empty if the queue has been closed.
// Results can be called concurrently with Deliver and Schedule,
// but assumes that there are not two simultaneous callers to Results
func (q *queue) Results(block bool) []*fetchResult { func (q *queue) Results(block bool) []*fetchResult {
q.lock.Lock() // Abort early if there are no items and non-blocking requested
defer q.lock.Unlock() if !block && !q.resultCache.HasCompletedItems() {
// Count the number of items available for processing
nproc := q.countProcessableItems()
for nproc == 0 && !q.closed {
if !block {
return nil return nil
} }
q.active.Wait() closed := false
nproc = q.countProcessableItems() for !closed && !q.resultCache.HasCompletedItems() {
// In order to wait on 'active', we need to obtain the lock.
// That may take a while, if someone is delivering at the same
// time, so after obtaining the lock, we check again if there
// are any results to fetch.
// Also, in-between we ask for the lock and the lock is obtained,
// someone can have closed the queue. In that case, we should
// return the available results and stop blocking
q.lock.Lock()
if q.resultCache.HasCompletedItems() || q.closed {
q.lock.Unlock()
break
} }
// Since we have a batch limit, don't pull more into "dangling" memory // No items available, and not closed
if nproc > maxResultsProcess { q.active.Wait()
nproc = maxResultsProcess closed = q.closed
q.lock.Unlock()
} }
results := make([]*fetchResult, nproc) // Regardless if closed or not, we can still deliver whatever we have
copy(results, q.resultCache[:nproc]) results := q.resultCache.GetCompleted(maxResultsProcess)
if len(results) > 0 {
// Mark results as done before dropping them from the cache.
for _, result := range results { for _, result := range results {
hash := result.Header.Hash()
delete(q.blockDonePool, hash)
delete(q.receiptDonePool, hash)
}
// Delete the results from the cache and clear the tail.
copy(q.resultCache, q.resultCache[nproc:])
for i := len(q.resultCache) - nproc; i < len(q.resultCache); i++ {
q.resultCache[i] = nil
}
// Advance the expected block number of the first cache entry.
q.resultOffset += uint64(nproc)
// Recalculate the result item weights to prevent memory exhaustion // Recalculate the result item weights to prevent memory exhaustion
for _, result := range results {
size := result.Header.Size() size := result.Header.Size()
for _, uncle := range result.Uncles { for _, uncle := range result.Uncles {
size += uncle.Size() size += uncle.Size()
@ -394,20 +372,37 @@ func (q *queue) Results(block bool) []*fetchResult {
for _, tx := range result.Transactions { for _, tx := range result.Transactions {
size += tx.Size() size += tx.Size()
} }
q.resultSize = common.StorageSize(blockCacheSizeWeight)*size + (1-common.StorageSize(blockCacheSizeWeight))*q.resultSize q.resultSize = common.StorageSize(blockCacheSizeWeight)*size +
(1-common.StorageSize(blockCacheSizeWeight))*q.resultSize
} }
// Using the newly calibrated resultsize, figure out the new throttle limit
// on the result cache
throttleThreshold := uint64((common.StorageSize(blockCacheMemory) + q.resultSize - 1) / q.resultSize)
throttleThreshold = q.resultCache.SetThrottleThreshold(throttleThreshold)
// Log some info at certain times
if time.Since(q.lastStatLog) > 10*time.Second {
q.lastStatLog = time.Now()
info := q.Stats()
info = append(info, "throttle", throttleThreshold)
log.Info("Downloader queue stats", info...)
} }
return results return results
} }
// countProcessableItems counts the processable items. func (q *queue) Stats() []interface{} {
func (q *queue) countProcessableItems() int { q.lock.RLock()
for i, result := range q.resultCache { defer q.lock.RUnlock()
if result == nil || result.Pending > 0 {
return i return q.stats()
} }
func (q *queue) stats() []interface{} {
return []interface{}{
"receiptTasks", q.receiptTaskQueue.Size(),
"blockTasks", q.blockTaskQueue.Size(),
"itemSize", q.resultSize,
} }
return len(q.resultCache)
} }
// ReserveHeaders reserves a set of headers for the given peer, skipping any // ReserveHeaders reserves a set of headers for the given peer, skipping any
@ -453,27 +448,21 @@ func (q *queue) ReserveHeaders(p *peerConnection, count int) *fetchRequest {
// ReserveBodies reserves a set of body fetches for the given peer, skipping any // ReserveBodies reserves a set of body fetches for the given peer, skipping any
// previously failed downloads. Beside the next batch of needed fetches, it also // previously failed downloads. Beside the next batch of needed fetches, it also
// returns a flag whether empty blocks were queued requiring processing. // returns a flag whether empty blocks were queued requiring processing.
func (q *queue) ReserveBodies(p *peerConnection, count int) (*fetchRequest, bool, error) { func (q *queue) ReserveBodies(p *peerConnection, count int) (*fetchRequest, bool, bool) {
isNoop := func(header *types.Header) bool {
return header.TxHash == types.EmptyRootHash && header.UncleHash == types.EmptyUncleHash
}
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, isNoop) return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, bodyType)
} }
// ReserveReceipts reserves a set of receipt fetches for the given peer, skipping // ReserveReceipts reserves a set of receipt fetches for the given peer, skipping
// any previously failed downloads. Beside the next batch of needed fetches, it // any previously failed downloads. Beside the next batch of needed fetches, it
// also returns a flag whether empty receipts were queued requiring importing. // also returns a flag whether empty receipts were queued requiring importing.
func (q *queue) ReserveReceipts(p *peerConnection, count int) (*fetchRequest, bool, error) { func (q *queue) ReserveReceipts(p *peerConnection, count int) (*fetchRequest, bool, bool) {
isNoop := func(header *types.Header) bool {
return header.ReceiptHash == types.EmptyRootHash
}
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, isNoop) return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, receiptType)
} }
// reserveHeaders reserves a set of data download operations for a given peer, // reserveHeaders reserves a set of data download operations for a given peer,
@ -483,57 +472,71 @@ func (q *queue) ReserveReceipts(p *peerConnection, count int) (*fetchRequest, bo
// Note, this method expects the queue lock to be already held for writing. The // Note, this method expects the queue lock to be already held for writing. The
// reason the lock is not obtained in here is because the parameters already need // reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway. // to access the queue, so they already need a lock anyway.
