core/filtermaps: FilterMaps log index generator and search logic

pull/31079/head
Zsolt Felfoldi 4 days ago
parent f0e8a3e9c8
commit 26671e5488
  1. 212
      core/filtermaps/chain_view.go
  2. 293
      core/filtermaps/checkpoints.go
  3. 679
      core/filtermaps/filtermaps.go
  4. 349
      core/filtermaps/indexer.go
  5. 437
      core/filtermaps/indexer_test.go
  6. 756
      core/filtermaps/map_renderer.go
  7. 918
      core/filtermaps/matcher.go
  8. 199
      core/filtermaps/matcher_backend.go
  9. 87
      core/filtermaps/matcher_test.go
  10. 249
      core/filtermaps/math.go
  11. 149
      core/filtermaps/math_test.go
  12. 292
      core/rawdb/accessors_indexes.go
  13. 4
      core/rawdb/database.go
  14. 30
      core/rawdb/schema.go

@ -0,0 +1,212 @@
// Copyright 2025 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
)
// chainView represents an immutable view of a chain with a block hash, a
// block id and a set of receipts associated to each block number. Block id
// can be any unique identifier of the blocks.
// Note that id and receipts are expected to be available up to headNumber
// while the canonical block hash is only expected up to headNumber-1 so that
// it can be implemented by the block builder while the processed head hash
// is not known yet.
type chainView interface {
headNumber() uint64
getBlockHash(number uint64) common.Hash
getBlockId(number uint64) common.Hash
getReceipts(number uint64) types.Receipts
}
// equalViews returns true if the two chain views are equivalent.
func equalViews(cv1, cv2 chainView) bool {
if cv1 == nil || cv2 == nil {
return false
}
head1, head2 := cv1.headNumber(), cv2.headNumber()
return head1 == head2 && cv1.getBlockId(head1) == cv2.getBlockId(head2)
}
// matchViews returns true if the two chain views are equivalent up until the
// specified block number. If the specified number is higher than one of the
// heads then false is returned.
func matchViews(cv1, cv2 chainView, number uint64) bool {
if cv1 == nil || cv2 == nil {
return false
}
head1 := cv1.headNumber()
if head1 < number {
return false
}
head2 := cv2.headNumber()
if head2 < number {
return false
}
if number == head1 || number == head2 {
return cv1.getBlockId(number) == cv2.getBlockId(number)
}
return cv1.getBlockHash(number) == cv2.getBlockHash(number)
}
// blockchain defines functions required by the FilterMaps log indexer.
type blockchain interface {
GetHeader(hash common.Hash, number uint64) *types.Header
GetCanonicalHash(number uint64) common.Hash
GetReceiptsByHash(hash common.Hash) types.Receipts
}
// StoredChainView implements chainView based on a given blockchain.
// Note that the view's head does not have to be the current canonical head
// of the underlying blockchain, it should only possess the block headers
// and receipts up until the expected chain view head.
// Also note that this implementation uses the canonical block hash as block
// id which works as long as the log index structure is not hashed into the
// block headers. Starting from the fork that hashes the log index to the
// block the id needs to be based on a set of fields that exactly defines the
// block but does not include the log index root itself.
type StoredChainView struct {
chain blockchain
head uint64
hashes []common.Hash // block hashes starting backwards from headNumber until first canonical hash
}
// NewStoredChainView creates a new StoredChainView.
func NewStoredChainView(chain blockchain, number uint64, hash common.Hash) *StoredChainView {
cv := &StoredChainView{
chain: chain,
head: number,
hashes: []common.Hash{hash},
}
cv.extendNonCanonical()
return cv
}
// headNumber implements chainView.
func (cv *StoredChainView) headNumber() uint64 {
return cv.head
}
// getBlockHash implements chainView.
func (cv *StoredChainView) getBlockHash(number uint64) common.Hash {
if number >= cv.head {
panic("invalid block number")
}
return cv.blockHash(number)
}
// getBlockId implements chainView.
func (cv *StoredChainView) getBlockId(number uint64) common.Hash {
if number > cv.head {
panic("invalid block number")
}
return cv.blockHash(number)
}
// getReceipts implements chainView.
func (cv *StoredChainView) getReceipts(number uint64) types.Receipts {
if number > cv.head {
panic("invalid block number")
}
return cv.chain.GetReceiptsByHash(cv.blockHash(number))
}
// extendNonCanonical checks whether the previously known reverse list of head
// hashes still ends with one that is canonical on the underlying blockchain.
// If necessary then it traverses further back on the header chain and adds
// more hashes to the list.
func (cv *StoredChainView) extendNonCanonical() bool {
for {
hash, number := cv.hashes[len(cv.hashes)-1], cv.head-uint64(len(cv.hashes)-1)
if cv.chain.GetCanonicalHash(number) == hash {
return true
}
if number == 0 {
log.Error("Unknown genesis block hash found")
return false
}
header := cv.chain.GetHeader(hash, number)
if header == nil {
log.Error("Header not found", "number", number, "hash", hash)
return false
}
cv.hashes = append(cv.hashes, header.ParentHash)
}
}
// blockHash returns the given block hash without doing the head number check.
func (cv *StoredChainView) blockHash(number uint64) common.Hash {
if number+uint64(len(cv.hashes)) <= cv.head {
hash := cv.chain.GetCanonicalHash(number)
if !cv.extendNonCanonical() {
return common.Hash{}
}
if number+uint64(len(cv.hashes)) <= cv.head {
return hash
}
}
return cv.hashes[cv.head-number]
}
// limitedChainView wraps a chainView and truncates it at a given head number.
type limitedChainView struct {
parent chainView
head uint64
}
// newLimitedChainView returns a truncated view of the given parent.
func newLimitedChainView(parent chainView, headNumber uint64) chainView {
if headNumber >= parent.headNumber() {
return parent
}
return &limitedChainView{
parent: parent,
head: headNumber,
}
}
// headNumber implements chainView.
func (cv *limitedChainView) headNumber() uint64 {
return cv.head
}
// getBlockHash implements chainView.
func (cv *limitedChainView) getBlockHash(number uint64) common.Hash {
if number >= cv.head {
panic("invalid block number")
}
return cv.parent.getBlockHash(number)
}
// getBlockId implements chainView.
func (cv *limitedChainView) getBlockId(number uint64) common.Hash {
if number > cv.head {
panic("invalid block number")
}
return cv.parent.getBlockId(number)
}
// getReceipts implements chainView.
func (cv *limitedChainView) getReceipts(number uint64) types.Receipts {
if number > cv.head {
panic("invalid block number")
}
return cv.parent.getReceipts(number)
}

@ -0,0 +1,293 @@
// Copyright 2025 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import "github.com/ethereum/go-ethereum/common"
// checkpointList lists checkpoints for finalized epochs of a given chain.
// This allows the indexer to start indexing from the latest available
// checkpoint and then index tail epochs in reverse order.
type checkpointList []epochCheckpoint
// epochCheckpoint specified the last block of the epoch and the first log
// value index where that block starts. This allows a log value iterator to
// be initialized at the epoch boundary.
type epochCheckpoint struct {
blockNumber uint64 // block that generated the last log value of the given epoch
blockId common.Hash
firstLvIndex uint64 // first log value index of the given block
}
// checkpoints lists sets of checkpoints for multiple chains. The matching
// checkpoint set is autodetected by the indexer once the canonical chain is
// known.
var checkpoints = []checkpointList{
// Mainnet
{
{4166218, common.HexToHash("0xdd767e0426256179125551e8e40f33565a96d1c94076c7746fa79d767ed4ad65"), 67108680},
{4514014, common.HexToHash("0x33a0879bdabea4a7a3f2b424388cbcbf2fbd519bddadf13752a259049c78e95d"), 134217343},
{4817415, common.HexToHash("0x4f0e8c7dd04fbe0985b9394575b19f13ea66a2a628fa5b08178ce4b138c6db80"), 201326352},
{5087733, common.HexToHash("0xc84cd5e9cda999c919803c7a53a23bb77a18827fbde401d3463f1e9e52536424"), 268435343},
{5306107, common.HexToHash("0x13f028b5fc055d23f55a92a2eeecfbcfbda8a08e4cd519ce451ba2e70428f5f9"), 335544094},
{5509918, common.HexToHash("0x1ed770a58a7b4d4a828b7bb44c8820a674d562b23a6a0139981abe4c489d4dad"), 402652853},
{5670390, common.HexToHash("0x3923ee6a62e6cc5132afdadf1851ae4e73148e6fbe0a8319cafd2a120c98efa3"), 469761897},
{5826139, common.HexToHash("0xe61bc6ef03c333805f26319e1688f82553f98aa5e902b200e0621a3371b69050"), 536870853},
{5953029, common.HexToHash("0x43d710b1b7243b848400975048ccefdfaba091c692c7f01c619d988886cc160f"), 603979580},
{6102846, common.HexToHash("0xa100b2018f6545cc689656b4b846677b138955b7efd30e850cd14c246430ba18"), 671088291},
{6276718, common.HexToHash("0xb832ac448b06c104ba50faefd58b0b94d53c0fba5cb268086adad4db99c2f35f"), 738197399},
{6448696, common.HexToHash("0x48e8ae6f729ad6c76b6cf632bd52a6df7886ed55be09d43c5004fcc1463e533b"), 805305988},
{6655974, common.HexToHash("0xac395971a6ffc30f807848f68b97b2834f8ea13478a7615860b6a69e3d0823ca"), 872415033},
{6873949, common.HexToHash("0xc522ddb1113b1e9a87b2bdcb11ce78756beba6454a890122f121a032b5769354"), 939523784},
{7080953, common.HexToHash("0x3606de577d80120d1edbb64bad7fa6795e788bae342866a98cc58ce2f7575045"), 1006632796},
{7267002, common.HexToHash("0xad770882a69d216e955e34fef84851e56c0de82deacd6187a7a41f6170cd6c6d"), 1073741045},
{7466708, common.HexToHash("0x17a48817b3a65aba333a5b56f3ff2e86fbcc19e184b046a5305a5182fdd8eb8a"), 1140850680},
{7661807, common.HexToHash("0xa74731ee775fbd3f4d9313c68562737dd7c8d2c9eb968791d8abe167e16ddc96"), 1207959112},
{7834556, common.HexToHash("0xe4b4812448075508cb05a0e3257f91b49509dc78cd963676a633864db6e78956"), 1275068095},
{7990068, common.HexToHash("0x07bd4ca38abb4584a6209e04035646aa545ebbb6c948d438d4c25bfd9cb205fa"), 1342176620},
{8143032, common.HexToHash("0x0e3149e9637290b044ee693b8fcb66e23d22db3ad0bdda32962138ba18e59f3f"), 1409285949},
{8297660, common.HexToHash("0x34cd24f80247f7dfaf316b2e637f4b62f72ecc90703014fb25cb98ad044fc2c0"), 1476394911},
{8465137, common.HexToHash("0x4452fa296498248d7f10c9dc6ec1e4ae7503aa07f491e6d38b21aea5d2c658a8"), 1543503744},
{8655820, common.HexToHash("0x7bdb9008b30be420f7152cc294ac6e5328eed5b4abd954a34105de3da24f3cc6"), 1610612619},
{8807187, common.HexToHash("0xde03e3bfddc722c019f0b59bc55efabcd5ab68c6711f4c08d0390a56f396590d"), 1677721589},
{8911171, common.HexToHash("0xe44f342de74ab05a2a994f8841bdf88f720b9dc260177ba4030d0f7077901324"), 1744830310},
{8960320, common.HexToHash("0x79764f9ff6e0fe4848eda1805687872021076e4e603112861af84181395ac559"), 1811938893},
{9085994, common.HexToHash("0x24a101d1c8a63367a0953d10dc79c3b587a93bd7fd382084708adefce0b8363f"), 1879047965},
{9230924, common.HexToHash("0xb176a98d3acd855cbb75265fb6be955a8d51abc771e021e13275d5b3ecb07eeb"), 1946156668},
{9390535, common.HexToHash("0x640f5e2d511a5141878d57ae7a619f19b72a2bd3ef019cf0a22d74d93d9acf07"), 2013265733},
{9515674, common.HexToHash("0xff4a7b6b21aeaeb6e1a75ecd22b1f34c058a0ce1477ce90a8ce78165fd1d0941"), 2080374553},
{9659426, common.HexToHash("0xc351455249343b41e9171e183612b68c3c895271c62bd2c53d9e3ab1aa865aa1"), 2147483567},
{9794018, common.HexToHash("0xde98035b4b7f9449c256239b65c7ff2c0330de44dee190106d0a96fb6f683238"), 2214592213},
{9923840, common.HexToHash("0x881da313a1e2b6fab58a1d6fa65b5dacfdc9d68a3112a647104955b5233f84e3"), 2281701302},
{10042435, common.HexToHash("0x451f6459640a6f54e2a535cc3a49cfc469861da3ddc101840ab3aef9e17fa424"), 2348810174},
{10168883, common.HexToHash("0x5d16ff5adf0df1e4dc810da60af37399ef733be7870f21112b8c2cfff4995dd9"), 2415918783},
{10289554, common.HexToHash("0x85d5690f15a787c43b9a49e8dd6e324f0b3e0c9796d07c0cfb128e5c168f5488"), 2483027930},
{10386676, common.HexToHash("0x20f675ea72db448024a8a0b8e3ec180cac37a5910575bc32f8d9f5cdfe3c2649"), 2550136212},
{10479675, common.HexToHash("0x014abb07acf2330cc78800ca1f564928f2daccca4b389bf5c59f4b840d843ec0"), 2617245218},
{10562661, common.HexToHash("0xd437607a3f81ce8b7c605e167ce5e52bf8a3e02cdc646997bd0ccc57a50ad7d1"), 2684354520},
{10641508, common.HexToHash("0x2e8ab6470c29f90ac23dcfc58310f0208f5d0e752a0c7982a77a223eca104082"), 2751462730},
{10717156, common.HexToHash("0x8820447b6429dd12be603c1c130be532e9db065bb4bc6b2a9d4551794d63789a"), 2818571831},
{10784549, common.HexToHash("0xc557daab80a7cdc963d62aa881faf3ab1baceff8e027046bcd203e432e0983b3"), 2885680800},
{10848651, common.HexToHash("0xede1b0de5db6685a6f589096ceb8fccb08d3ff60e8b00a93caa4a775b48e07fc"), 2952789740},
{10909166, common.HexToHash("0x989db675899d13323006a4d6174557e3c5501c672afd60d8bd902fc98d37e92e"), 3019897599},
{10972902, common.HexToHash("0x5484050cc2c7d774bc5cd6af1c2ef8c19d1de12dabe25867c9b365924ea10434"), 3087007422},
{11036597, common.HexToHash("0x1e3686e19056587c385262d5b0a07b3ec04e804c2d59e9aaca1e5876e78f69ae"), 3154116231},
{11102520, common.HexToHash("0x339cf302fe813cce3bb9318b860dfa8be7f688413f38a6ea1987a1b84d742b4b"), 3221224863},
{11168162, common.HexToHash("0xc0fa21ea090627610bcac4732dff702633f310cabafc42bc500d3d4805198fe0"), 3288334273},
{11233707, common.HexToHash("0x491c37a479b8cf22eaa3654ae34c5ddc4627df8c58ca8a6979159e1710428576"), 3355442691},
{11300526, common.HexToHash("0xb7366d2a24df99002cffe0c9a00959c93ef0dcfc3fd17389e2020bf5caa788eb"), 3422551480},
{11367621, common.HexToHash("0xce53df5080c5b5238bb7717dfbfd88c2f574cfbb3d91f92b57171a00e9776cd2"), 3489660710},
{11431881, common.HexToHash("0x2a08ff9c4f6fd152166213d902f0870822429f01d5f90e384ac54a3eac0ceb3a"), 3556768626},
{11497107, common.HexToHash("0x1f99c6b65f2b1cb06ed1786c6a0274ff1b9eacab6cb729fcd386f10ebbd88123"), 3623878389},
{11560104, common.HexToHash("0xebe6924817bbdfe52af49667da1376bae5a2994b375d4b996e8ff2683744e37a"), 3690986640},
{11625129, common.HexToHash("0xbe6eee325329ee2fe632d8576864c29dd1c79bab891dc0a22d5b2ac87618d26e"), 3758095773},
{11690397, common.HexToHash("0xc28bf55f858ddf5b82d1ceb3b5258b90a9ca34df8863a1c652c4d359f5748fdf"), 3825204492},
{11755087, common.HexToHash("0x0c10cde6ce1bbe24dc57347fe4aaebc17b7d8e8d7d97e3db573133477f494740"), 3892314051},
{11819674, common.HexToHash("0x36b694a1776c94e4c6ae4a410931b2086de47a83e437517040e3290ce9afff67"), 3959422445},
{11883358, common.HexToHash("0x21f447aca9ddf94ed71df9fa3648a12acc2ba603f89f24c4784936864c41945f"), 4026531743},
{11948524, common.HexToHash("0x71a52b6cce80d3a552b0daa18beb952facf81a89bc7ca769d08ac297f317507a"), 4093640009},
{12013168, common.HexToHash("0x9a7fb369b8d8cd0edd0d890d636096f20c63abb7eb5798ad1e578cac599e3db8"), 4160748475},
{12078711, common.HexToHash("0x5de09329413b0c2f58d926f225197552a335ba3d5544d7bdb45e7574f78c9b8d"), 4227858275},
{12143640, common.HexToHash("0xbeafc0e1e0586f5a95f00f2a796d7df122c79c187aa2d917129297f24b8306bd"), 4294967145},
{12208005, common.HexToHash("0x052487095cdd4a604808e6c14e30fb68b3fa546d35585b315f287219d38ef77c"), 4362075289},
{12272465, common.HexToHash("0x82c8a50413bd67a0d6f53b085adcd9ae8c25ecc07ed766fa80297a8dcae63b29"), 4429184610},
{12329418, common.HexToHash("0x294c147e48d32c217ff3f27a3c8c989f15eee57a911408ec4c28d4f13a36bb3b"), 4496292968},
{12382388, common.HexToHash("0x8c2555965ff735690d2d94ececc48df4700e079c7b21b8e601a30d4e99bc4b5b"), 4563401809},
{12437052, common.HexToHash("0x2e38362031f36a0f3394da619dcc03be03c19700594cbd1df84c2c476a87de63"), 4630511012},
{12490026, common.HexToHash("0x122749c02a55c9c2a1e69068f54b6c1d25419eb743e3553aba91acf1daeadc35"), 4697619920},
{12541747, common.HexToHash("0xfb9f12aa2902da798ac05fab425434f8c7ce98050d67d416dbb32f98c21f66f7"), 4764728267},
{12597413, common.HexToHash("0x9a7a399c2904ac8d0fec580550525e7e1a73d8f65f739bf7c05d86e389d0d3f7"), 4831837757},
{12651950, common.HexToHash("0xb78dcb572cdafb9c4e2f3863ef518a3b2df0cd4f76faa26a423b2ca0c1cde734"), 4898946491},
{12706472, common.HexToHash("0xfd21f41ec6b0c39287d7d48c134d1212a261c53d65db99739994b003150bbad1"), 4966054796},
{12762929, common.HexToHash("0xc94d994bc40b2ae7dc23cf2b92cc01e84915f090bb57c0d9a67584bd564d3916"), 5033164307},
{12816689, common.HexToHash("0x7770c72f22cbf6ccf7ab85d203088f7ede89632cf0042c690102f926a90bd09d"), 5100273412},
{12872408, common.HexToHash("0x2e008b8c952d828875d777f7912f472af96ffc977f2ceae884006682cab6b8ed"), 5167381625},
{12929718, common.HexToHash("0x85eb0ed3c5910c6a01b65ef0a5b76c59c2cdb5094e6e27eb87c751d77bcc2c88"), 5234491305},
{12988757, common.HexToHash("0xdf12045bea73af18d4e71f8be8e334160f78b85f96a3535a4056409d8b61355a"), 5301600237},
{13049172, common.HexToHash("0xf07608d97a101cd9a95fee9d9062a15bcb333263e555f8cfa31da037e0468f30"), 5368709080},
{13108936, common.HexToHash("0x42739341db582d2f39b91ec9e8cc758777ca3f6ff9f25cd98883619fd5f026a7"), 5435817013},
{13175495, common.HexToHash("0x564f25eacb229350b7c648b5828169e7a0344ae62e866206828e2cfad8947f10"), 5502926476},
{13237721, common.HexToHash("0x0973425abec0fa6319701b46e07c2373b0580e3adbed6900aad27d5bf26dcb95"), 5570035419},
{13298771, common.HexToHash("0xf3a16fec5be808c9f7782fb578dc8cef7f8e2110f7289bd03c0cc13977dd1518"), 5637143840},
{13361281, common.HexToHash("0x3c0b6364201ca9221b61af3de27a3a87e111870b8c7efc43a6d8496e98c68690"), 5704253046},
{13421819, common.HexToHash("0x2f472e57997b95558b99e3e5e7e0e8d4dbf8b71c081aac6536c9ff5925dac2ce"), 5771361231},
{13480620, common.HexToHash("0xc4d689e87464a0c83c661c8e3a0614c370631de857f7e385b161dfe8bacd3e71"), 5838469468},
{13535793, common.HexToHash("0xe7674bacc8edce9fb3efd59b92c97da48fe7ace1de314b4a67d7d032fc3bb680"), 5905578026},
{13590588, common.HexToHash("0x6a3e86bdce7dd7d8792e1af9156edd8c3ffee7c20fed97001f58a9a2699f6594"), 5972687757},
{13646707, common.HexToHash("0xab404a5d3709cf571b04e9493f37116eeb5dd2bc9dc10c48387c1e0199013d69"), 6039797165},
{13703025, common.HexToHash("0x20e2fde15b8fe56f5dd7ab0f324c552038167ed44864bf3978e531ae68d6d138"), 6106905803},
{13761024, common.HexToHash("0x2ae49275e13e780f1d29aea8507b2a708ff7bfe977efac93e050273b8b3a8164"), 6174015107},
{13819468, common.HexToHash("0xb9d19cb31dedb1128b11cad9ffd6e58c70fe7ba65ba68f1ac63668ac5160ad85"), 6241124350},
{13877932, common.HexToHash("0x80b1ff0bb069a8479360a15eaa84ba30da02cfacadc564837f4b1c90478addb8"), 6308232256},
{13935384, common.HexToHash("0xe1f5469a559a6114dd469af61b118b9d9551a69bbd49a4e88f2a2d724830c871"), 6375341632},
{13994042, common.HexToHash("0x25188fb75f2328c870ade7c38ef42ff5fddef9c4e364eebe4c5d8d9cc3ecabab"), 6442449799},
{14051123, common.HexToHash("0xf4ef2bce9ee9222bdcf6b3a0c204676d9345e211e10c983e523930274e041ef1"), 6509559107},
{14109189, common.HexToHash("0x80b730c28f75d8cb5ec2fb736341cd87cb4ecb2c9c614e0a4ecc0f9812675d50"), 6576667347},
{14166822, common.HexToHash("0xf662a24b91684fa8ac462b31071f406de8d6183dba46d30d690f4407bc6af36f"), 6643777079},
{14222488, common.HexToHash("0x7333e324c96b12f11a38d1fc2ddb4860e018b90f5dc10f3dbe19f7679bb95535"), 6710885890},
{14277180, common.HexToHash("0x4373c1000e8e10179657689e2f0e42f88bd1601ecb4a5d83970d10287f6654cc"), 6777994595},
{14331080, common.HexToHash("0x9c708a750a3f284ec0ee950110b36fd488cb1ec24cd0c2ea72c19551ec5c42a5"), 6845103719},
{14384243, common.HexToHash("0x34ce7503b76335aa18dec880b0cefd388a29e0fcff6f2e1ddda8fb8c0ac1daf0"), 6912212376},
{14437670, common.HexToHash("0x79842efd3e406b41f51935fe2e6ad20a7dd5a9db2280ebd7f602ed93da1e3c24"), 6979320543},
{14489204, common.HexToHash("0xcd12addf0afdc229e9fe3bd0a34677a3826c5e78d4baf715f8ed36b736d6627a"), 7046430591},
{14541688, common.HexToHash("0x55f617abf208a73fc467e8cb5feead586b671dbb0f6281570b3c44b8eabb2b9e"), 7113538755},
{14594551, common.HexToHash("0xc7211bf772e93c8c2f945fcb6098b47c3455604cb8b94a505cb5cb720914c369"), 7180646025},
{14645065, common.HexToHash("0x6d5b0326f4b22e2b0196986a514f23ec6e9a62f70f53300a22b21ff661a6ef7e"), 7247756883},
{14695926, common.HexToHash("0x0a77272250e43b4bb46c02eb76944881a3c6b00a21bb9086a8229199bd62d97a"), 7314865843},
{14746330, common.HexToHash("0xd677fdbaf8efb1bfdc138ac6b2bd5d0e890a29acb1f52f40169181ad517b0d31"), 7381974956},
{14798546, common.HexToHash("0xbb277e8623acd2ce2340cf32f6c0ddab70fd95d862287f68a3c37250a70619cd"), 7449082890},
{14848230, common.HexToHash("0x587b39f11bdaa2091291c7c3947e88df2e91e7997f2375dfd43b6e310a538582"), 7516192636},
{14897646, common.HexToHash("0xf5b5c9d0c024ca0c0f0c6171871f609687f4ccb064ededbd61176cf23a9011e8"), 7583299602},
{14950782, common.HexToHash("0x50549486afaf92a4c3520012b325e914ef77a82e4d6530a71f9b1cca31bfae18"), 7650409868},
{15004101, common.HexToHash("0x7edac55dea3ee4308db60b9bc0524836226fe301e085b3ce39105bd145ba7fc3"), 7717517503},
{15056903, common.HexToHash("0xb4cfd02d435718598179cdba3f5c11eb8653fe97ec8d89c60673e3e07b8dfc94"), 7784627997},
{15108302, common.HexToHash("0x53c77a7de4515e9e93467a76f04cc401834bcdd64e9dfa03cf6d2844a6930293"), 7851736988},
{15159526, common.HexToHash("0x1a31ad84b423254d7ff24e7eca54048ed8cc13cec5eb7289bf3f98ed4de9f724"), 7918844431},
{15211013, common.HexToHash("0xe5d491e1d6cc5322454143b915c106be1bf28114a41b054ba5e5cfe0abecafba"), 7985953942},
{15264389, common.HexToHash("0xd9939bb9e58e95d2672c1148b4ec5730204527d3f3fc98ca03a67dc85cf3d710"), 8053063187},
{15315862, common.HexToHash("0x7254f99c4bb05235d5b437984c9132164e33182d4ce11a3847999da5c28b4092"), 8120172147},
{15364726, common.HexToHash("0x11b57547579d9009679e327f57e308fe86856391805bc3c86e7b39daae890f52"), 8187281042},
{15412886, common.HexToHash("0xbe3602b1dbef9015a3ec7968ac7652edf4424934b6bf7b713b99d8556f1d9444"), 8254390023},
{15462792, common.HexToHash("0x3348ca4e14ac8d3c6ac6df676deaf3e3b5e0a11b599f73bd9739b74ebd693efe"), 8321499024},
{15509914, common.HexToHash("0xbc98fd6b71438d5a169f9373172fea799fa3d22a8e6fe648d35e1070f2261113"), 8388606521},
{15558748, common.HexToHash("0x5fa2cf499276ae74a5b8618990e71ed11a063619afe25c01b46e6252eba14c19"), 8455716577},
{15604217, common.HexToHash("0x78a608e13d2eb3c5fed81a19b829ede88071cf01ea9ff58112a7472435f97c30"), 8522825668},
{15651869, common.HexToHash("0xd465d861d925d1475440782ff16c2b3361ba3c8e169d7cc90eb8dfc0f31b0aac"), 8589934080},
{15700968, common.HexToHash("0x71e3def131271e02c06ca945d14a995703a48faac1334a9e2e2321edd0b504d0"), 8657043390},
{15762986, common.HexToHash("0x9b1b51dca2eae29162ca66968a77b45175f134b44aea3defadcb924f83e0b944"), 8724151376},
{15814455, common.HexToHash("0x3c04a509cb6304d3df4bef57e0119d9e615ab737ec0b4a7deada6e5f57d9f873"), 8791260562},
{15865639, common.HexToHash("0x9e9e26148c774518ecf362c0e7c65a5c1b054a8a3e4e36036c70e273fac6147c"), 8858368894},
{15920564, common.HexToHash("0x9efe1d4dbfd9aa891ac0cffd3e1422a27ba2ea4add211b6900a2242cdb0f0ca0"), 8925477950},
{15974371, common.HexToHash("0xc63ccef7bc35a0b431a411f99fe581b322d00cfc6422d078696808a5658a32ac"), 8992587107},
{16032913, common.HexToHash("0x3e60957224964669a8646914e3166553b9f4256d5be160b17995d838af3ef137"), 9059696632},
{16091057, common.HexToHash("0x12b346047bb49063ab6d9e737775924cf05c52114202ddb1a2bdaf9caabbfe0c"), 9126804912},
{16150977, common.HexToHash("0x49318a32ff0ce979c4061c1c34db2a94fb06e7669c93742b75aff14a134fa598"), 9193913896},
{16207432, common.HexToHash("0xf7870865edf81be4389a0be01468da959de703df0d431610814d16ed480176e4"), 9261019778},
{16262582, common.HexToHash("0x25818e0f4d54af6c44ef7b23add34409a47de3ab1c905889478f3ec8ad173ec3"), 9328131320},
{16319695, common.HexToHash("0x25de4b1c18cc503f5d12b4fa9072d33a11fa503a3dbeb9ab3d016b57c1e5cd4d"), 9395240790},
{16373605, common.HexToHash("0x3794a5e0d2aa10baf1e6a5ec623d6089fdd39799eff633017d8df5144526939f"), 9462349509},
{16423494, common.HexToHash("0xe0217d947ba3865dfc9288e0c890b0996457bb9d18467bd125e86bbb0052b57f"), 9529458033},
{16474853, common.HexToHash("0xd454f033d190f22f9e56f0209ea1eeb3b6257805d5d88650d2759eb4d24821b7"), 9596567055},
{16525689, common.HexToHash("0x8a23cbbf3e258e13f5a1ada434366796cb4a3e5b1062455582fb2bc3ab991541"), 9663674943},
{16574203, common.HexToHash("0xc1a5b7d26e8222bd2d56ef4108f75d69f7c116707d348950834e00962241a4f8"), 9730785112},
{16622622, common.HexToHash("0x3ddb3ef7a4309bd788258fb0d62613c89a0b4de715f4e12f6017a194d19d6481"), 9797893665},
{16672585, common.HexToHash("0x8aa5e9f72b261f9e2a9eb768483d1bbd84d3a88fdb1346f6a9a7f262fd28ba41"), 9865002893},
{16720124, common.HexToHash("0x2128f8baf264166e37554d5c31a06de58d9ccfb663117358251da548a23a060f"), 9932111275},