//
// Returns:
// item - the fetchRequest
// progress - whether any progress was made
// throttle - if the caller should throttle for a while
func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque, func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque,
pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, isNoop func(*types.Header) bool) (*fetchRequest, bool, error) { pendPool map[string]*fetchRequest, kind uint) (*fetchRequest, bool, bool) {
// Short circuit if the pool has been depleted, or if the peer's already // Short circuit if the pool has been depleted, or if the peer's already
// downloading something (sanity check not to corrupt state) // downloading something (sanity check not to corrupt state)
if taskQueue.Empty() { if taskQueue.Empty() {
return nil, false, nil return nil, false, true
} }
if _, ok := pendPool[p.id]; ok { if _, ok := pendPool[p.id]; ok {
return nil, false, nil return nil, false, false
} }
// Calculate an upper limit on the items we might fetch (i.e. throttling)
space := q.resultSlots(pendPool, donePool)
// Retrieve a batch of tasks, skipping previously failed ones // Retrieve a batch of tasks, skipping previously failed ones
send := make([]*types.Header, 0, count) send := make([]*types.Header, 0, count)
skip := make([]*types.Header, 0) skip := make([]*types.Header, 0)
progress := false progress := false
for proc := 0; proc < space && len(send) < count && !taskQueue.Empty(); proc++ { throttled := false
header := taskQueue.PopItem().(*types.Header) for proc := 0; len(send) < count && !taskQueue.Empty(); proc++ {
hash := header.Hash() // the task queue will pop items in order, so the highest prio block
// is also the lowest block number.
// If we're the first to request this task, initialise the result container h, _ := taskQueue.Peek()
index := int(header.Number.Int64() - int64(q.resultOffset)) header := h.(*types.Header)
if index >= len(q.resultCache) || index < 0 { // we can ask the resultcache if this header is within the
common.Report("index allocation went beyond available resultCache space") // "prioritized" segment of blocks. If it is not, we need to throttle
return nil, false, fmt.Errorf("%w: index allocation went beyond available resultCache space", errInvalidChain)
} stale, throttle, item, err := q.resultCache.AddFetch(header, q.mode == FastSync)
if q.resultCache[index] == nil { if stale {
components := 1 // Don't put back in the task queue, this item has already been
if q.mode == FastSync { // delivered upstream
components = 2 taskQueue.PopItem()
progress = true
delete(taskPool, header.Hash())
proc = proc - 1
log.Error("Fetch reservation already delivered", "number", header.Number.Uint64())
continue
} }
q.resultCache[index] = &fetchResult{ if throttle {
Pending: components, // There are no resultslots available. Leave it in the task queue
Hash: hash, // However, if there are any left as 'skipped', we should not tell
Header: header, // the caller to throttle, since we still want some other
// peer to fetch those for us
throttled = len(skip) == 0
break
} }
if err != nil {
// this most definitely should _not_ happen
log.Warn("Failed to reserve headers", "err", err)
// There are no resultslots available. Leave it in the task queue
break
} }
// If this fetch task is a noop, skip this fetch operation if item.Done(kind) {
if isNoop(header) { // If it's a noop, we can skip this task
donePool[hash] = struct{}{} delete(taskPool, header.Hash())
delete(taskPool, hash) taskQueue.PopItem()
proc = proc - 1
space, proc = space-1, proc-1
q.resultCache[index].Pending--
progress = true progress = true
continue continue
} }
// Remove it from the task queue
taskQueue.PopItem()
// Otherwise unless the peer is known not to have the data, add to the retrieve list // Otherwise unless the peer is known not to have the data, add to the retrieve list
if p.Lacks(hash) { if p.Lacks(header.Hash()) {
skip = append(skip, header) skip = append(skip, header)
} else { } else {
send = append(send, header) send = append(send, header)
@ -543,13 +546,13 @@ func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common
for _, header := range skip { for _, header := range skip {
taskQueue.Push(header, -int64(header.Number.Uint64())) taskQueue.Push(header, -int64(header.Number.Uint64()))
} }
if progress { if q.resultCache.HasCompletedItems() {
// Wake Results, resultCache was modified // Wake Results, resultCache was modified
q.active.Signal() q.active.Signal()
} }
// Assemble and return the block download request // Assemble and return the block download request
if len(send) == 0 { if len(send) == 0 {
return nil, progress, nil return nil, progress, throttled
} }
request := &fetchRequest{ request := &fetchRequest{
Peer: p, Peer: p,
@ -557,8 +560,7 @@ func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common
Time: time.Now(), Time: time.Now(),
} }
pendPool[p.id] = request pendPool[p.id] = request
return request, progress, throttled
return request, progress, nil
} }
// CancelHeaders aborts a fetch request, returning all pending skeleton indexes to the queue. // CancelHeaders aborts a fetch request, returning all pending skeleton indexes to the queue.