{16769162, common.HexToHash("0x6b3e849482d3222032740ad6b8f98e24636c82682a6a3572b1ef76dfebc66821"), 9999217824},
{16818311, common.HexToHash("0xe45f57381978a2bfc85bd20af1c41e2b630412642ac4f606b477f05f030ef5d9"), 10066328668},
{16869531, common.HexToHash("0xa154555266d24dc1f4885af5fafcf8cab3de788998cf69e1d28f56aa13a40c43"), 10133437302},
{16921611, common.HexToHash("0xf1f829b4ab5eec6e243916dd530993fa11eef5510fd730e8d09ead6b380355a1"), 10200547185},
{16974870, common.HexToHash("0x1a33202b95926ae4cb8e6e99d8d150f3c50d817b3a316452bdf428c971dabde5"), 10267655914},
{17031277, common.HexToHash("0x706c9dd0dc81e7ac29d2ea0f826e6b8a1dcb5adb1b904ff6e43260729c9fd0a7"), 10334764934},
{17086330, common.HexToHash("0x085a80cafe96b520105b9a1f8e7a2bbc9474da24da7e6344ca7c4d32db822f92"), 10401871892},
{17141311, common.HexToHash("0x33ec6513dfa515bc5f6356476b4eb075a8064181d6aaf6aa1a1e18887e342f74"), 10468982364},
{17190907, common.HexToHash("0x6f41273d3bf30d3347e7eb68872a49b3ac947f314543478be7a28a55e5c41a3c"), 10536090817},
{17237199, common.HexToHash("0x9a87a14a128c0345a366940f821a14f16719de628658ac0628e410a72d723e90"), 10603200178},
{17287181, common.HexToHash("0x9c6e78adcf562ac63c103e3e5a02f025023079aca79bdd6ef18f7bd2a6271c29"), 10670309183},
{17338652, common.HexToHash("0x1b747da97b2397a293602af57514dab4ca1010bb6c601ff05cb2012dd1124ebb"), 10737418023},
{17389337, common.HexToHash("0xbc3c0ca1e5989605b9b59c94b418562eb17ccbce30e45ac8531cf0b3867a6b2c"), 10804522857},
{17442261, common.HexToHash("0x1ec341be1cbd09f559bfa3d3e39a341d8e21052eeb7880931d43d086651733b7"), 10871635535},
{17497787, common.HexToHash("0x6069880d486f2548599df1e14e12752d3eb9bc99843a98cd6631c22be1b58554"), 10938744657},
{17554322, common.HexToHash("0x69b2564bc00b1f310f6b416912869d7530d7864bf7d70d55c7ace554f129b989"), 11005852829},
{17608492, common.HexToHash("0x7d590653d5fa52c0d3ee453a77d2088504f57adcef35cd57c567afb554608457"), 11072961972},
{17664272, common.HexToHash("0xdc16159d3500cdc7410873102f41fc55de2a8a41e3779c4b70e6224a541e2b9e"), 11140070967},
{17715101, common.HexToHash("0x655e33c4e81182464ea0b0e1fdbc53ce53902431db5107326b816091a4564652"), 11207179487},
{17764042, common.HexToHash("0x54439184f31cd83ba06b48b6dbfdd744ae7246355be1327b44744058711d05c0"), 11274287303},
{17814383, common.HexToHash("0xfb453bc951360c76fb09bb1b9a3e39d23ececa0adb93368cc3f41f0457845089"), 11341397984},
{17864648, common.HexToHash("0x32a68823ef4ec0cbab2fe50c97e3f462b575e8b117da40d00c710b4c66ee1d6d"), 11408505657},
{17913366, common.HexToHash("0x04b944aab8a4ff91b77c2191817cf051766100c227616a3746af53407e740124"), 11475614351},
{17961690, common.HexToHash("0x08bee7cc0b764106ca01dd5370b617879487ffb423688c96e948dce125990f45"), 11542723488},
{18011048, common.HexToHash("0x94c39d3a64f3e9a91b1d98554cd29e1390e30fa61cfa4e909c503eee2fd9f165"), 11609833142},
{18061209, common.HexToHash("0x2ee9ade68955c030488c8a30537bdf948355f7dd5ae64942b5bfce1be6650e19"), 11676941316},
{18111692, common.HexToHash("0xd6c4fd0c1cc20ed5e7960bb5043e9e5e9c66a4d2ec5709ac9797fff678435640"), 11744050346},
{18166212, common.HexToHash("0x3262588c2ef79a3b3f6a3db6435202d22f5667cd48c136b0797404901525c9ff"), 11811159686},
{18218743, common.HexToHash("0x935bd9a4164ff7ecd09a37b916ce5bf78487bd19377b5b17be153e39318aee74"), 11878268593},
{18271236, common.HexToHash("0xe58ebb821f27e3665898f390802a3d129d217b3a3ee36d890a85cf22a0a8aa33"), 11945376750},
{18323007, common.HexToHash("0x3997a841468efa1bc614bfc3de4502274901b04b428f87a1f3086dfd78cda1eb"), 12012485748},
{18372443, common.HexToHash("0xc44a13a5d02e8dc39f355de5e21ce7bb311ce7f4d9114ff480dce235a169e416"), 12079595370},
{18421829, common.HexToHash("0x7da63a0b613d8745597b2ac64fd5cc8b2fb14b24d163b12a0a39d7d3d4ff7b5c"), 12146703582},
{18471706, common.HexToHash("0xd632a1893f415ff618f4b612a7687e6af1f12feeed81f46f0022090829c1eb4c"), 12213812677},
{18522301, common.HexToHash("0x44fa2cf08145ae40e8e42f4e6b4ab7df360a17c5a065ce45fcc41b51bee011f4"), 12280921639},
{18572935, common.HexToHash("0x72b8ab4c78c90425ee054b4806a8be703da0febdf1d51866358ec2bd21ba9529"), 12348029751},
{18623431, common.HexToHash("0x8c4cb2f13501d9788820280c6f16692d0737258c3896f1e4bded32d838febf7f"), 12415138965},
{18675470, common.HexToHash("0x523b73c19ea8b3ae32ef141a83ef9855e667ebf51443cfcabd1a06659359062a"), 12482247454},
{18725728, common.HexToHash("0x0cfbd131eb5dad51488238079fba29a63eebb5c32d1a543cb072e48dc2104ef3"), 12549356369},
{18778387, common.HexToHash("0xc4906c77af8058b9f172a4f0e8788c7887f05caa5ac752b38b5387080f74ae49"), 12616465992},
{18835044, common.HexToHash("0x49c5e07f409a841dc81f3ef8417f1951f8fcc13c90134f9d2a0cd11938f9fa36"), 12683575082},
{18883308, common.HexToHash("0x386a58dd5f79a419eeb05075b07b3ff3bc836a265c9688854a504223b1d6a830"), 12750683753},
{18933635, common.HexToHash("0xd3881292147589bd2e192769e5c9175b5d03a453fe1ef3c4b5b6858ac9402a2f"), 12817792470},
{18988254, common.HexToHash("0xcbe72dfa15428ac21b9c59c703ceaa0eb4b2205927687261d7aaed3dbb3783ea"), 12884882858},
{19041325, common.HexToHash("0x92b077e1c2f8819da728f0307c914fdcd57eba14ea07d9a45c28d1ed8ffff576"), 12952010530},
{19089163, common.HexToHash("0x43f8ab2d3dfc34c8e18cba903074d54e235dc546f19c4eb78245a522c266c84e"), 13019119228},
{19140629, common.HexToHash("0xab7b7ae5424b18105a13b657fa6099d4ab67fde5baff39fe6e4de707397e995c"), 13086228236},
{19192118, common.HexToHash("0x451327e6a5cf6ce1c8c14c01687dc5f719f3c2176f46bac4f264616256e30d1c"), 13153337116},
{19237836, common.HexToHash("0x9b260d6be369557d1dc88aca423e2697e697d941d1b726c183015b5649e248c8"), 13220445421},
{19291271, common.HexToHash("0x4878c28d79e1f71bc11e062eb61cb52ae6a18b670b0f9bea38b477944615078e"), 13287554254},
{19344448, common.HexToHash("0x56243b9ad863bf90953fe9aa6e64a426629384db1190e70dce79575d30595f7e"), 13354663659},
{19394948, common.HexToHash("0x195173b64dda7908d6aa39a63c8bdd29ec181d401e369d513be1308550d0ddcb"), 13421771935},
{19443075, common.HexToHash("0xd39c1d60996475e65d1ab5b4e755f510ca466564a8155d35db6667988d6c0e44"), 13488880427},
{19488383, common.HexToHash("0x28956eb8856fa8db59c02585016b8baf43bc44bc35b00bdaf8a6babe51101c5c"), 13555977105},
{19534584, common.HexToHash("0x2421c97b0f140185d4c20943cd4ed7d7424468482feb76e3003a1cc69da3fd7b"), 13623097580},
{19579602, common.HexToHash("0x25f96529028e9f51c59aec9ce8de282b7dd67066fd46a1694130698ed0f40d8b"), 13690207623},
{19621517, common.HexToHash("0x4f6f6e0a0488f3d51823bc4b07c292348c259b1866968f77ee76b66b37101c75"), 13757315529},
{19665085, common.HexToHash("0x00f9315f89681b44bff46f1bad8894bc6dfae1c459d3d6520f9881861304a496"), 13824425382},
{19709229, common.HexToHash("0x24e022b21ae1ba8a3e8c87cb9734aa1d1810fc4a69fe147d3ebb1ff0df8bcc15"), 13891534799},
{19755387, common.HexToHash("0x77f184b7183b1a351760d242041249464b42cfaa6fbc4326f352b06bb3b21a02"), 13958642483},
{19803894, common.HexToHash("0xf37eb1b054a6d61272940361f386eb744cded84d15c3250a7eabadede257371c"), 14025751618},
{19847885, common.HexToHash("0x4659649fa8a3b4bbe8978673ba9a22ae20352c7052b676d373b5a51b1967ffa4"), 14092848654},
{19894193, common.HexToHash("0x15606bdc0f1a710bd69443c7154d4979aece9329977b65990c9b39d6df84ed5c"), 14159970181},
{19938551, common.HexToHash("0x6a8f4571924ed902bd8e71bf8ed9cc9d72cabeabc410277c8f0fc2b477d00eb7"), 14227077892},
{19985354, common.HexToHash("0x7b6fb6376410b4d9e5d7ee02f78b2054e005dd2976eea47fc714f66b967dc285"), 14294187965},
{20028440, common.HexToHash("0x9b37440b71c24756b8855b8012432b84276ae94c80aa1ccc8b70a7705992103c"), 14361296503},
{20071780, common.HexToHash("0xa2ed129f343f3d60419772ec5635edcd36b8680c9419b6626e2bc84b230c709b"), 14428405230},
{20113832, common.HexToHash("0xe7a610e8bcbf8ded141ebc7142de03dfc54b1bcc79e3bf8d07fad4e42b665bba"), 14495512019},
{20156854, common.HexToHash("0xbe09704f65a70ef8843d9c8e511ddc989ea139dbe94cdfe37f52b03620d62385"), 14562622430},
{20200135, common.HexToHash("0x9a58c34d5f77342e94065d119905c000223cd988c4b11f1539fff20737159630"), 14629731923},
{20244389, common.HexToHash("0x1e733f0db9ef21183107259b3c2408c78fa5a01469928cd295f3ea7e8eedda45"), 14696840011},
{20288489, common.HexToHash("0xb5ad7edd86b181226c8c7be0a08069e3955234e797426843fff9de0f57ec59cc"), 14763949714},
{20333582, common.HexToHash("0x8040c209f5cd1738ee0f85c2f1db7c43a420d148680c7390fd1701b9f0bb671a"), 14831058335},
{20377087, common.HexToHash("0x08fdc4cd246b6ae9d4a45646b0aed6af3bb330eb6cd4c8b93646157e7b002b84"), 14898167722},
{20421699, common.HexToHash("0x5a2912b5fc2f02df33b655155990f92dcaacda5b75427fe3d87fb38f36b1c17d"), 14965275691},
{20467194, common.HexToHash("0x3deaf4325c461004b090b0261996c645ab529c1471feaf7dc2bbe1f128180297"), 15032385211},
{20512397, common.HexToHash("0x37e39697ec1b7683a6202be250ffaee7a1102e8030f87550b94af05ec66cec83"), 15099493973},
{20557443, common.HexToHash("0x8e9c04468f3111eab8b1f6a58b277862c624861c237cadecc53ec249bd811bda"), 15166602882},
{20595899, common.HexToHash("0x9787555fe57e4650002257eb2c88f1ef435b99d406e33fe2f889be180123ef25"), 15233709908},
{20638606, common.HexToHash("0x70681cffd159ce2e580dbbbe8fa6b5343dbcb081429cdda6c577e615bef4ef05"), 15300820678},
{20683605, common.HexToHash("0xb32662d5e241132ffe2249caea67f5746a6f4382297b2ac87c81e2794faf1f7a"), 15367929350},
{20728630, common.HexToHash("0x15a817c846928b673032d5eacd0cff7a04217d268457aa30a322ecca32be4d49"), 15435037830},
{20771519, common.HexToHash("0x542bc7b9804bbc45f4be470f4dc56f215a4dec71fed71eba2ffc804afd262b95"), 15502145990},
{20815097, common.HexToHash("0x798cdd51c964fcf18561d70095d9613b84ba836817972799c9dfd0bfbe1e042b"), 15569256033},
{20857859, common.HexToHash("0xfb5bb066d419a651d8e0186569eb4e8d8bcd5181d8f02e0d578b5dfe2fc738dd"), 15636364671},
{20896890, common.HexToHash("0x834b8d6fad779e4cf8214128f6c93d7387b6d6279e517f6f0a284b5d831cc3ae"), 15703472902},
{20939387, common.HexToHash("0x7adee7c78420c711efa216c61e0b561e581d7ff0331efd91ee16a609b34cfdc2"), 15770582325},
{20981303, common.HexToHash("0x6f5d7b0cc6dad5eb258176e07de21795a8347d68f7303f06934046e0236bea6d"), 15837691713},
{21023216, common.HexToHash("0x96cfe35a45df1297a36f42c59ebe706ab0473dfbf59ce910b5c5a8dbf696de1c"), 15904799667},
{21068378, common.HexToHash("0x93753875ff330d922b23f823203198f3b1bb8833367c6b6a8f896ff54be2c12d"), 15971909040},
{21112445, common.HexToHash("0x6ac02fa6ae486b86aba562eaf6f3d883befaa8ebedcfd8d74bdb7368d42deee3"), 16039003625},
{21155992, common.HexToHash("0x25f76896b4b693bafb79e9a535e2bf00ed62a577e35209749346e8e79a60bb71"), 16106126344},
{21200962, common.HexToHash("0x725f2befe913cb2659d262e2d3b6f79a706b31c557d52669471da22347ec8287"), 16173235265},
{21244663, common.HexToHash("0x6778c4194f54e70939da38853daddb22bfaf160d35617ab05d0f5c476741147b"), 16240344735},
{21290273, common.HexToHash("0x433ac819c40bd3061205fe0ece0645eec73f54a0a5c1559c981f983345bc0154"), 16307453543},
{21336156, common.HexToHash("0x261dc8c1639d505624150d2388d15ed10bfb4c3ce9c0c327a4ec26531689a097"), 16374562466},
{21378880, common.HexToHash("0x5c78b2b70553140dfdfdd4f415b98f88e74f74662315834038fd99042277d917"), 16441671104},
{21421613, common.HexToHash("0x854532f9d1c77627b763f9cbc7099a653d59554ed57fa763bc218834c82955fe"), 16508780351},
{21466875, common.HexToHash("0xb8b83cc62084e948235ef4b5973bf7fd988fa28bcaa72f7d38ad8e50de729618"), 16575888599},
{21511942, common.HexToHash("0xe806a28bc1b7f8cd752c8ceedbe081d49773d4558a9fb95e3357c0c07172522d"), 16642996907},
{21550291, common.HexToHash("0x1f3e26d303e7a2a9b0614f12f62b189da365b3947c5fe2d99ed2711b37fe7daa"), 16710106826},
{21592690, common.HexToHash("0xa1408cfbc693faee4425e8fd9e83a181be535c33f874b56c3a7a114404c4f686"), 16777215566},
{21636275, common.HexToHash("0x704734c2d0351f8ccd38721a9a4b80c063368afaaa857518d98498180a502bba"), 16844323959},
},
}

@ -0,0 +1,679 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"fmt"
"os"
"bytes"
"errors"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/lru"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/ethdb/leveldb"
"github.com/ethereum/go-ethereum/log"
)
// FilterMaps is the in-memory representation of the log index structure that is
// responsible for building and updating the index according to the canonical
// chain.
// Note that FilterMaps implements the same data structure as proposed in EIP-7745
// without the tree hashing and consensus changes:
// https://eips.ethereum.org/EIPS/eip-7745
type FilterMaps struct {
closeCh chan struct{}
closeWg sync.WaitGroup
history, unindexLimit uint64
noHistory bool
exportFileName string
Params
db ethdb.KeyValueStore
// fields written by the indexer and read by matcher backend. Indexer can
// read them without a lock and write them under indexLock write lock.
// Matcher backend can read them under indexLock read lock.
indexLock sync.RWMutex
filterMapsRange
indexedView chainView // always consistent with the log index
// also accessed by indexer and matcher backend but no locking needed.
filterMapCache *lru.Cache[uint32, filterMap]
lastBlockCache *lru.Cache[uint32, lastBlockOfMap]
lvPointerCache *lru.Cache[uint64, uint64]
baseRowsCache *lru.Cache[uint64, [][]uint32]
// the matchers set and the fields of FilterMapsMatcherBackend instances are
// read and written both by exported functions and the indexer.
// Note that if both indexLock and matchersLock needs to be locked then
// indexLock should be locked first.
matchersLock sync.Mutex
matchers map[*FilterMapsMatcherBackend]struct{}
// fields only accessed by the indexer (no mutex required).
renderSnapshots *lru.Cache[uint64, *renderedMap]
startedHeadIndex, startedTailIndex, startedTailUnindex bool
startedHeadIndexAt, startedTailIndexAt, startedTailUnindexAt time.Time
loggedHeadIndex, loggedTailIndex bool
lastLogHeadIndex, lastLogTailIndex time.Time
ptrHeadIndex, ptrTailIndex, ptrTailUnindexBlock uint64
ptrTailUnindexMap uint32
targetView chainView
matcherSyncRequest *FilterMapsMatcherBackend
stop bool
TargetViewCh chan chainView
BlockProcessingCh chan bool
blockProcessing bool
matcherSyncCh chan *FilterMapsMatcherBackend
waitIdleCh chan chan bool
tailRenderer *mapRenderer
// test hooks
testDisableSnapshots, testSnapshotUsed bool
}
// filterMap is a full or partial in-memory representation of a filter map where
// rows are allowed to have a nil value meaning the row is not stored in the
// structure. Note that therefore a known empty row should be represented with
// a zero-length slice.
// It can be used as a memory cache or an overlay while preparing a batch of
// changes to the structure. In either case a nil value should be interpreted
// as transparent (uncached/unchanged).
type filterMap []FilterRow
// copy returns a copy of the given filter map. Note that the row slices are
// copied but their contents are not. This permits extending the rows further
// (which happens during map rendering) without affecting the validity of
// copies made for snapshots during rendering.
func (fm filterMap) copy() filterMap {
c := make(filterMap, len(fm))
copy(c, fm)
return c
}
// FilterRow encodes a single row of a filter map as a list of column indices.
// Note that the values are always stored in the same order as they were added
// and if the same column index is added twice, it is also stored twice.
// Order of column indices and potential duplications do not matter when searching
// for a value but leaving the original order makes reverting to a previous state
// simpler.
type FilterRow []uint32
// Equal returns true if the given filter rows are equivalent.
func (a FilterRow) Equal(b FilterRow) bool {
if len(a) != len(b) {
return false
}
for i, v := range a {
if b[i] != v {
return false
}
}
return true
}
// filterMapsRange describes the rendered range of filter maps and the range
// of fully rendered blocks.
type filterMapsRange struct {
initialized bool
targetBlockNumber uint64
targetBlockId common.Hash
headBlockDelimiter uint64 // zero if afterLastIndexedBlock != targetBlockNumber
// if initialized then all maps are rendered between firstRenderedMap and
// afterLastRenderedMap-1
firstRenderedMap, afterLastRenderedMap uint32
// if tailPartialEpoch > 0 then maps between firstRenderedMap-mapsPerEpoch and
// firstRenderedMap-mapsPerEpoch+tailPartialEpoch-1 are rendered
tailPartialEpoch uint32
// if initialized then all log values belonging to blocks between
// firstIndexedBlock and afterLastIndexedBlock are fully rendered
// blockLvPointers are available between firstIndexedBlock and afterLastIndexedBlock-1
firstIndexedBlock, afterLastIndexedBlock uint64
}
// hasIndexedBlocks returns true if the range has at least one fully indexed block.
func (fmr *filterMapsRange) hasIndexedBlocks() bool {
return fmr.initialized && fmr.afterLastIndexedBlock > fmr.firstIndexedBlock
}
// lastBlockOfMap is used for caching the (number, id) pairs belonging to the
// last block of each map.
type lastBlockOfMap struct {
number uint64
id common.Hash
}
// NewFilterMaps creates a new FilterMaps and starts the indexer.
func NewFilterMaps(db ethdb.KeyValueStore, initView chainView, params Params, history, unindexLimit uint64, noHistory bool, exportFileName string) *FilterMaps {
rs, initialized, err := rawdb.ReadFilterMapsRange(db)
if err != nil {
log.Error("Error reading log index range", "error", err)
}
params.deriveFields()
f := &FilterMaps{
db: db,
closeCh: make(chan struct{}),
waitIdleCh: make(chan chan bool),
TargetViewCh: make(chan chainView),
BlockProcessingCh: make(chan bool),
history: history,
noHistory: noHistory,
unindexLimit: unindexLimit,
exportFileName: exportFileName,
Params: params,
filterMapsRange: filterMapsRange{
initialized: initialized,
targetBlockId: rs.TargetBlockId,
targetBlockNumber: rs.TargetBlockNumber,
headBlockDelimiter: rs.HeadBlockDelimiter,
firstIndexedBlock: rs.FirstIndexedBlock,
afterLastIndexedBlock: rs.AfterLastIndexedBlock,
firstRenderedMap: rs.FirstRenderedMap,
afterLastRenderedMap: rs.AfterLastRenderedMap,
tailPartialEpoch: rs.TailPartialEpoch,
},
matcherSyncCh: make(chan *FilterMapsMatcherBackend),
matchers: make(map[*FilterMapsMatcherBackend]struct{}),
filterMapCache: lru.NewCache[uint32, filterMap](3), //TODO named consts
lastBlockCache: lru.NewCache[uint32, lastBlockOfMap](1000),
lvPointerCache: lru.NewCache[uint64, uint64](1000),
baseRowsCache: lru.NewCache[uint64, [][]uint32](100),
renderSnapshots: lru.NewCache[uint64, *renderedMap](cachedRevertPoints),
}
f.targetView = initView
if f.initialized {
f.indexedView = f.initChainView(f.targetView)
f.targetBlockNumber = f.indexedView.headNumber()
f.targetBlockId = f.indexedView.getBlockId(f.targetBlockNumber)
}
if f.hasIndexedBlocks() {
log.Info("Log index range", "first block", f.firstIndexedBlock, "last block", f.afterLastIndexedBlock-1, "first map", f.firstRenderedMap, "last map", f.afterLastRenderedMap-1)
}
f.exportCheckpoints()
return f
}
// Start starts the indexer.
func (f *FilterMaps) Start() {
if !f.testDisableSnapshots && f.initialized &&
f.afterLastIndexedBlock == f.targetBlockNumber+1 &&
f.firstRenderedMap < f.afterLastRenderedMap {
// previous target head rendered; load last map as snapshot
if err := f.loadHeadSnapshot(); err != nil {
log.Error("Could not load head filter map snapshot", "error", err)
}
}
f.closeWg.Add(1)
go f.indexerLoop()
}
// Stop ensures that the indexer is fully stopped before returning.
func (f *FilterMaps) Stop() {
close(f.closeCh)
f.closeWg.Wait()
}
// initChainView returns a chain view consistent with both the current target
// view and the current state of the log index as found in the database, based
// on the last block of stored maps.
// Note that the returned view might be shorter than the existing index if
// the latest maps are not consistent with targetView.
func (f *FilterMaps) initChainView(chainView chainView) chainView {
mapIndex := f.afterLastRenderedMap
for {
var ok bool
mapIndex, ok = f.lastMapBoundaryBefore(mapIndex)
if !ok {
break
}
lastBlockNumber, lastBlockId, err := f.getLastBlockOfMap(mapIndex)
if err != nil {
log.Error("Could not initialize indexed chain view", "error", err)
break
}
if lastBlockNumber <= chainView.headNumber() && chainView.getBlockId(lastBlockNumber) == lastBlockId {
return newLimitedChainView(chainView, lastBlockNumber)
}
}
return newLimitedChainView(chainView, 0)
}
// reset un-initializes the FilterMaps structure and removes all related data from
// the database. The function returns true if everything was successfully removed.
func (f *FilterMaps) reset() bool {
f.indexLock.Lock()
f.filterMapsRange = filterMapsRange{}
f.indexedView = nil
f.filterMapCache.Purge()
f.renderSnapshots.Purge()
f.lastBlockCache.Purge()
f.lvPointerCache.Purge()
f.baseRowsCache.Purge()
f.indexLock.Unlock()
// deleting the range first ensures that resetDb will be called again at next
// startup and any leftover data will be removed even if it cannot finish now.
rawdb.DeleteFilterMapsRange(f.db)
return f.removeDbWithPrefix(rawdb.FilterMapsPrefix, "Resetting log index database")
}
// init initializes an empty log index according to the current targetView.
func (f *FilterMaps) init() error {
var bestIdx, bestLen int
for idx, checkpointList := range checkpoints {
// binary search for the last matching epoch head
min, max := 0, len(checkpointList)
for min < max {
mid := (min + max + 1) / 2
cp := checkpointList[mid-1]
if cp.blockNumber <= f.targetView.headNumber() && f.targetView.getBlockId(cp.blockNumber) == cp.blockId {
min = mid
} else {
max = mid - 1
}
}
if max > bestLen {
bestIdx, bestLen = idx, max
}
}
batch := f.db.NewBatch()
for epoch := 0; epoch < bestLen; epoch++ {
cp := checkpoints[bestIdx][epoch]
f.storeLastBlockOfMap(batch, (uint32(epoch+1)<<f.logMapsPerEpoch)-1, cp.blockNumber, cp.blockId)
f.storeBlockLvPointer(batch, cp.blockNumber, cp.firstLvIndex)
}
fmr := filterMapsRange{
initialized: true,
targetBlockId: f.targetView.getBlockId(f.targetView.headNumber()),
targetBlockNumber: f.targetView.headNumber(),
}
if bestLen > 0 {
cp := checkpoints[bestIdx][bestLen-1]
fmr.firstIndexedBlock = cp.blockNumber + 1
fmr.afterLastIndexedBlock = cp.blockNumber + 1
fmr.firstRenderedMap = uint32(bestLen) << f.logMapsPerEpoch
fmr.afterLastRenderedMap = uint32(bestLen) << f.logMapsPerEpoch
}
f.indexedView = f.targetView
f.setRange(batch, fmr, true)
return batch.Write()
}
// removeDbWithPrefix removes data with the given prefix from the database and
// returns true if everything was successfully removed.
func (f *FilterMaps) removeDbWithPrefix(prefix []byte, action string) bool {
it := f.db.NewIterator(prefix, nil)
hasData := it.Next()
it.Release()
if !hasData {
return true
}
end := bytes.Clone(prefix)
end[len(end)-1]++
start := time.Now()
var retry bool
for {
err := f.db.DeleteRange(prefix, end)
if err == nil {
log.Info(action+" finished", "elapsed", time.Since(start))
return true
}
if err != leveldb.ErrTooManyKeys {
log.Error(action+" failed", "error", err)
return false
}
select {
case <-f.closeCh:
return false
default:
}
if !retry {
log.Info(action + " in progress...")
retry = true
}
}
}
// setRange updates the covered range and also adds the changes to the given batch.
// Note that this function assumes that the index write lock is being held.
func (f *FilterMaps) setRange(batch ethdb.KeyValueWriter, newRange filterMapsRange, updateMatchers bool) {
if f.indexedView != nil && f.indexedView.getBlockId(newRange.targetBlockNumber) != newRange.targetBlockId {
panic("indexed range inconsistent with canonical chain")
}
f.filterMapsRange = newRange
if updateMatchers {
f.updateMatchersValidRange()
}
if newRange.initialized {
rs := rawdb.FilterMapsRange{
TargetBlockId: newRange.targetBlockId,
TargetBlockNumber: newRange.targetBlockNumber,
HeadBlockDelimiter: newRange.headBlockDelimiter,
FirstIndexedBlock: newRange.firstIndexedBlock,
AfterLastIndexedBlock: newRange.afterLastIndexedBlock,
FirstRenderedMap: newRange.firstRenderedMap,
AfterLastRenderedMap: newRange.afterLastRenderedMap,
TailPartialEpoch: newRange.tailPartialEpoch,
}
rawdb.WriteFilterMapsRange(batch, rs)
} else {
rawdb.DeleteFilterMapsRange(batch)
}
}
// getLogByLvIndex returns the log at the given log value index. If the index does
// not point to the first log value entry of a log then no log and no error are
// returned as this can happen when the log value index was a false positive.
// Note that this function assumes that the log index structure is consistent
// with the canonical chain at the point where the given log value index points.
// If this is not the case then an invalid result or an error may be returned.
// Note that this function assumes that the indexer read lock is being held when
// called from outside the updateLoop goroutine.
func (f *FilterMaps) getLogByLvIndex(lvIndex uint64) (*types.Log, error) {
mapIndex := uint32(lvIndex >> f.logValuesPerMap)
if mapIndex < f.firstRenderedMap || mapIndex >= f.afterLastRenderedMap {
return nil, nil
}
// find possible block range based on map to block pointers
lastBlockNumber, _, err := f.getLastBlockOfMap(mapIndex)
var firstBlockNumber uint64
if mapIndex > 0 {
firstBlockNumber, _, err = f.getLastBlockOfMap(mapIndex - 1)
if err != nil {
return nil, err
}
}
if firstBlockNumber < f.firstIndexedBlock {
firstBlockNumber = f.firstIndexedBlock
}
// find block with binary search based on block to log value index pointers
for firstBlockNumber < lastBlockNumber {
midBlockNumber := (firstBlockNumber + lastBlockNumber + 1) / 2
midLvPointer, err := f.getBlockLvPointer(midBlockNumber)
if err != nil {
return nil, err
}
if lvIndex < midLvPointer {
lastBlockNumber = midBlockNumber - 1
} else {
firstBlockNumber = midBlockNumber
}
}
// get block receipts
receipts := f.indexedView.getReceipts(firstBlockNumber)
if receipts == nil {
return nil, errors.New("receipts not found")
}
lvPointer, err := f.getBlockLvPointer(firstBlockNumber)
if err != nil {
return nil, err
}
// iterate through receipts to find the exact log starting at lvIndex
for _, receipt := range receipts {
for _, log := range receipt.Logs {
if lvPointer > lvIndex {
// lvIndex does not point to the first log value (address value)
// generated by a log as true matches should always do, so it
// is considered a false positive (no log and no error returned).
return nil, nil
}
if lvPointer == lvIndex {
return log, nil // potential match
}
lvPointer += uint64(len(log.Topics) + 1)
}
}
return nil, nil
}
// getFilterMap fetches an entire filter map from the database.
func (f *FilterMaps) getFilterMap(mapIndex uint32) (filterMap, error) {
if fm, ok := f.filterMapCache.Get(mapIndex); ok {
return fm, nil
}
fm := make(filterMap, f.mapHeight)
for rowIndex := range fm {
var err error
fm[rowIndex], err = f.getFilterMapRow(mapIndex, uint32(rowIndex), false)
if err != nil {
return nil, err
}
}
f.filterMapCache.Add(mapIndex, fm)
return fm, nil
}
// getFilterMapRow fetches the given filter map row. If baseLayerOnly is true
// then only the first baseRowLength entries are returned.