@ -768,16 +770,23 @@ func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh
func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) (int, error) { func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) (int, error) {
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
validate := func(index int, header *types.Header) error {
reconstruct := func(header *types.Header, index int, result *fetchResult) error { if types.DeriveSha(types.Transactions(txLists[index])) != header.TxHash {
if types.DeriveSha(types.Transactions(txLists[index])) != header.TxHash || types.CalcUncleHash(uncleLists[index]) != header.UncleHash { return errInvalidBody
}
if types.CalcUncleHash(uncleLists[index]) != header.UncleHash {
return errInvalidBody return errInvalidBody
} }
return nil
}
reconstruct := func(index int, result *fetchResult) {
result.Transactions = txLists[index] result.Transactions = txLists[index]
result.Uncles = uncleLists[index] result.Uncles = uncleLists[index]
return nil result.SetBodyDone()
} }
return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, bodyReqTimer, len(txLists), reconstruct) return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool,
bodyReqTimer, len(txLists), validate, reconstruct)
} }
// DeliverReceipts injects a receipt retrieval response into the results queue. // DeliverReceipts injects a receipt retrieval response into the results queue.
@ -786,25 +795,29 @@ func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLi
func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int, error) { func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int, error) {
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
validate := func(index int, header *types.Header) error {
reconstruct := func(header *types.Header, index int, result *fetchResult) error {
if types.DeriveSha(types.Receipts(receiptList[index])) != header.ReceiptHash { if types.DeriveSha(types.Receipts(receiptList[index])) != header.ReceiptHash {
return errInvalidReceipt return errInvalidReceipt
} }
result.Receipts = receiptList[index]
return nil return nil
} }
return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, receiptReqTimer, len(receiptList), reconstruct) reconstruct := func(index int, result *fetchResult) {
result.Receipts = receiptList[index]
result.SetReceiptsDone()
}
return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool,
receiptReqTimer, len(receiptList), validate, reconstruct)
} }
// deliver injects a data retrieval response into the results queue. // deliver injects a data retrieval response into the results queue.
// //
// Note, this method expects the queue lock to be already held for writing. The // Note, this method expects the queue lock to be already held for writing. The
// reason the lock is not obtained in here is because the parameters already need // reason this lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway. // to access the queue, so they already need a lock anyway.
func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque, func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header,
pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, reqTimer metrics.Timer, taskQueue *prque.Prque, pendPool map[string]*fetchRequest, reqTimer metrics.Timer,
results int, reconstruct func(header *types.Header, index int, result *fetchResult) error) (int, error) { results int, validate func(index int, header *types.Header) error,
reconstruct func(index int, result *fetchResult)) (int, error) {
// Short circuit if the data was never requested // Short circuit if the data was never requested
request := pendPool[id] request := pendPool[id]
@ -824,52 +837,53 @@ func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header, taskQ
var ( var (
accepted int accepted int
failure error failure error
useful bool i int
hashes []common.Hash
) )
for i, header := range request.Headers { for _, header := range request.Headers {
// Short circuit assembly if no more fetch results are found // Short circuit assembly if no more fetch results are found
if i >= results { if i >= results {
break break
} }
// Reconstruct the next result if contents match up // Validate the fields
index := int(header.Number.Int64() - int64(q.resultOffset)) if err := validate(i, header); err != nil {
if index >= len(q.resultCache) || index < 0 || q.resultCache[index] == nil {
failure = errInvalidChain
break
}
if err := reconstruct(header, i, q.resultCache[index]); err != nil {
failure = err failure = err
break break
} }
hash := header.Hash() hashes = append(hashes, header.Hash())
i++
donePool[hash] = struct{}{} }
q.resultCache[index].Pending--
useful = true
accepted++
for _, header := range request.Headers[:i] {
if res, stale, err := q.resultCache.GetDeliverySlot(header.Number.Uint64()); err == nil {
reconstruct(accepted, res)
} else {
// else: betweeen here and above, some other peer filled this result,
// or it was indeed a no-op. This should not happen, but if it does it's
// not something to panic about
log.Error("Delivery stale", "stale", stale, "number", header.Number.Uint64(), "err", err)
failure = errStaleDelivery
}
// Clean up a successful fetch // Clean up a successful fetch
request.Headers[i] = nil delete(taskPool, hashes[accepted])
delete(taskPool, hash) accepted++
} }
// Return all failed or missing fetches to the queue // Return all failed or missing fetches to the queue
for _, header := range request.Headers { for _, header := range request.Headers[accepted:] {
if header != nil {
taskQueue.Push(header, -int64(header.Number.Uint64())) taskQueue.Push(header, -int64(header.Number.Uint64()))
} }
}
// Wake up Results // Wake up Results
if accepted > 0 { if accepted > 0 {
q.active.Signal() q.active.Signal()
} }
// If none of the data was good, it's a stale delivery
if failure == nil { if failure == nil {
return accepted, nil return accepted, nil
} }
// If none of the data was good, it's a stale delivery
if errors.Is(failure, errInvalidChain) { if errors.Is(failure, errInvalidChain) {
return accepted, failure return accepted, failure
} }
if useful { if accepted > 0 {
return accepted, fmt.Errorf("partial failure: %v", failure) return accepted, fmt.Errorf("partial failure: %v", failure)
} }
return accepted, fmt.Errorf("%w: %v", failure, errStaleDelivery) return accepted, fmt.Errorf("%w: %v", failure, errStaleDelivery)
@ -882,8 +896,6 @@ func (q *queue) Prepare(offset uint64, mode SyncMode) {
defer q.lock.Unlock() defer q.lock.Unlock()
// Prepare the queue for sync results // Prepare the queue for sync results
if q.resultOffset < offset { q.resultCache.Prepare(offset)
q.resultOffset = offset
}
q.mode = mode q.mode = mode
} }

@ -0,0 +1,426 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"fmt"
"math/big"
"math/rand"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
)
var (
testdb = rawdb.NewMemoryDatabase()
genesis = core.GenesisBlockForTesting(testdb, testAddress, big.NewInt(1000000000))
)
// makeChain creates a chain of n blocks starting at and including parent.