func (f *FilterMaps) getFilterMapRow(mapIndex, rowIndex uint32, baseLayerOnly bool) (FilterRow, error) {
baseMapRowIndex := f.mapRowIndex(mapIndex & -f.baseRowGroupLength, rowIndex)
baseRows, ok := f.baseRowsCache.Get(baseMapRowIndex)
if !ok {
var err error
baseRows, err = rawdb.ReadFilterMapBaseRows(f.db, baseMapRowIndex, f.baseRowGroupLength)
if err != nil {
return nil, err
}
f.baseRowsCache.Add(baseMapRowIndex, baseRows)
}
baseRow := baseRows[mapIndex & (f.baseRowGroupLength-1)]
if baseLayerOnly {
return baseRow, nil
}
extRow, err := rawdb.ReadFilterMapExtRow(f.db, f.mapRowIndex(mapIndex, rowIndex))
if err != nil {
return nil, err
}
return FilterRow(append(baseRow, extRow...)), nil
}
// storeFilterMapRows stores a set of filter map rows at the corresponding map
// indices and a shared row index.
func (f *FilterMaps) storeFilterMapRows(batch ethdb.Batch, mapIndices []uint32, rowIndex uint32, rows []FilterRow) error {
for len(mapIndices) > 0 {
baseMapIndex := mapIndices[0] & -f.baseRowGroupLength
groupLength := 1
for groupLength < len(mapIndices) && mapIndices[groupLength] & -f.baseRowGroupLength == baseMapIndex {
groupLength++
}
if err := f.storeFilterMapRowsOfGroup(batch, mapIndices[:groupLength], rowIndex, rows[:groupLength]); err != nil {
return err
}
mapIndices, rows = mapIndices[groupLength:], rows[groupLength:]
}
return nil
}
// storeFilterMapRowsOfGroup stores a set of filter map rows at map indices
// belonging to the same base row group.
func (f *FilterMaps) storeFilterMapRowsOfGroup(batch ethdb.Batch, mapIndices []uint32, rowIndex uint32, rows []FilterRow) error {
baseMapIndex := mapIndices[0] & -f.baseRowGroupLength
baseMapRowIndex := f.mapRowIndex(baseMapIndex, rowIndex)
baseRows, ok := f.baseRowsCache.Get(baseMapRowIndex)
if !ok {
var err error
baseRows, err = rawdb.ReadFilterMapBaseRows(f.db, baseMapRowIndex, f.baseRowGroupLength)
if err != nil {
return err
}
}
for i, mapIndex := range mapIndices {
if mapIndex & -f.baseRowGroupLength != baseMapIndex {
panic("mapIndices are not in the same base row group")
}
baseRow := []uint32(rows[i])
var extRow FilterRow
if uint32(len(rows[i])) > f.baseRowLength {
extRow = baseRow[f.baseRowLength:]
baseRow = baseRow[:f.baseRowLength]
}
baseRows[mapIndex & (f.baseRowGroupLength-1)] = baseRow
rawdb.WriteFilterMapExtRow(batch, f.mapRowIndex(mapIndex, rowIndex), extRow)
}
f.baseRowsCache.Add(baseMapRowIndex, baseRows)
rawdb.WriteFilterMapBaseRows(batch, baseMapRowIndex, baseRows)
return nil
}
// mapRowIndex calculates the unified storage index where the given row of the
// given map is stored. Note that this indexing scheme is the same as the one
// proposed in EIP-7745 for tree-hashing the filter map structure and for the
// same data proximity reasons it is also suitable for database representation.
// See also:
// https://eips.ethereum.org/EIPS/eip-7745#hash-tree-structure
func (f *FilterMaps) mapRowIndex(mapIndex, rowIndex uint32) uint64 {
epochIndex, mapSubIndex := mapIndex>>f.logMapsPerEpoch, mapIndex&(f.mapsPerEpoch-1)
return (uint64(epochIndex)<<f.logMapHeight+uint64(rowIndex))<<f.logMapsPerEpoch + uint64(mapSubIndex)
}
// getBlockLvPointer returns the starting log value index where the log values
// generated by the given block are located. If blockNumber is beyond the current
// head then the first unoccupied log value index is returned.
// Note that this function assumes that the indexer read lock is being held when
// called from outside the updateLoop goroutine.
func (f *FilterMaps) getBlockLvPointer(blockNumber uint64) (uint64, error) {
if blockNumber > f.targetBlockNumber && f.targetBlockNumber+1 == f.afterLastIndexedBlock {
return f.headBlockDelimiter, nil
}
if lvPointer, ok := f.lvPointerCache.Get(blockNumber); ok {
return lvPointer, nil
}
lvPointer, err := rawdb.ReadBlockLvPointer(f.db, blockNumber)
if err != nil {
return 0, err
}
f.lvPointerCache.Add(blockNumber, lvPointer)
return lvPointer, nil
}
// storeBlockLvPointer stores the starting log value index where the log values
// generated by the given block are located.
func (f *FilterMaps) storeBlockLvPointer(batch ethdb.Batch, blockNumber, lvPointer uint64) {
f.lvPointerCache.Add(blockNumber, lvPointer)
rawdb.WriteBlockLvPointer(batch, blockNumber, lvPointer)
}
// deleteBlockLvPointer deletes the starting log value index where the log values
// generated by the given block are located.
func (f *FilterMaps) deleteBlockLvPointer(batch ethdb.Batch, blockNumber uint64) {
f.lvPointerCache.Remove(blockNumber)
rawdb.DeleteBlockLvPointer(batch, blockNumber)
}
// getLastBlockOfMap returns the number and id of the block that generated the
// last log value entry of the given map.
func (f *FilterMaps) getLastBlockOfMap(mapIndex uint32) (uint64, common.Hash, error) {
if lastBlock, ok := f.lastBlockCache.Get(mapIndex); ok {
return lastBlock.number, lastBlock.id, nil
}
number, id, err := rawdb.ReadFilterMapLastBlock(f.db, mapIndex)
if err != nil {
return 0, common.Hash{}, err
}
f.lastBlockCache.Add(mapIndex, lastBlockOfMap{number: number, id: id})
return number, id, nil
}
// storeLastBlockOfMap stores the number of the block that generated the last
// log value entry of the given map.
func (f *FilterMaps) storeLastBlockOfMap(batch ethdb.Batch, mapIndex uint32, number uint64, id common.Hash) {
f.lastBlockCache.Add(mapIndex, lastBlockOfMap{number: number, id: id})
rawdb.WriteFilterMapLastBlock(batch, mapIndex, number, id)
}
// deleteLastBlockOfMap deletes the number of the block that generated the last
// log value entry of the given map.
func (f *FilterMaps) deleteLastBlockOfMap(batch ethdb.Batch, mapIndex uint32) {
f.lastBlockCache.Remove(mapIndex)
rawdb.DeleteFilterMapLastBlock(batch, mapIndex)
}
func (f *FilterMaps) deleteTailEpoch(epoch uint32) error {
firstMap := epoch << f.logMapsPerEpoch
lastBlock, _, err := f.getLastBlockOfMap(firstMap + f.mapsPerEpoch - 1)
if err != nil {
return err
}
var firstBlock uint64
if epoch > 0 {
firstBlock, _, err = f.getLastBlockOfMap(firstMap - 1)
if err != nil {
return err
}
firstBlock++
}
fmr := f.filterMapsRange
if f.firstRenderedMap == firstMap && f.afterLastRenderedMap > firstMap+f.mapsPerEpoch && f.tailPartialEpoch == 0 {
fmr.firstRenderedMap = firstMap + f.mapsPerEpoch
fmr.firstIndexedBlock = lastBlock + 1
} else if f.firstRenderedMap == firstMap+f.mapsPerEpoch {
fmr.tailPartialEpoch = 0
} else {
return errors.New("invalid tail epoch number")
}
f.setRange(f.db, fmr, true)
rawdb.DeleteFilterMapRows(f.db, f.mapRowIndex(firstMap, 0), f.mapRowIndex(firstMap+f.mapsPerEpoch, 0))
for mapIndex := firstMap; mapIndex < firstMap+f.mapsPerEpoch; mapIndex++ {
f.filterMapCache.Remove(mapIndex)
}
rawdb.DeleteFilterMapLastBlocks(f.db, firstMap, firstMap+f.mapsPerEpoch-1) // keep last enrty
for mapIndex := firstMap; mapIndex < firstMap+f.mapsPerEpoch-1; mapIndex++ {
f.lastBlockCache.Remove(mapIndex)
}
rawdb.DeleteBlockLvPointers(f.db, firstBlock, lastBlock) // keep last enrty
for blockNumber := firstBlock; blockNumber < lastBlock; blockNumber++ {
f.lvPointerCache.Remove(blockNumber)
}
return nil
}
// exportCheckpoints exports epoch checkpoints in the format used by checkpoints.go.
func (f *FilterMaps) exportCheckpoints() {
if f.exportFileName == "" {
return
}
w, err := os.Create(f.exportFileName)
if err != nil {
log.Error("Error creating checkpoint export file", "name", f.exportFileName, "error", err)
return
}
defer w.Close()
epochCount := f.afterLastRenderedMap >> f.logMapsPerEpoch
log.Info("Exporting log index checkpoints", "epochs", epochCount, "file", f.exportFileName)
w.WriteString("\t{\n")
for epoch := uint32(0); epoch < epochCount; epoch++ {
lastBlock, lastBlockId, err := f.getLastBlockOfMap((epoch+1)<<f.logMapsPerEpoch - 1)
if err != nil {
log.Error("Error fetching last block of epoch", "epoch", epoch, "error", err)
return
}
lvPtr, err := f.getBlockLvPointer(lastBlock)
if err != nil {
log.Error("Error fetching log value pointer of last block", "block", lastBlock, "error", err)
return
}
w.WriteString(fmt.Sprintf("\t\t{%d, common.HexToHash(\"0x%064x\"), %d},\n", lastBlock, lastBlockId, lvPtr))
}
w.WriteString("\t},\n")
}

@ -0,0 +1,349 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"math"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
)
const (
cachedRevertPoints = 8 // revert points for most recent blocks in memory
logFrequency = time.Second * 20 // log info frequency during long indexing/unindexing process
headLogDelay = time.Second // head indexing log info delay (do not log if finished faster)
)
// updateLoop initializes and updates the log index structure according to the
// current targetView.
func (f *FilterMaps) indexerLoop() {
defer f.closeWg.Done()
if f.noHistory {
f.reset()
return
}
log.Info("Started log indexer")
for !f.stop {
if !f.initialized {
if err := f.init(); err != nil {
log.Error("Error initializing log index", "error", err)
f.waitForEvent()
continue
}
}
if !f.targetHeadIndexed() {
if !f.tryIndexHead() {
f.waitForEvent()
}
} else {
if f.tryIndexTail() && f.tryUnindexTail() {
f.waitForEvent()
}
}
}
}
// WaitIdle blocks until the indexer is in an idle state while synced up to the
// latest targetView.
func (f *FilterMaps) WaitIdle() {
if f.noHistory {
f.closeWg.Wait()
return
}
for {
ch := make(chan bool)
f.waitIdleCh <- ch
if <-ch {
return
}
}
}
// waitForEvent blocks until an event happens that the indexer might react to.
func (f *FilterMaps) waitForEvent() {
for !f.stop && (f.blockProcessing || f.targetHeadIndexed()) {
f.processSingleEvent(true)
}
}
// processEvents processes all events, blocking only if a block processing is
// happening and indexing should be suspended.
func (f *FilterMaps) processEvents() {
for !f.stop && f.processSingleEvent(f.blockProcessing) {
}
}
// processSingleEvent processes a single event either in a blocking or
// non-blocking manner.
func (f *FilterMaps) processSingleEvent(blocking bool) bool {
if f.matcherSyncRequest != nil {
f.matcherSyncRequest.synced(f.targetBlockNumber)
f.matcherSyncRequest = nil
}
if blocking {
select {
case targetView := <-f.TargetViewCh:
f.setTargetView(targetView)
case f.matcherSyncRequest = <-f.matcherSyncCh:
case f.blockProcessing = <-f.BlockProcessingCh:
case <-f.closeCh:
f.stop = true
case ch := <-f.waitIdleCh:
ch <- !f.blockProcessing && f.targetHeadIndexed()
}
} else {
select {
case targetView := <-f.TargetViewCh:
f.setTargetView(targetView)
case f.matcherSyncRequest = <-f.matcherSyncCh:
case f.blockProcessing = <-f.BlockProcessingCh:
case <-f.closeCh:
f.stop = true
default:
return false
}
}
return true
}
// setTargetView updates the target chain view of the iterator.
func (f *FilterMaps) setTargetView(targetView chainView) {
if equalViews(f.targetView, targetView) {
return
}
f.targetView = targetView
}
// tryIndexHead tries to render head maps according to the current targetView
// and returns true if successful.
func (f *FilterMaps) tryIndexHead() bool {
if f.targetView == nil {
return false
}
headRenderer, err := f.renderMapsBefore(math.MaxUint32)
if err != nil {
log.Error("Error creating log index head renderer", "error", err)
return false
}
if headRenderer == nil {
return true
}
if !f.startedHeadIndex {
f.lastLogHeadIndex = time.Now()
f.startedHeadIndexAt = f.lastLogHeadIndex
f.startedHeadIndex = true
f.ptrHeadIndex = f.afterLastIndexedBlock
}
if _, err := headRenderer.run(func() bool {
f.processEvents()
return f.stop
}, func() {
f.tryUnindexTail()
if f.hasIndexedBlocks() && f.afterLastIndexedBlock >= f.ptrHeadIndex &&
((!f.loggedHeadIndex && time.Since(f.startedHeadIndexAt) > headLogDelay) ||
time.Since(f.lastLogHeadIndex) > logFrequency) {
log.Info("Log index head rendering in progress",
"first block", f.firstIndexedBlock, "last block", f.afterLastIndexedBlock-1,
"processed", f.afterLastIndexedBlock-f.ptrHeadIndex,
"remaining", f.targetBlockNumber+1-f.afterLastIndexedBlock,
"elapsed", common.PrettyDuration(time.Since(f.startedHeadIndexAt)))
f.loggedHeadIndex = true
f.lastLogHeadIndex = time.Now()
}
}); err != nil {
log.Error("Log index head rendering failed", "error", err)
return false
}
if f.loggedHeadIndex {
log.Info("Log index head rendering finished",
"first block", f.firstIndexedBlock, "last block", f.afterLastIndexedBlock-1,
"processed", f.afterLastIndexedBlock-f.ptrHeadIndex,
"elapsed", common.PrettyDuration(time.Since(f.startedHeadIndexAt)))
}
f.loggedHeadIndex, f.startedHeadIndex = false, false
return true
}
// tryIndexTail tries to render tail epochs until the tail target block is
// indexed and returns true if successful.
// Note that tail indexing is only started if the log index head is fully
// rendered according to targetView and is suspended as soon as the targetView
// is changed.
func (f *FilterMaps) tryIndexTail() bool {
for firstEpoch := f.firstRenderedMap >> f.logMapsPerEpoch; firstEpoch > 0 && f.needTailEpoch(firstEpoch-1); {
f.processEvents()
if f.stop || !f.targetHeadIndexed() {
return false
}
// resume process if tail rendering was interrupted because of head rendering
tailRenderer := f.tailRenderer
f.tailRenderer = nil
if tailRenderer != nil && tailRenderer.afterLastMap != f.firstRenderedMap {
tailRenderer = nil
}
if tailRenderer == nil {
var err error
tailRenderer, err = f.renderMapsBefore(f.firstRenderedMap)
if err != nil {
log.Error("Error creating log index tail renderer", "error", err)
return false
}
}
if tailRenderer == nil {
return true
}
if !f.startedTailIndex {
f.lastLogTailIndex = time.Now()
f.startedTailIndexAt = f.lastLogTailIndex
f.startedTailIndex = true
f.ptrTailIndex = f.firstIndexedBlock - f.tailPartialBlocks()
}
done, err := tailRenderer.run(func() bool {
f.processEvents()
return f.stop || !f.targetHeadIndexed()
}, func() {
tpb, ttb := f.tailPartialBlocks(), f.tailTargetBlock()
remaining := uint64(1)
if f.firstIndexedBlock > ttb+tpb {
remaining = f.firstIndexedBlock - ttb - tpb
}
if f.hasIndexedBlocks() && f.ptrTailIndex >= f.firstIndexedBlock &&
(!f.loggedTailIndex || time.Since(f.lastLogTailIndex) > logFrequency) {
log.Info("Log index tail rendering in progress",
"first block", f.firstIndexedBlock, "last block", f.afterLastIndexedBlock-1,
"processed", f.ptrTailIndex-f.firstIndexedBlock+tpb,
"remaining", remaining,
"next tail epoch percentage", f.tailPartialEpoch*100/f.mapsPerEpoch,
"elapsed", common.PrettyDuration(time.Since(f.startedTailIndexAt)))
f.loggedTailIndex = true
f.lastLogTailIndex = time.Now()
}
})
if err != nil {
log.Error("Log index tail rendering failed", "error", err)
}
if !done {
f.tailRenderer = tailRenderer // only keep tail renderer if interrupted by stopCb
return false
}
}
if f.loggedTailIndex {
log.Info("Log index tail rendering finished",
"first block", f.firstIndexedBlock, "last block", f.afterLastIndexedBlock-1,
"processed", f.ptrTailIndex-f.firstIndexedBlock,
"elapsed", common.PrettyDuration(time.Since(f.startedTailIndexAt)))
f.loggedTailIndex = false
}
return true
}
// tryUnindexTail removes entire epochs of log index data as long as the first
// fully indexed block is at least as old as the tail target.
// Note that unindexing is very quick as it only removes continuous ranges of
// data from the database and is also called while running head indexing.
func (f *FilterMaps) tryUnindexTail() bool {
for {
firstEpoch := (f.firstRenderedMap - f.tailPartialEpoch) >> f.logMapsPerEpoch
if f.needTailEpoch(firstEpoch) {
break
}
f.processEvents()
if f.stop {
return false
}
if !f.startedTailUnindex {
f.startedTailUnindexAt = time.Now()
f.startedTailUnindex = true
f.ptrTailUnindexMap = f.firstRenderedMap - f.tailPartialEpoch
f.ptrTailUnindexBlock = f.firstIndexedBlock
}
if err := f.deleteTailEpoch(firstEpoch); err != nil {
log.Error("Log index tail epoch unindexing failed", "error", err)
return false
}
}
if f.startedTailUnindex {
log.Info("Log index tail unindexing finished",
"first block", f.firstIndexedBlock, "last block", f.afterLastIndexedBlock-1,
"removed maps", f.ptrTailUnindexMap-f.firstRenderedMap,
"removed blocks", f.ptrTailUnindexBlock-f.firstIndexedBlock,
"elapsed", common.PrettyDuration(time.Since(f.startedTailUnindexAt)))
f.startedTailUnindex = false
}
return true
}
// needTailEpoch returns true if the given tail epoch needs to be kept
// according to the current tail target, false if it can be removed.
func (f *FilterMaps) needTailEpoch(epoch uint32) bool {
firstEpoch := f.firstRenderedMap >> f.logMapsPerEpoch
if epoch > firstEpoch {
return true
}
if epoch+1 < firstEpoch {
return false
}
tailTarget := f.tailTargetBlock()
if tailTarget < f.firstIndexedBlock {
return true
}
tailLvIndex, err := f.getBlockLvPointer(tailTarget)
if err != nil {
log.Error("Could not get log value index of tail block", "error", err)
return true
}
return uint64(epoch+1)<<(f.logValuesPerMap+f.logMapsPerEpoch) >= tailLvIndex
}
// tailTargetBlock returns the target value for the tail block number according
// to the log history parameter and the current index head.
func (f *FilterMaps) tailTargetBlock() uint64 {
if f.history == 0 || f.targetBlockNumber < f.history {
return 0
}
return f.targetBlockNumber + 1 - f.history
}
// tailPartialBlocks returns the number of rendered blocks in the partially
// rendered next tail epoch.
func (f *FilterMaps) tailPartialBlocks() uint64 {
if f.tailPartialEpoch == 0 {
return 0
}
end, _, err := f.getLastBlockOfMap(f.firstRenderedMap - f.mapsPerEpoch + f.tailPartialEpoch - 1)
if err != nil {
log.Error("Error fetching last block of map", "mapIndex", f.firstRenderedMap-f.mapsPerEpoch+f.tailPartialEpoch-1, "error", err)
}
var start uint64
if f.firstRenderedMap-f.mapsPerEpoch > 0 {
start, _, err = f.getLastBlockOfMap(f.firstRenderedMap - f.mapsPerEpoch - 1)
if err != nil {
log.Error("Error fetching last block of map", "mapIndex", f.firstRenderedMap-f.mapsPerEpoch-1, "error", err)
}
}
return end - start
}
// targetHeadIndexed returns true if the current log index is consistent with
// targetView with its head block fully rendered.
func (f *FilterMaps) targetHeadIndexed() bool {
return equalViews(f.targetView, f.indexedView) && f.afterLastIndexedBlock == f.targetBlockNumber+1
}

@ -0,0 +1,437 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
crand "crypto/rand"
"crypto/sha256"
"math/big"
"math/rand"
"sync"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/params"
)
var testParams = Params{
logMapHeight: 2,
logMapsPerEpoch: 4,
logValuesPerMap: 4,
baseRowGroupLength: 4,
baseRowLengthRatio: 2,
logLayerDiff: 2,
}
func TestIndexerRandomRange(t *testing.T) {
ts := newTestSetup(t)
defer ts.close()
forks := make([][]common.Hash, 10)
ts.chain.addBlocks(1000, 5, 2, 4, false) // 51 log values per block
for i := range forks {
if i != 0 {
forkBlock := rand.Intn(1000)
ts.chain.setHead(forkBlock)
ts.chain.addBlocks(1000-forkBlock, 5, 2, 4, false) // 51 log values per block
}
forks[i] = ts.chain.getCanonicalChain()
}
lvPerBlock := uint64(51)
ts.setHistory(0, false)
var (
history int
noHistory bool
fork, head = len(forks) - 1, 1000
checkSnapshot bool
)
ts.fm.WaitIdle()
for i := 0; i < 200; i++ {
switch rand.Intn(3) {
case 0:
// change history settings
switch rand.Intn(10) {
case 0:
history, noHistory = 0, false
case 1:
history, noHistory = 0, true
default:
history, noHistory = rand.Intn(1000)+1, false
}
ts.testDisableSnapshots = rand.Intn(2) == 0
ts.setHistory(uint64(history), noHistory)
case 1:
// change head to random position of random fork
fork, head = rand.Intn(len(forks)), rand.Intn(1001)
ts.chain.setCanonicalChain(forks[fork][:head+1])
case 2:
if head < 1000 {
checkSnapshot = !noHistory && head != 0 // no snapshot generated for block 0
// add blocks after the current head
head += rand.Intn(1000-head) + 1
ts.fm.testSnapshotUsed = false
ts.chain.setCanonicalChain(forks[fork][:head+1])
}
}
ts.fm.WaitIdle()
if checkSnapshot {
if ts.fm.testSnapshotUsed == ts.fm.testDisableSnapshots {
ts.t.Fatalf("Invalid snapshot used state after head extension (used: %v, disabled: %v)", ts.fm.testSnapshotUsed, ts.fm.testDisableSnapshots)
}
checkSnapshot = false
}
if noHistory {
if ts.fm.initialized {
t.Fatalf("filterMapsRange initialized while indexing is disabled")
}
continue
}
if !ts.fm.initialized {
t.Fatalf("filterMapsRange not initialized while indexing is enabled")
}
var tailBlock uint64
if history > 0 && history <= head {
tailBlock = uint64(head + 1 - history)
}
var tailEpoch uint32
if tailBlock > 0 {
tailLvPtr := uint64(tailBlock-1) * lvPerBlock // no logs in genesis block, only delimiter
tailEpoch = uint32(tailLvPtr >> (testParams.logValuesPerMap + testParams.logMapsPerEpoch))
}
var expTailBlock uint64
if tailEpoch > 0 {
tailLvPtr := uint64(tailEpoch) << (testParams.logValuesPerMap + testParams.logMapsPerEpoch) // first available lv ptr
// (expTailBlock-1)*lvPerBlock >= tailLvPtr
expTailBlock = (tailLvPtr + lvPerBlock*2 - 1) / lvPerBlock
}
if ts.fm.afterLastIndexedBlock != uint64(head+1) || ts.fm.targetBlockNumber != uint64(head) || ts.fm.targetBlockId != forks[fork][head] {
ts.t.Fatalf("Invalid index head (expected #%d %v, got #%d %v)", head, forks[fork][head], ts.fm.afterLastIndexedBlock-1, ts.fm.targetBlockId)
}
if ts.fm.headBlockDelimiter != uint64(head)*lvPerBlock {
ts.t.Fatalf("Invalid index head delimiter pointer (expected %d, got %d)", uint64(head)*lvPerBlock, ts.fm.headBlockDelimiter)
}
if ts.fm.firstIndexedBlock != expTailBlock {
ts.t.Fatalf("Invalid index tail block (expected #%d, got #%d)", expTailBlock, ts.fm.firstIndexedBlock)
}
}
}
func TestIndexerCompareDb(t *testing.T) {
ts := newTestSetup(t)
defer ts.close()
ts.chain.addBlocks(500, 10, 3, 4, true)
ts.setHistory(0, false)
ts.fm.WaitIdle()
// revert points are stored after block 500
ts.chain.addBlocks(500, 10, 3, 4, true)
ts.fm.WaitIdle()
chain1 := ts.chain.getCanonicalChain()
ts.storeDbHash("chain 1 [0, 1000]")
ts.chain.setHead(600)
ts.fm.WaitIdle()
ts.storeDbHash("chain 1/2 [0, 600]")
ts.chain.addBlocks(600, 10, 3, 4, true)
ts.fm.WaitIdle()
chain2 := ts.chain.getCanonicalChain()
ts.storeDbHash("chain 2 [0, 1200]")
ts.chain.setHead(600)
ts.fm.WaitIdle()
ts.checkDbHash("chain 1/2 [0, 600]")
ts.setHistory(800, false)
ts.chain.setCanonicalChain(chain1)
ts.fm.WaitIdle()
ts.storeDbHash("chain 1 [201, 1000]")
ts.setHistory(0, false)
ts.fm.WaitIdle()
ts.checkDbHash("chain 1 [0, 1000]")
ts.setHistory(800, false)
ts.chain.setCanonicalChain(chain2)
ts.fm.WaitIdle()
ts.storeDbHash("chain 2 [401, 1200]")
ts.setHistory(0, true)
ts.fm.WaitIdle()
ts.storeDbHash("no index")
ts.chain.setCanonicalChain(chain2[:501])
ts.setHistory(0, false)
ts.fm.WaitIdle()
ts.chain.setCanonicalChain(chain2)
ts.fm.WaitIdle()
ts.checkDbHash("chain 2 [0, 1200]")
ts.chain.setCanonicalChain(chain1)
ts.fm.WaitIdle()
ts.setHistory(800, false)
ts.fm.WaitIdle()
ts.checkDbHash("chain 1 [201, 1000]")
ts.chain.setCanonicalChain(chain2)
ts.fm.WaitIdle()
ts.checkDbHash("chain 2 [401, 1200]")
ts.setHistory(0, true)
ts.fm.WaitIdle()
ts.checkDbHash("no index")
}
type testSetup struct {
t *testing.T
fm *FilterMaps
db ethdb.Database
chain *testChain
params Params
dbHashes map[string]common.Hash
testDisableSnapshots bool
}
func newTestSetup(t *testing.T) *testSetup {
params := testParams
params.deriveFields()
ts := &testSetup{
t: t,
db: rawdb.NewMemoryDatabase(),
params: params,
dbHashes: make(map[string]common.Hash),
}
ts.chain = ts.newTestChain()
return ts
}
func (ts *testSetup) setHistory(history uint64, noHistory bool) {
if ts.fm != nil {
ts.fm.Stop()
}
head := ts.chain.CurrentBlock()
ts.fm = NewFilterMaps(ts.db, NewStoredChainView(ts.chain, head.Number.Uint64(), head.Hash()), ts.params, history, 1, noHistory, "")
ts.fm.testDisableSnapshots = ts.testDisableSnapshots
ts.fm.Start()
}
func (ts *testSetup) storeDbHash(id string) {
dbHash := ts.fmDbHash()
for otherId, otherHash := range ts.dbHashes {
if otherHash == dbHash {
ts.t.Fatalf("Unexpected equal database hashes `%s` and `%s`", id, otherId)
}
}
ts.dbHashes[id] = dbHash
}
func (ts *testSetup) checkDbHash(id string) {
if ts.fmDbHash() != ts.dbHashes[id] {
ts.t.Fatalf("Database `%s` hash mismatch", id)
}
}
func (ts *testSetup) fmDbHash() common.Hash {
hasher := sha256.New()
it := ts.db.NewIterator(nil, nil)
for it.Next() {
hasher.Write(it.Key())
hasher.Write(it.Value())
}
it.Release()
var result common.Hash
hasher.Sum(result[:0])
return result
}
func (ts *testSetup) close() {
if ts.fm != nil {
ts.fm.Stop()
}
ts.db.Close()
ts.chain.db.Close()
}
type testChain struct {
ts *testSetup
db ethdb.Database
lock sync.RWMutex
canonical []common.Hash
blocks map[common.Hash]*types.Block
receipts map[common.Hash]types.Receipts
}
func (ts *testSetup) newTestChain() *testChain {
return &testChain{
ts: ts,
blocks: make(map[common.Hash]*types.Block),
receipts: make(map[common.Hash]types.Receipts),
}
}
func (tc *testChain) CurrentBlock() *types.Header {
tc.lock.RLock()
defer tc.lock.RUnlock()
if len(tc.canonical) == 0 {
return nil
}
return tc.blocks[tc.canonical[len(tc.canonical)-1]].Header()
}
func (tc *testChain) GetHeader(hash common.Hash, number uint64) *types.Header {
tc.lock.RLock()
defer tc.lock.RUnlock()
if block := tc.blocks[hash]; block != nil {
return block.Header()
}
return nil
}
func (tc *testChain) GetCanonicalHash(number uint64) common.Hash {
tc.lock.RLock()
defer tc.lock.RUnlock()
if uint64(len(tc.canonical)) <= number {
return common.Hash{}
}
return tc.canonical[number]
}
func (tc *testChain) GetReceiptsByHash(hash common.Hash) types.Receipts {
tc.lock.RLock()
defer tc.lock.RUnlock()
return tc.receipts[hash]
}
func (tc *testChain) addBlocks(count, maxTxPerBlock, maxLogsPerReceipt, maxTopicsPerLog int, random bool) {
tc.lock.Lock()
blockGen := func(i int, gen *core.BlockGen) {
var txCount int
if random {
txCount = rand.Intn(maxTxPerBlock + 1)
} else {
txCount = maxTxPerBlock
}
for k := txCount; k > 0; k-- {
receipt := types.NewReceipt(nil, false, 0)
var logCount int
if random {
logCount = rand.Intn(maxLogsPerReceipt + 1)
} else {
logCount = maxLogsPerReceipt
}
receipt.Logs = make([]*types.Log, logCount)
for i := range receipt.Logs {
log := &types.Log{}
receipt.Logs[i] = log
crand.Read(log.Address[:])
var topicCount int
if random {
topicCount = rand.Intn(maxTopicsPerLog + 1)
} else {
topicCount = maxTopicsPerLog
}
log.Topics = make([]common.Hash, topicCount)
for j := range log.Topics {
crand.Read(log.Topics[j][:])
}
}
gen.AddUncheckedReceipt(receipt)
gen.AddUncheckedTx(types.NewTransaction(999, common.HexToAddress("0x999"), big.NewInt(999), 999, gen.BaseFee(), nil))
}
}
var (
blocks []*types.Block
receipts []types.Receipts
engine = ethash.NewFaker()
)
if len(tc.canonical) == 0 {
gspec := &core.Genesis{
Alloc: types.GenesisAlloc{},
BaseFee: big.NewInt(params.InitialBaseFee),
Config: params.TestChainConfig,
}
tc.db, blocks, receipts = core.GenerateChainWithGenesis(gspec, engine, count, blockGen)
gblock := gspec.ToBlock()
ghash := gblock.Hash()
tc.canonical = []common.Hash{ghash}
tc.blocks[ghash] = gblock
tc.receipts[ghash] = types.Receipts{}
} else {
blocks, receipts = core.GenerateChain(params.TestChainConfig, tc.blocks[tc.canonical[len(tc.canonical)-1]], engine, tc.db, count, blockGen)
}
for i, block := range blocks {
num, hash := int(block.NumberU64()), block.Hash()
if len(tc.canonical) != num {
panic("canonical chain length mismatch")
}
tc.canonical = append(tc.canonical, hash)
tc.blocks[hash] = block
if receipts[i] != nil {
tc.receipts[hash] = receipts[i]
} else {
tc.receipts[hash] = types.Receipts{}
}
}
tc.lock.Unlock()
tc.setTargetHead()
}
func (tc *testChain) setHead(headNum int) {
tc.lock.Lock()
tc.canonical = tc.canonical[:headNum+1]
tc.lock.Unlock()
tc.setTargetHead()
}
func (tc *testChain) setTargetHead() {
head := tc.CurrentBlock()
if tc.ts.fm != nil {
if !tc.ts.fm.noHistory {
tc.ts.fm.TargetViewCh <- NewStoredChainView(tc, head.Number.Uint64(), head.Hash())
}
}
}
func (tc *testChain) getCanonicalChain() []common.Hash {
tc.lock.RLock()
defer tc.lock.RUnlock()
cc := make([]common.Hash, len(tc.canonical))
copy(cc, tc.canonical)
return cc
}
// restore an earlier state of the chain
func (tc *testChain) setCanonicalChain(cc []common.Hash) {
tc.lock.Lock()
tc.canonical = make([]common.Hash, len(cc))
copy(tc.canonical, cc)
tc.lock.Unlock()
tc.setTargetHead()
}

@ -0,0 +1,756 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"errors"
"math"
"sort"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/lru"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
)
const (
valuesPerCallback = 1000 // log values processed per event process callback
maxMapsPerBatch = 64 // maximum number of maps rendered in memory
rowsPerBatch = 100 // number of rows written to db in a single batch
)
var (
errChainUpdate = errors.New("rendered section of chain updated")
)
// mapRenderer represents a process that renders filter maps in a specified
// range according to the actual targetView.