// the returned hash chain is ordered head->parent. In addition, every 3rd block
// contains a transaction and every 5th an uncle to allow testing correct block
// reassembly.
func makeChain(n int, seed byte, parent *types.Block, empty bool) ([]*types.Block, []types.Receipts) {
blocks, receipts := core.GenerateChain(params.TestChainConfig, parent, ethash.NewFaker(), testdb, n, func(i int, block *core.BlockGen) {
block.SetCoinbase(common.Address{seed})
// Add one tx to every secondblock
if !empty && i%2 == 0 {
signer := types.MakeSigner(params.TestChainConfig, block.Number())
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, nil, nil), signer, testKey)
if err != nil {
panic(err)
}
block.AddTx(tx)
}
})
return blocks, receipts
}
type chainData struct {
blocks []*types.Block
offset int
}
var chain *chainData
var emptyChain *chainData
func init() {
// Create a chain of blocks to import
targetBlocks := 128
blocks, _ := makeChain(targetBlocks, 0, genesis, false)
chain = &chainData{blocks, 0}
blocks, _ = makeChain(targetBlocks, 0, genesis, true)
emptyChain = &chainData{blocks, 0}
}
func (chain *chainData) headers() []*types.Header {
hdrs := make([]*types.Header, len(chain.blocks))
for i, b := range chain.blocks {
hdrs[i] = b.Header()
}
return hdrs
}
func (chain *chainData) Len() int {
return len(chain.blocks)
}
func dummyPeer(id string) *peerConnection {
p := &peerConnection{
id: id,
lacking: make(map[common.Hash]struct{}),
}
return p
}
func TestBasics(t *testing.T) {
q := newQueue(10)
if !q.Idle() {
t.Errorf("new queue should be idle")
}
q.Prepare(1, FastSync)
if res := q.Results(false); len(res) != 0 {
t.Fatal("new queue should have 0 results")
}
// Schedule a batch of headers
q.Schedule(chain.headers(), 1)
if q.Idle() {
t.Errorf("queue should not be idle")
}
if got, exp := q.PendingBlocks(), chain.Len(); got != exp {
t.Errorf("wrong pending block count, got %d, exp %d", got, exp)
}
// Only non-empty receipts get added to task-queue
if got, exp := q.PendingReceipts(), 64; got != exp {
t.Errorf("wrong pending receipt count, got %d, exp %d", got, exp)
}
// Items are now queued for downloading, next step is that we tell the
// queue that a certain peer will deliver them for us
{
peer := dummyPeer("peer-1")
fetchReq, _, throttle := q.ReserveBodies(peer, 50)
if !throttle {
// queue size is only 10, so throttling should occur
t.Fatal("should throttle")
}
// But we should still get the first things to fetch
if got, exp := len(fetchReq.Headers), 5; got != exp {
t.Fatalf("expected %d requests, got %d", exp, got)
}
if got, exp := fetchReq.Headers[0].Number.Uint64(), uint64(1); got != exp {
t.Fatalf("expected header %d, got %d", exp, got)
}
}
{
peer := dummyPeer("peer-2")
fetchReq, _, throttle := q.ReserveBodies(peer, 50)
// The second peer should hit throttling
if !throttle {
t.Fatalf("should not throttle")
}
// And not get any fetches at all, since it was throttled to begin with
if fetchReq != nil {
t.Fatalf("should have no fetches, got %d", len(fetchReq.Headers))
}
}
//fmt.Printf("blockTaskQueue len: %d\n", q.blockTaskQueue.Size())
//fmt.Printf("receiptTaskQueue len: %d\n", q.receiptTaskQueue.Size())
{
// The receipt delivering peer should not be affected
// by the throttling of body deliveries
peer := dummyPeer("peer-3")
fetchReq, _, throttle := q.ReserveReceipts(peer, 50)
if !throttle {
// queue size is only 10, so throttling should occur
t.Fatal("should throttle")
}
// But we should still get the first things to fetch
if got, exp := len(fetchReq.Headers), 5; got != exp {
t.Fatalf("expected %d requests, got %d", exp, got)
}
if got, exp := fetchReq.Headers[0].Number.Uint64(), uint64(1); got != exp {
t.Fatalf("expected header %d, got %d", exp, got)
}
}
//fmt.Printf("blockTaskQueue len: %d\n", q.blockTaskQueue.Size())
//fmt.Printf("receiptTaskQueue len: %d\n", q.receiptTaskQueue.Size())
//fmt.Printf("processable: %d\n", q.resultCache.countCompleted())
}
func TestEmptyBlocks(t *testing.T) {
q := newQueue(10)
q.Prepare(1, FastSync)
// Schedule a batch of headers
q.Schedule(emptyChain.headers(), 1)
if q.Idle() {
t.Errorf("queue should not be idle")
}
if got, exp := q.PendingBlocks(), len(emptyChain.blocks); got != exp {
t.Errorf("wrong pending block count, got %d, exp %d", got, exp)
}
if got, exp := q.PendingReceipts(), 0; got != exp {
t.Errorf("wrong pending receipt count, got %d, exp %d", got, exp)
}
// They won't be processable, because the fetchresults haven't been
// created yet
if got, exp := q.resultCache.countCompleted(), 0; got != exp {
t.Errorf("wrong processable count, got %d, exp %d", got, exp)
}
// Items are now queued for downloading, next step is that we tell the
// queue that a certain peer will deliver them for us
// That should trigger all of them to suddenly become 'done'