type mapRenderer struct {
f *FilterMaps
afterLastMap uint32
currentMap *renderedMap
finishedMaps map[uint32]*renderedMap
firstFinished, afterLastFinished uint32
iterator *logIterator
}
// renderedMap represents a single filter map that is being rendered in memory.
type renderedMap struct {
filterMap filterMap
mapIndex uint32
lastBlock uint64
lastBlockId common.Hash
blockLvPtrs []uint64 // start pointers of blocks starting in this map; last one is lastBlock
finished bool // iterator finished; all values rendered
headDelimiter uint64 // if finished then points to the future block delimiter of the head block
}
// firstBlock returns the first block number that starts in the given map.
func (r *renderedMap) firstBlock() uint64 {
return r.lastBlock + 1 - uint64(len(r.blockLvPtrs))
}
// renderMapsBefore creates a mapRenderer that renders the log index until the
// specified map index boundary, starting from the latest available starting
// point that is consistent with the current targetView.
// The renderer ensures that filterMapsRange, indexedView and the actual map
// data are always consistent with each other. If afterLastMap is greater than
// the latest existing rendered map then indexedView is updated to targetView,
// otherwise it is checked that the rendered range is consistent with both
// views.
func (f *FilterMaps) renderMapsBefore(afterLastMap uint32) (*mapRenderer, error) {
nextMap, startBlock, startLvPtr, err := f.lastCanonicalMapBoundaryBefore(afterLastMap)
if err != nil {
return nil, err
}
if snapshot := f.lastCanonicalSnapshotBefore(afterLastMap); snapshot != nil && snapshot.mapIndex >= nextMap {
return f.renderMapsFromSnapshot(snapshot)
}
if nextMap >= afterLastMap {
return nil, nil
}
return f.renderMapsFromMapBoundary(nextMap, afterLastMap, startBlock, startLvPtr)
}
// renderMapsFromSnapshot creates a mapRenderer that starts rendering from a
// snapshot made at a block boundary.
func (f *FilterMaps) renderMapsFromSnapshot(cp *renderedMap) (*mapRenderer, error) {
f.testSnapshotUsed = true
iter, err := f.newLogIteratorFromBlockDelimiter(cp.lastBlock)
if err != nil {
return nil, err
}
return &mapRenderer{
f: f,
currentMap: &renderedMap{
filterMap: cp.filterMap.copy(),
mapIndex: cp.mapIndex,
lastBlock: cp.lastBlock,
blockLvPtrs: cp.blockLvPtrs,
},
finishedMaps: make(map[uint32]*renderedMap),
firstFinished: cp.mapIndex,
afterLastFinished: cp.mapIndex,
afterLastMap: math.MaxUint32,
iterator: iter,
}, nil
}
// renderMapsFromMapBoundary creates a mapRenderer that starts rendering at a
// map boundary.
func (f *FilterMaps) renderMapsFromMapBoundary(firstMap, afterLastMap uint32, startBlock, startLvPtr uint64) (*mapRenderer, error) {
iter, err := f.newLogIteratorFromMapBoundary(firstMap, startBlock, startLvPtr)
if err != nil {
return nil, err
}
return &mapRenderer{
f: f,
currentMap: &renderedMap{
filterMap: f.emptyFilterMap(),
mapIndex: firstMap,
lastBlock: iter.blockNumber,
},
finishedMaps: make(map[uint32]*renderedMap),
firstFinished: firstMap,
afterLastFinished: firstMap,
afterLastMap: afterLastMap,
iterator: iter,
}, nil
}
// lastCanonicalSnapshotBefore returns the latest cached snapshot that matches
// the current targetView.
func (f *FilterMaps) lastCanonicalSnapshotBefore(afterLastMap uint32) *renderedMap {
var best *renderedMap
for _, blockNumber := range f.renderSnapshots.Keys() {
if cp, _ := f.renderSnapshots.Get(blockNumber); cp != nil && blockNumber < f.afterLastIndexedBlock &&
blockNumber <= f.targetView.headNumber() && f.targetView.getBlockId(blockNumber) == cp.lastBlockId &&
cp.mapIndex < afterLastMap && (best == nil || blockNumber > best.lastBlock) {
best = cp
}
}
return best
}
// lastCanonicalMapBoundaryBefore returns the latest map boundary before the
// specified map index that matches the current targetView. This can either
// be a checkpoint (hardcoded or left from a previously unindexed tail epoch)
// or the boundary of a currently rendered map.
// Along with the next map index where the rendering can be started, the number
// and starting log value pointer of the last block is also returned.
func (f *FilterMaps) lastCanonicalMapBoundaryBefore(afterLastMap uint32) (nextMap uint32, startBlock, startLvPtr uint64, err error) {
if !f.initialized {
return 0, 0, 0, nil
}
mapIndex := afterLastMap
for {
var ok bool
if mapIndex, ok = f.lastMapBoundaryBefore(mapIndex); !ok {
return 0, 0, 0, nil
}
lastBlock, _, err := f.getLastBlockOfMap(mapIndex)
if err != nil {
return 0, 0, 0, err
}
if lastBlock >= f.indexedView.headNumber() || lastBlock >= f.targetView.headNumber() ||
!matchViews(f.indexedView, f.targetView, lastBlock) {
// map is not full or inconsistent with targetView; roll back
continue
}
lvPtr, err := f.getBlockLvPointer(lastBlock)
if err != nil {
return 0, 0, 0, err
}
return mapIndex + 1, lastBlock, lvPtr, nil
}
}
// lastMapBoundaryBefore returns the latest map boundary before the specified
// map index.
func (f *FilterMaps) lastMapBoundaryBefore(mapIndex uint32) (uint32, bool) {
if !f.initialized || f.afterLastRenderedMap == 0 {
return 0, false
}
if mapIndex > f.afterLastRenderedMap {
mapIndex = f.afterLastRenderedMap
}
if mapIndex > f.firstRenderedMap {
return mapIndex - 1, true
}
if mapIndex+f.mapsPerEpoch > f.firstRenderedMap {
if mapIndex > f.firstRenderedMap-f.mapsPerEpoch+f.tailPartialEpoch {
mapIndex = f.firstRenderedMap - f.mapsPerEpoch + f.tailPartialEpoch
}
} else {
mapIndex = (mapIndex >> f.logMapsPerEpoch) << f.logMapsPerEpoch
}
if mapIndex == 0 {
return 0, false
}
return mapIndex - 1, true
}
// emptyFilterMap returns an empty filter map.
func (f *FilterMaps) emptyFilterMap() filterMap {
return make(filterMap, f.mapHeight)
}
// loadHeadSnapshot loads the last rendered map from the database and creates
// a snapshot.
func (f *FilterMaps) loadHeadSnapshot() error {
fm, err := f.getFilterMap(f.afterLastRenderedMap - 1)
if err != nil {
return err
}
lastBlock, _, err := f.getLastBlockOfMap(f.afterLastRenderedMap - 1)
if err != nil {
return err
}
var firstBlock uint64
if f.afterLastRenderedMap > 1 {
prevLastBlock, _, err := f.getLastBlockOfMap(f.afterLastRenderedMap - 2)
if err != nil {
return err
}
firstBlock = prevLastBlock + 1
}
lvPtrs := make([]uint64, lastBlock+1-firstBlock)
for i := range lvPtrs {
lvPtrs[i], err = f.getBlockLvPointer(firstBlock + uint64(i))
if err != nil {
return err
}
}
f.renderSnapshots.Add(f.targetBlockNumber, &renderedMap{
filterMap: fm,
mapIndex: f.afterLastRenderedMap - 1,
lastBlock: f.targetBlockNumber,
lastBlockId: f.targetBlockId,
blockLvPtrs: lvPtrs,
finished: true,
headDelimiter: f.headBlockDelimiter,
})
return nil
}
// makeSnapshot creates a snapshot of the current state of the rendered map.
func (r *mapRenderer) makeSnapshot() {
r.f.renderSnapshots.Add(r.iterator.blockNumber, &renderedMap{
filterMap: r.currentMap.filterMap.copy(),
mapIndex: r.currentMap.mapIndex,
lastBlock: r.iterator.blockNumber,
lastBlockId: r.f.targetView.getBlockId(r.currentMap.lastBlock),
blockLvPtrs: r.currentMap.blockLvPtrs,
finished: true,
headDelimiter: r.iterator.lvIndex,
})
}
// run does the actual map rendering. It periodically calls the stopCb callback
// and if it returns true the process is interrupted an can be resumed later
// by calling run again. The writeCb callback is called after new maps have
// been written to disk and the index range has been updated accordingly.
func (r *mapRenderer) run(stopCb func() bool, writeCb func()) (bool, error) {
for {
if done, err := r.renderCurrentMap(stopCb); !done {
return done, err // stopped or failed
}
// map finished
r.finishedMaps[r.currentMap.mapIndex] = r.currentMap
r.afterLastFinished++
if len(r.finishedMaps) >= maxMapsPerBatch || r.afterLastFinished & (r.f.baseRowGroupLength-1) == 0 {
if err := r.writeFinishedMaps(stopCb); err != nil {
return false, err
}
writeCb()
}
if r.afterLastFinished == r.afterLastMap || r.iterator.finished {
if err := r.writeFinishedMaps(stopCb); err != nil {
return false, err
}
writeCb()
return true, nil
}
r.currentMap = &renderedMap{
filterMap: r.f.emptyFilterMap(),
mapIndex: r.afterLastFinished,
}
}
}
// renderCurrentMap renders a single map.
func (r *mapRenderer) renderCurrentMap(stopCb func() bool) (bool, error) {
if !r.iterator.updateChainView(r.f.targetView) {
return false, errChainUpdate
}
var waitCnt int
if r.iterator.lvIndex == 0 {
r.currentMap.blockLvPtrs = []uint64{0}
}
type lvPos struct{ rowIndex, layerIndex uint32 }
rowIndexCache := lru.NewCache[common.Hash, lvPos](10000)
defer rowIndexCache.Purge()
for r.iterator.lvIndex < uint64(r.currentMap.mapIndex+1)<<r.f.logValuesPerMap && !r.iterator.finished {
waitCnt++
if waitCnt >= valuesPerCallback {
if stopCb() {
return false, nil
}
if !r.iterator.updateChainView(r.f.targetView) {
return false, errChainUpdate
}
waitCnt = 0
}
r.currentMap.lastBlock = r.iterator.blockNumber
if r.iterator.delimiter {
r.currentMap.lastBlock++
r.currentMap.blockLvPtrs = append(r.currentMap.blockLvPtrs, r.iterator.lvIndex+1)
}
if logValue := r.iterator.getValueHash(); logValue != (common.Hash{}) {
lvp, cached := rowIndexCache.Get(logValue)
if !cached {
lvp = lvPos{rowIndex: r.f.rowIndex(r.currentMap.mapIndex, 0, logValue)}
}
for uint32(len(r.currentMap.filterMap[lvp.rowIndex])) >= r.f.maxRowLength(lvp.layerIndex) {
lvp.layerIndex++
lvp.rowIndex = r.f.rowIndex(r.currentMap.mapIndex, lvp.layerIndex, logValue)
cached = false
}
r.currentMap.filterMap[lvp.rowIndex] = append(r.currentMap.filterMap[lvp.rowIndex], r.f.columnIndex(r.iterator.lvIndex, logValue))
if !cached {
rowIndexCache.Add(logValue, lvp)
}
}
if err := r.iterator.next(); err != nil {
return false, err
}
if !r.f.testDisableSnapshots && r.afterLastMap >= r.f.afterLastRenderedMap &&
(r.iterator.delimiter || r.iterator.finished) {
r.makeSnapshot()
}
}
if r.iterator.finished {
r.currentMap.finished = true
r.currentMap.headDelimiter = r.iterator.lvIndex
}
r.currentMap.lastBlockId = r.f.targetView.getBlockId(r.currentMap.lastBlock)
return true, nil
}
// writeFinishedMaps writes rendered maps to the database and updates
// filterMapsRange and indexedView accordingly.