{
// Reserve blocks
peer := dummyPeer("peer-1")
fetchReq, _, _ := q.ReserveBodies(peer, 50)
// there should be nothing to fetch, blocks are empty
if fetchReq != nil {
t.Fatal("there should be no body fetch tasks remaining")
}
}
if q.blockTaskQueue.Size() != len(emptyChain.blocks)-10 {
t.Errorf("expected block task queue to be 0, got %d", q.blockTaskQueue.Size())
}
if q.receiptTaskQueue.Size() != 0 {
t.Errorf("expected receipt task queue to be 0, got %d", q.receiptTaskQueue.Size())
}
//fmt.Printf("receiptTaskQueue len: %d\n", q.receiptTaskQueue.Size())
{
peer := dummyPeer("peer-3")
fetchReq, _, _ := q.ReserveReceipts(peer, 50)
// there should be nothing to fetch, blocks are empty
if fetchReq != nil {
t.Fatal("there should be no body fetch tasks remaining")
}
}
if got, exp := q.resultCache.countCompleted(), 10; got != exp {
t.Errorf("wrong processable count, got %d, exp %d", got, exp)
}
}
// XTestDelivery does some more extensive testing of events that happen,
// blocks that become known and peers that make reservations and deliveries.
// disabled since it's not really a unit-test, but can be executed to test
// some more advanced scenarios
func XTestDelivery(t *testing.T) {
// the outside network, holding blocks
blo, rec := makeChain(128, 0, genesis, false)
world := newNetwork()
world.receipts = rec
world.chain = blo
world.progress(10)
if false {
log.Root().SetHandler(log.StdoutHandler)
}
q := newQueue(10)
var wg sync.WaitGroup
q.Prepare(1, FastSync)
wg.Add(1)
go func() {
// deliver headers
defer wg.Done()
c := 1
for {
//fmt.Printf("getting headers from %d\n", c)
hdrs := world.headers(c)
l := len(hdrs)
//fmt.Printf("scheduling %d headers, first %d last %d\n",
// l, hdrs[0].Number.Uint64(), hdrs[len(hdrs)-1].Number.Uint64())
q.Schedule(hdrs, uint64(c))
c += l
}
}()
wg.Add(1)
go func() {
// collect results
defer wg.Done()
tot := 0
for {
res := q.Results(true)
tot += len(res)
fmt.Printf("got %d results, %d tot\n", len(res), tot)
// Now we can forget about these
world.forget(res[len(res)-1].Header.Number.Uint64())
}
}()
wg.Add(1)
go func() {
defer wg.Done()
// reserve body fetch
i := 4
for {
peer := dummyPeer(fmt.Sprintf("peer-%d", i))
f, _, _ := q.ReserveBodies(peer, rand.Intn(30))
if f != nil {
var emptyList []*types.Header
var txs [][]*types.Transaction
var uncles [][]*types.Header
numToSkip := rand.Intn(len(f.Headers))
for _, hdr := range f.Headers[0 : len(f.Headers)-numToSkip] {
txs = append(txs, world.getTransactions(hdr.Number.Uint64()))
uncles = append(uncles, emptyList)
}
time.Sleep(100 * time.Millisecond)
_, err := q.DeliverBodies(peer.id, txs, uncles)
if err != nil {
fmt.Printf("delivered %d bodies %v\n", len(txs), err)
}
} else {
i++
time.Sleep(200 * time.Millisecond)
}
}
}()
go func() {
defer wg.Done()
// reserve receiptfetch
peer := dummyPeer("peer-3")
for {
f, _, _ := q.ReserveReceipts(peer, rand.Intn(50))
if f != nil {
var rcs [][]*types.Receipt
for _, hdr := range f.Headers {
rcs = append(rcs, world.getReceipts(hdr.Number.Uint64()))
}
_, err := q.DeliverReceipts(peer.id, rcs)
if err != nil {
fmt.Printf("delivered %d receipts %v\n", len(rcs), err)
}
time.Sleep(100 * time.Millisecond)
} else {
time.Sleep(200 * time.Millisecond)
}
}
}()
wg.Add(1)
go func() {
defer wg.Done()
for i := 0; i < 50; i++ {
time.Sleep(300 * time.Millisecond)
//world.tick()
//fmt.Printf("trying to progress\n")
world.progress(rand.Intn(100))
}
for i := 0; i < 50; i++ {
time.Sleep(2990 * time.Millisecond)
}
}()
wg.Add(1)
go func() {
defer wg.Done()
for {
time.Sleep(990 * time.Millisecond)
fmt.Printf("world block tip is %d\n",
world.chain[len(world.chain)-1].Header().Number.Uint64())
fmt.Println(q.Stats())
}
}()
wg.Wait()
}
func newNetwork() *network {
var l sync.RWMutex
return &network{
cond: sync.NewCond(&l),
offset: 1, // block 1 is at blocks[0]
}
}
// represents the network
type network struct {
offset int
chain []*types.Block
receipts []types.Receipts
lock sync.RWMutex
cond *sync.Cond
}
func (n *network) getTransactions(blocknum uint64) types.Transactions {
index := blocknum - uint64(n.offset)
return n.chain[index].Transactions()
}
func (n *network) getReceipts(blocknum uint64) types.Receipts {
index := blocknum - uint64(n.offset)
if got := n.chain[index].Header().Number.Uint64(); got != blocknum {
fmt.Printf("Err, got %d exp %d\n", got, blocknum)
panic("sd")
}
return n.receipts[index]
}
func (n *network) forget(blocknum uint64) {
index := blocknum - uint64(n.offset)
n.chain = n.chain[index:]
n.receipts = n.receipts[index:]
n.offset = int(blocknum)
}
func (n *network) progress(numBlocks int) {
n.lock.Lock()
defer n.lock.Unlock()
//fmt.Printf("progressing...\n")
newBlocks, newR := makeChain(numBlocks, 0, n.chain[len(n.chain)-1], false)
n.chain = append(n.chain, newBlocks...)
n.receipts = append(n.receipts, newR...)
n.cond.Broadcast()
}
func (n *network) headers(from int) []*types.Header {
numHeaders := 128
var hdrs []*types.Header
index := from - n.offset
for index >= len(n.chain) {
// wait for progress
n.cond.L.Lock()
//fmt.Printf("header going into wait\n")
n.cond.Wait()
index = from - n.offset
n.cond.L.Unlock()
}
n.lock.RLock()
defer n.lock.RUnlock()
for i, b := range n.chain[index:] {
hdrs = append(hdrs, b.Header())
if i >= numHeaders {
break
}
}
return hdrs
}

@ -0,0 +1,194 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"fmt"
"sync"
"sync/atomic"
"github.com/ethereum/go-ethereum/core/types"
)
// resultStore implements a structure for maintaining fetchResults, tracking their
// download-progress and delivering (finished) results.
type resultStore struct {
items []*fetchResult // Downloaded but not yet delivered fetch results
resultOffset uint64 // Offset of the first cached fetch result in the block chain
// Internal index of first non-completed entry, updated atomically when needed.
// If all items are complete, this will equal length(items), so
// *important* : is not safe to use for indexing without checking against length
indexIncomplete int32 // atomic access
// throttleThreshold is the limit up to which we _want_ to fill the
// results. If blocks are large, we want to limit the results to less
// than the number of available slots, and maybe only fill 1024 out of
// 8192 possible places. The queue will, at certain times, recalibrate
// this index.
throttleThreshold uint64
lock sync.RWMutex
}
func newResultStore(size int) *resultStore {
return &resultStore{
resultOffset: 0,
items: make([]*fetchResult, size),
throttleThreshold: uint64(size),
}
}
// SetThrottleThreshold updates the throttling threshold based on the requested
// limit and the total queue capacity. It returns the (possibly capped) threshold
func (r *resultStore) SetThrottleThreshold(threshold uint64) uint64 {
r.lock.Lock()
defer r.lock.Unlock()
limit := uint64(len(r.items))
if threshold >= limit {
threshold = limit
}
r.throttleThreshold = threshold
return r.throttleThreshold
}
// AddFetch adds a header for body/receipt fetching. This is used when the queue
// wants to reserve headers for fetching.
//
// It returns the following:
// stale - if true, this item is already passed, and should not be requested again
// throttled - if true, the store is at capacity, this particular header is not prio now
// item - the result to store data into
// err - any error that occurred
func (r *resultStore) AddFetch(header *types.Header, fastSync bool) (stale, throttled bool, item *fetchResult, err error) {
r.lock.Lock()
defer r.lock.Unlock()
var index int
item, index, stale, throttled, err = r.getFetchResult(header.Number.Uint64())
if err != nil || stale || throttled {
return stale, throttled, item, err
}
if item == nil {
item = newFetchResult(header, fastSync)
r.items[index] = item
}
return stale, throttled, item, err
}
// GetDeliverySlot returns the fetchResult for the given header. If the 'stale' flag
// is true, that means the header has already been delivered 'upstream'. This method
// does not bubble up the 'throttle' flag, since it's moot at the point in time when
// the item is downloaded and ready for delivery
func (r *resultStore) GetDeliverySlot(headerNumber uint64) (*fetchResult, bool, error) {
r.lock.RLock()
defer r.lock.RUnlock()
res, _, stale, _, err := r.getFetchResult(headerNumber)
return res, stale, err
}
// getFetchResult returns the fetchResult corresponding to the given item, and
// the index where the result is stored.
func (r *resultStore) getFetchResult(headerNumber uint64) (item *fetchResult, index int, stale, throttle bool, err error) {
index = int(int64(headerNumber) - int64(r.resultOffset))
throttle = index >= int(r.throttleThreshold)
stale = index < 0
if index >= len(r.items) {
err = fmt.Errorf("%w: index allocation went beyond available resultStore space "+
"(index [%d] = header [%d] - resultOffset [%d], len(resultStore) = %d", errInvalidChain,
index, headerNumber, r.resultOffset, len(r.items))
return nil, index, stale, throttle, err
}
if stale {
return nil, index, stale, throttle, nil
}
item = r.items[index]
return item, index, stale, throttle, nil
}
// hasCompletedItems returns true if there are processable items available
// this method is cheaper than countCompleted
func (r *resultStore) HasCompletedItems() bool {
r.lock.RLock()
defer r.lock.RUnlock()
if len(r.items) == 0 {
return false
}
if item := r.items[0]; item != nil && item.AllDone() {
return true
}
return false
}
// countCompleted returns the number of items ready for delivery, stopping at
// the first non-complete item.
//
// The mthod assumes (at least) rlock is held.
func (r *resultStore) countCompleted() int {
// We iterate from the already known complete point, and see
// if any more has completed since last count
index := atomic.LoadInt32(&r.indexIncomplete)
for ; ; index++ {
if index >= int32(len(r.items)) {
break
}
result := r.items[index]
if result == nil || !result.AllDone() {
break
}
}
atomic.StoreInt32(&r.indexIncomplete, index)
return int(index)
}
// GetCompleted returns the next batch of completed fetchResults
func (r *resultStore) GetCompleted(limit int) []*fetchResult {
r.lock.Lock()
defer r.lock.Unlock()
completed := r.countCompleted()
if limit > completed {
limit = completed
}
results := make([]*fetchResult, limit)
copy(results, r.items[:limit])
// Delete the results from the cache and clear the tail.
copy(r.items, r.items[limit:])
for i := len(r.items) - limit; i < len(r.items); i++ {
r.items[i] = nil
}
// Advance the expected block number of the first cache entry
r.resultOffset += uint64(limit)
atomic.AddInt32(&r.indexIncomplete, int32(-limit))
return results
}
// Prepare initialises the offset with the given block number
func (r *resultStore) Prepare(offset uint64) {
r.lock.Lock()
defer r.lock.Unlock()
if r.resultOffset < offset {
r.resultOffset = offset
}
}

@ -34,7 +34,7 @@ import (
// stateReq represents a batch of state fetch requests grouped together into // stateReq represents a batch of state fetch requests grouped together into
// a single data retrieval network packet. // a single data retrieval network packet.
type stateReq struct { type stateReq struct {
items []common.Hash // Hashes of the state items to download nItems uint16 // Number of items requested for download (max is 384, so uint16 is sufficient)
tasks map[common.Hash]*stateTask // Download tasks to track previous attempts tasks map[common.Hash]*stateTask // Download tasks to track previous attempts
timeout time.Duration // Maximum round trip time for this to complete timeout time.Duration // Maximum round trip time for this to complete
timer *time.Timer // Timer to fire when the RTT timeout expires timer *time.Timer // Timer to fire when the RTT timeout expires
@ -99,7 +99,6 @@ func (d *Downloader) runStateSync(s *stateSync) *stateSync {
finished []*stateReq // Completed or failed requests finished []*stateReq // Completed or failed requests
timeout = make(chan *stateReq) // Timed out active requests timeout = make(chan *stateReq) // Timed out active requests
) )
// Run the state sync. // Run the state sync.
log.Trace("State sync starting", "root", s.root) log.Trace("State sync starting", "root", s.root)
go s.run() go s.run()
@ -235,16 +234,16 @@ func (d *Downloader) spindownStateSync(active map[string]*stateReq, finished []*
if req == nil { if req == nil {
continue continue
} }
req.peer.log.Trace("State peer marked idle (spindown)", "req.items", len(req.items), "reason", reason) req.peer.log.Trace("State peer marked idle (spindown)", "req.items", int(req.nItems), "reason", reason)
req.timer.Stop() req.timer.Stop()
delete(active, req.peer.id) delete(active, req.peer.id)
req.peer.SetNodeDataIdle(len(req.items)) req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
} }
// The 'finished' set contains deliveries that we were going to pass to processing. // The 'finished' set contains deliveries that we were going to pass to processing.
// Those are now moot, but we still need to set those peers as idle, which would // Those are now moot, but we still need to set those peers as idle, which would
// otherwise have been done after processing // otherwise have been done after processing
for _, req := range finished { for _, req := range finished {
req.peer.SetNodeDataIdle(len(req.items)) req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
} }
} }
@ -350,9 +349,10 @@ func (s *stateSync) loop() (err error) {
return errCanceled return errCanceled
case req := <-s.deliver: case req := <-s.deliver:
deliveryTime := time.Now()
// Response, disconnect or timeout triggered, drop the peer if stalling // Response, disconnect or timeout triggered, drop the peer if stalling
log.Trace("Received node data response", "peer", req.peer.id, "count", len(req.response), "dropped", req.dropped, "timeout", !req.dropped && req.timedOut()) log.Trace("Received node data response", "peer", req.peer.id, "count", len(req.response), "dropped", req.dropped, "timeout", !req.dropped && req.timedOut())
if len(req.items) <= 2 && !req.dropped && req.timedOut() { if req.nItems <= 2 && !req.dropped && req.timedOut() {
// 2 items are the minimum requested, if even that times out, we've no use of // 2 items are the minimum requested, if even that times out, we've no use of
// this peer at the moment. // this peer at the moment.
log.Warn("Stalling state sync, dropping peer", "peer", req.peer.id) log.Warn("Stalling state sync, dropping peer", "peer", req.peer.id)
@ -376,7 +376,7 @@ func (s *stateSync) loop() (err error) {
} }
// Process all the received blobs and check for stale delivery // Process all the received blobs and check for stale delivery
delivered, err := s.process(req) delivered, err := s.process(req)
req.peer.SetNodeDataIdle(delivered) req.peer.SetNodeDataIdle(delivered, deliveryTime)
if err != nil { if err != nil {
log.Warn("Node data write error", "err", err) log.Warn("Node data write error", "err", err)
return err return err
@ -413,14 +413,14 @@ func (s *stateSync) assignTasks() {
// Assign a batch of fetches proportional to the estimated latency/bandwidth // Assign a batch of fetches proportional to the estimated latency/bandwidth
cap := p.NodeDataCapacity(s.d.requestRTT()) cap := p.NodeDataCapacity(s.d.requestRTT())
req := &stateReq{peer: p, timeout: s.d.requestTTL()} req := &stateReq{peer: p, timeout: s.d.requestTTL()}
s.fillTasks(cap, req) items := s.fillTasks(cap, req)
// If the peer was assigned tasks to fetch, send the network request // If the peer was assigned tasks to fetch, send the network request
if len(req.items) > 0 { if len(items) > 0 {
req.peer.log.Trace("Requesting new batch of data", "type", "state", "count", len(req.items), "root", s.root) req.peer.log.Trace("Requesting new batch of data", "type", "state", "count", len(items), "root", s.root)
select { select {
case s.d.trackStateReq <- req: case s.d.trackStateReq <- req:
req.peer.FetchNodeData(req.items) req.peer.FetchNodeData(items)
case <-s.cancel: case <-s.cancel:
case <-s.d.cancelCh: case <-s.d.cancelCh:
} }
@ -430,7 +430,7 @@ func (s *stateSync) assignTasks() {
// fillTasks fills the given request object with a maximum of n state download // fillTasks fills the given request object with a maximum of n state download
// tasks to send to the remote peer. // tasks to send to the remote peer.
func (s *stateSync) fillTasks(n int, req *stateReq) { func (s *stateSync) fillTasks(n int, req *stateReq) []common.Hash {
// Refill available tasks from the scheduler. // Refill available tasks from the scheduler.
if len(s.tasks) < n { if len(s.tasks) < n {
new := s.sched.Missing(n - len(s.tasks)) new := s.sched.Missing(n - len(s.tasks))
@ -439,11 +439,11 @@ func (s *stateSync) fillTasks(n int, req *stateReq) {
} }
} }
// Find tasks that haven't been tried with the request's peer. // Find tasks that haven't been tried with the request's peer.
req.items = make([]common.Hash, 0, n) items := make([]common.Hash, 0, n)
req.tasks = make(map[common.Hash]*stateTask, n) req.tasks = make(map[common.Hash]*stateTask, n)
for hash, t := range s.tasks { for hash, t := range s.tasks {
// Stop when we've gathered enough requests // Stop when we've gathered enough requests
if len(req.items) == n { if len(items) == n {
break break
} }
// Skip any requests we've already tried from this peer // Skip any requests we've already tried from this peer
@ -452,10 +452,12 @@ func (s *stateSync) fillTasks(n int, req *stateReq) {
} }
// Assign the request to this peer // Assign the request to this peer
t.attempts[req.peer.id] = struct{}{} t.attempts[req.peer.id] = struct{}{}
req.items = append(req.items, hash) items = append(items, hash)
req.tasks[hash] = t req.tasks[hash] = t
delete(s.tasks, hash) delete(s.tasks, hash)
} }
req.nItems = uint16(len(items))
return items
} }
// process iterates over a batch of delivered state data, injecting each item // process iterates over a batch of delivered state data, injecting each item

@ -538,31 +538,42 @@ func (f *BlockFetcher) loop() {
return return
} }
bodyFilterInMeter.Mark(int64(len(task.transactions))) bodyFilterInMeter.Mark(int64(len(task.transactions)))
blocks := []*types.Block{} blocks := []*types.Block{}
// abort early if there's nothing explicitly requested
if len(f.completing) > 0 {
for i := 0; i < len(task.transactions) && i < len(task.uncles); i++ { for i := 0; i < len(task.transactions) && i < len(task.uncles); i++ {
// Match up a body to any possible completion request // Match up a body to any possible completion request
matched := false var (
matched = false
uncleHash common.Hash // calculated lazily and reused
txnHash common.Hash // calculated lazily and reused
)
for hash, announce := range f.completing { for hash, announce := range f.completing {
if f.queued[hash] == nil { if f.queued[hash] != nil || announce.origin != task.peer {
txnHash := types.DeriveSha(types.Transactions(task.transactions[i])) continue
uncleHash := types.CalcUncleHash(task.uncles[i]) }
if uncleHash == (common.Hash{}) {
if txnHash == announce.header.TxHash && uncleHash == announce.header.UncleHash && announce.origin == task.peer { uncleHash = types.CalcUncleHash(task.uncles[i])
}
if uncleHash != announce.header.UncleHash {
continue
}
if txnHash == (common.Hash{}) {
txnHash = types.DeriveSha(types.Transactions(task.transactions[i]))
}
if txnHash != announce.header.TxHash {
continue
}
// Mark the body matched, reassemble if still unknown // Mark the body matched, reassemble if still unknown
matched = true matched = true
if f.getBlock(hash) == nil { if f.getBlock(hash) == nil {
block := types.NewBlockWithHeader(announce.header).WithBody(task.transactions[i], task.uncles[i]) block := types.NewBlockWithHeader(announce.header).WithBody(task.transactions[i], task.uncles[i])
block.ReceivedAt = task.time block.ReceivedAt = task.time
blocks = append(blocks, block) blocks = append(blocks, block)
} else { } else {
f.forgetHash(hash) f.forgetHash(hash)
} }
}
}
} }
if matched { if matched {
task.transactions = append(task.transactions[:i], task.transactions[i+1:]...) task.transactions = append(task.transactions[:i], task.transactions[i+1:]...)
@ -571,7 +582,7 @@ func (f *BlockFetcher) loop() {
continue continue
} }
} }
}
bodyFilterOutMeter.Mark(int64(len(task.transactions))) bodyFilterOutMeter.Mark(int64(len(task.transactions)))
select { select {
case filter <- task: case filter <- task:

Loading…
Cancel
Save