func (r *mapRenderer) writeFinishedMaps(pauseCb func() bool) error {
if len(r.finishedMaps) == 0 {
return nil
}
r.f.indexLock.Lock()
defer r.f.indexLock.Unlock()
oldRange := r.f.filterMapsRange
tempRange, err := r.getTempRange()
if err != nil {
return err
}
newRange, err := r.getUpdatedRange()
if err != nil {
return err
}
renderedView := r.f.targetView // stopCb callback might still change targetView while writing finished maps
batch := r.f.db.NewBatch()
var writeCnt int
checkWriteCnt := func() {
writeCnt++
if writeCnt == rowsPerBatch {
writeCnt = 0
if err := batch.Write(); err != nil {
log.Crit("Error writing log index update batch", "error", err)
}
// do not exit while in partially written state but do allow processing
// events and pausing while block processing is in progress
pauseCb()
batch = r.f.db.NewBatch()
}
}
r.f.setRange(batch, tempRange, false)
// add or update filter rows
for rowIndex := uint32(0); rowIndex < r.f.mapHeight; rowIndex++ {
var (
mapIndices []uint32
rows []FilterRow
)
for mapIndex := r.firstFinished; mapIndex < r.afterLastFinished; mapIndex++ {
row := r.finishedMaps[mapIndex].filterMap[rowIndex]
if fm, _ := r.f.filterMapCache.Get(mapIndex); fm != nil && row.Equal(fm[rowIndex]) {
continue
}
mapIndices = append(mapIndices, mapIndex)
rows = append(rows, row)
}
if newRange.afterLastRenderedMap == r.afterLastFinished { // head updated; remove future entries
for mapIndex := r.afterLastFinished; mapIndex < oldRange.afterLastRenderedMap; mapIndex++ {
if fm, _ := r.f.filterMapCache.Get(mapIndex); fm != nil && len(fm[rowIndex]) == 0 {
continue
}
mapIndices = append(mapIndices, mapIndex)
rows = append(rows, nil)
}
}
if err := r.f.storeFilterMapRows(batch, mapIndices, rowIndex, rows); err != nil {
return err
}
checkWriteCnt()
}
// update filter map cache
if newRange.afterLastRenderedMap == r.afterLastFinished {
for mapIndex := r.firstFinished; mapIndex < r.afterLastFinished; mapIndex++ {
r.f.filterMapCache.Add(mapIndex, r.finishedMaps[mapIndex].filterMap)
}
for mapIndex := r.afterLastFinished; mapIndex < oldRange.afterLastRenderedMap; mapIndex++ {
r.f.filterMapCache.Remove(mapIndex)
}
} else {
for mapIndex := r.firstFinished; mapIndex < r.afterLastFinished; mapIndex++ {
r.f.filterMapCache.Remove(mapIndex)
}
}
// add or update block pointers
blockNumber := r.finishedMaps[r.firstFinished].firstBlock()
for mapIndex := r.firstFinished; mapIndex < r.afterLastFinished; mapIndex++ {
renderedMap := r.finishedMaps[mapIndex]
r.f.storeLastBlockOfMap(batch, mapIndex, renderedMap.lastBlock, renderedMap.lastBlockId)
checkWriteCnt()
if blockNumber != renderedMap.firstBlock() {
panic("non-continuous block numbers")
}
for _, lvPtr := range renderedMap.blockLvPtrs {
r.f.storeBlockLvPointer(batch, blockNumber, lvPtr)
checkWriteCnt()
blockNumber++
}
}
if newRange.afterLastRenderedMap == r.afterLastFinished { // head updated; remove future entries
for mapIndex := r.afterLastFinished; mapIndex < oldRange.afterLastRenderedMap; mapIndex++ {
r.f.deleteLastBlockOfMap(batch, mapIndex)
checkWriteCnt()
}
for ; blockNumber < oldRange.afterLastIndexedBlock; blockNumber++ {
r.f.deleteBlockLvPointer(batch, blockNumber)
checkWriteCnt()
}
}
r.finishedMaps = make(map[uint32]*renderedMap)
r.firstFinished = r.afterLastFinished
r.f.indexedView = renderedView
r.f.setRange(batch, newRange, true)
if err := batch.Write(); err != nil {
log.Crit("Error writing log index update batch", "error", err)
}
return nil
}
// getTempRange returns a temporary filterMapsRange that is committed to the
// database while the newly rendered maps are partially written. Writing all
// processed maps in a single database batch would be a serious hit on db
// performance so instead safety is ensured by first reverting the valid map
// range to the unchanged region until all new map data is committed.
func (r *mapRenderer) getTempRange() (filterMapsRange, error) {
tempRange := r.f.filterMapsRange
if err := tempRange.addRenderedRange(r.firstFinished, r.firstFinished, r.afterLastMap, r.f.mapsPerEpoch); err != nil {
return filterMapsRange{}, err
}
if tempRange.firstRenderedMap != r.f.firstRenderedMap {
// first rendered map changed; update first indexed block
if tempRange.firstRenderedMap > 0 {
lastBlock, _, err := r.f.getLastBlockOfMap(tempRange.firstRenderedMap - 1)
if err != nil {
return filterMapsRange{}, err
}
tempRange.firstIndexedBlock = lastBlock + 1
} else {
tempRange.firstIndexedBlock = 0
}
}
if tempRange.afterLastRenderedMap != r.f.afterLastRenderedMap {
// first rendered map changed; update first indexed block
if tempRange.afterLastRenderedMap > 0 {
lastBlock, _, err := r.f.getLastBlockOfMap(tempRange.afterLastRenderedMap - 1)
if err != nil {
return filterMapsRange{}, err
}
tempRange.afterLastIndexedBlock = lastBlock + 1
} else {
tempRange.afterLastIndexedBlock = 0
}
tempRange.headBlockDelimiter = 0
}
return tempRange, nil
}
// getUpdatedRange returns the updated filterMapsRange after writing the newly
// rendered maps.
func (r *mapRenderer) getUpdatedRange() (filterMapsRange, error) {
// update filterMapsRange
newRange := r.f.filterMapsRange
if err := newRange.addRenderedRange(r.firstFinished, r.afterLastFinished, r.afterLastMap, r.f.mapsPerEpoch); err != nil {
return filterMapsRange{}, err
}
if newRange.firstRenderedMap != r.f.firstRenderedMap {
// first rendered map changed; update first indexed block
if newRange.firstRenderedMap > 0 {
lastBlock, _, err := r.f.getLastBlockOfMap(newRange.firstRenderedMap - 1)
if err != nil {
return filterMapsRange{}, err
}
newRange.firstIndexedBlock = lastBlock + 1
} else {
newRange.firstIndexedBlock = 0
}
}
if newRange.afterLastRenderedMap == r.afterLastFinished {
// last rendered map changed; update last indexed block and head pointers
newRange.targetBlockNumber = r.f.targetView.headNumber()
newRange.targetBlockId = r.f.targetView.getBlockId(newRange.targetBlockNumber)
lm := r.finishedMaps[r.afterLastFinished-1]
if lm.finished {
newRange.afterLastIndexedBlock = newRange.targetBlockNumber + 1
if lm.lastBlock != newRange.targetBlockNumber {
panic("map rendering finished but last block != head block")
}
newRange.headBlockDelimiter = lm.headDelimiter
} else {
newRange.afterLastIndexedBlock = lm.lastBlock
newRange.headBlockDelimiter = 0
}
} else {
// last rendered map not replaced; ensure that target chain view matches
// indexed chain view on the rendered section
if lastBlock := r.finishedMaps[r.afterLastFinished-1].lastBlock; !matchViews(r.f.indexedView, r.f.targetView, lastBlock) {
return filterMapsRange{}, errChainUpdate
}
}
return newRange, nil
}
// addRenderedRange adds the range [firstRendered, afterLastRendered) and
// removes [afterLastRendered, afterLastRemoved) from the set of rendered maps.
func (fmr *filterMapsRange) addRenderedRange(firstRendered, afterLastRendered, afterLastRemoved, mapsPerEpoch uint32) error {
if !fmr.initialized {
return errors.New("log index not initialized")
}
type endpoint struct {
m uint32
d int
}
endpoints := []endpoint{{fmr.firstRenderedMap, 1}, {fmr.afterLastRenderedMap, -1}, {firstRendered, 1}, {afterLastRendered, -101}, {afterLastRemoved, 100}}
if fmr.tailPartialEpoch > 0 {
endpoints = append(endpoints, []endpoint{{fmr.firstRenderedMap - mapsPerEpoch, 1}, {fmr.firstRenderedMap - mapsPerEpoch + fmr.tailPartialEpoch, -1}}...)
}
sort.Slice(endpoints, func(i, j int) bool { return endpoints[i].m < endpoints[j].m })
var (
sum int
merged []uint32
last bool
)
for i, e := range endpoints {
sum += e.d
if i < len(endpoints)-1 && endpoints[i+1].m == e.m {
continue
}
if (sum > 0) != last {
merged = append(merged, e.m)
last = !last
}
}
if len(merged) == 0 {
fmr.tailPartialEpoch = 0
fmr.firstRenderedMap = firstRendered
fmr.afterLastRenderedMap = firstRendered
return nil
}
if len(merged) == 2 {
fmr.tailPartialEpoch = 0
fmr.firstRenderedMap = merged[0]
fmr.afterLastRenderedMap = merged[1]
return nil
}
if len(merged) == 4 {
if merged[2] != merged[0]+mapsPerEpoch {
return errors.New("invalid tail partial epoch")
}
fmr.tailPartialEpoch = merged[1] - merged[0]
fmr.firstRenderedMap = merged[2]
fmr.afterLastRenderedMap = merged[3]
return nil
}
return errors.New("invalid number of rendered sections")
}
// logIterator iterates on the linear log value index range.
type logIterator struct {
chainView chainView
blockNumber uint64
receipts types.Receipts
blockStart, delimiter, finished bool
txIndex, logIndex, topicIndex int
lvIndex uint64
}
var errUnindexedRange = errors.New("unindexed range")
// newLogIteratorFromBlockDelimiter creates a logIterator starting at the
// given block's first log value entry (the block delimiter), according to the
// current targetView.
func (f *FilterMaps) newLogIteratorFromBlockDelimiter(blockNumber uint64) (*logIterator, error) {
if blockNumber > f.targetView.headNumber() {
return nil, errors.New("iterator entry point after target chain head")
}
if blockNumber < f.firstIndexedBlock || blockNumber >= f.afterLastIndexedBlock {
return nil, errUnindexedRange
}
if !matchViews(f.indexedView, f.targetView, blockNumber) {
return nil, errors.New("target and indexed views diverged at iterator entry point")
}
var lvIndex uint64
if blockNumber == f.targetBlockNumber {
lvIndex = f.headBlockDelimiter
} else {
var err error
lvIndex, err = f.getBlockLvPointer(blockNumber + 1)
if err != nil {
return nil, err
}
lvIndex--
}
finished := blockNumber == f.targetView.headNumber()
return &logIterator{
chainView: f.targetView,
blockNumber: blockNumber,
finished: finished,
delimiter: !finished,
lvIndex: lvIndex,
}, nil
}
// newLogIteratorFromMapBoundary creates a logIterator starting at the given
// map boundary, according to the current targetView.
func (f *FilterMaps) newLogIteratorFromMapBoundary(mapIndex uint32, startBlock, startLvPtr uint64) (*logIterator, error) {
if startBlock > f.targetView.headNumber() {
return nil, errors.New("iterator entry point after target chain head")
}
if !matchViews(f.indexedView, f.targetView, startBlock) {
return nil, errors.New("target and indexed views diverged at iterator entry point")
}
// get block receipts
receipts := f.targetView.getReceipts(startBlock)
if receipts == nil {
return nil, errors.New("receipts not found")
}
// initialize iterator at block start
l := &logIterator{
chainView: f.targetView,
blockNumber: startBlock,
receipts: receipts,
blockStart: true,
lvIndex: startLvPtr,
}
l.nextValid()
targetIndex := uint64(mapIndex) << f.logValuesPerMap
if l.lvIndex > targetIndex {
panic("last map block's lvPointer > map boundary")
}
// iterate to map boundary
for l.lvIndex < targetIndex {
if l.finished {
panic("iterator already finished")
}
if err := l.next(); err != nil {
return nil, err
}
}
return l, nil
}
// updateChainView updates the iterator's chain view if it still matches the
// previous view at the current position. Returns true if successful.
func (l *logIterator) updateChainView(cv chainView) bool {
if !matchViews(cv, l.chainView, l.blockNumber) {
return false
}
l.chainView = cv
return true
}
// getValueHash returns the log value hash at the current position.
func (l *logIterator) getValueHash() common.Hash {
if l.delimiter || l.finished {
return common.Hash{}
}
log := l.receipts[l.txIndex].Logs[l.logIndex]
if l.topicIndex == 0 {
return addressValue(log.Address)
}
return topicValue(log.Topics[l.topicIndex-1])
}
// next moves the iterator to the next log value index.
func (l *logIterator) next() error {
if l.finished {
return nil
}
if l.delimiter {
l.delimiter = false
l.blockNumber++
l.receipts = l.chainView.getReceipts(l.blockNumber)
if l.receipts == nil {
return errors.New("receipts not found")
}
l.txIndex, l.logIndex, l.topicIndex, l.blockStart = 0, 0, 0, true
} else {
l.topicIndex++
l.blockStart = false
}
l.lvIndex++
l.nextValid()
return nil
}
// nextValid updates the internal transaction, log and topic index pointers
// to the next existing log value of the given block if necessary.
// Note that nextValid does not advance the log value index pointer.
func (l *logIterator) nextValid() {
for ; l.txIndex < len(l.receipts); l.txIndex++ {
receipt := l.receipts[l.txIndex]
for ; l.logIndex < len(receipt.Logs); l.logIndex++ {
log := receipt.Logs[l.logIndex]
if l.topicIndex <= len(log.Topics) {
return
}
l.topicIndex = 0
}
l.logIndex = 0
}
if l.blockNumber == l.chainView.headNumber() {
l.finished = true
} else {
l.delimiter = true
}
}

@ -0,0 +1,918 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"context"
"errors"
"math"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
)
const useTimeStats = true //TODO set to false before merging
// ErrMatchAll is returned when the specified filter matches everything.
// Handling this case in filtermaps would require an extra special case and
// would actually be slower than reverting to legacy filter.
var ErrMatchAll = errors.New("match all patterns not supported")
// MatcherBackend defines the functions required for searching in the log index
// data structure. It is currently implemented by FilterMapsMatcherBackend but
// once EIP-7745 is implemented and active, these functions can also be trustlessly
// served by a remote prover.
type MatcherBackend interface {
GetParams() *Params
GetBlockLvPointer(ctx context.Context, blockNumber uint64) (uint64, error)
GetFilterMapRow(ctx context.Context, mapIndex, rowIndex uint32, baseLayerOnly bool) (FilterRow, error)
GetLogByLvIndex(ctx context.Context, lvIndex uint64) (*types.Log, error)
SyncLogIndex(ctx context.Context) (SyncRange, error)
Close()
}
// SyncRange is returned by MatcherBackend.SyncLogIndex. It contains the latest
// chain head, the indexed range that is currently consistent with the chain
// and the valid range that has not been changed and has been consistent with
// all states of the chain since the previous SyncLogIndex or the creation of
// the matcher backend.
type SyncRange struct {
HeadNumber uint64
// block range where the index has not changed since the last matcher sync
// and therefore the set of matches found in this region is guaranteed to
// be valid and complete.
Valid bool
FirstValid, LastValid uint64
// block range indexed according to the given chain head.
Indexed bool
FirstIndexed, LastIndexed uint64
}
// GetPotentialMatches returns a list of logs that are potential matches for the
// given filter criteria. If parts of the log index in the searched range are
// missing or changed during the search process then the resulting logs belonging
// to that block range might be missing or incorrect.
// Also note that the returned list may contain false positives.
func GetPotentialMatches(ctx context.Context, backend MatcherBackend, firstBlock, lastBlock uint64, addresses []common.Address, topics [][]common.Hash) ([]*types.Log, error) {
params := backend.GetParams()
// find the log value index range to search
firstIndex, err := backend.GetBlockLvPointer(ctx, firstBlock)
if err != nil {
return nil, err
}
lastIndex, err := backend.GetBlockLvPointer(ctx, lastBlock+1)
if err != nil {
return nil, err
}
if lastIndex > 0 {
lastIndex--
}
firstMap, lastMap := uint32(firstIndex>>params.logValuesPerMap), uint32(lastIndex>>params.logValuesPerMap)
firstEpoch, lastEpoch := firstMap>>params.logMapsPerEpoch, lastMap>>params.logMapsPerEpoch
// build matcher according to the given filter criteria
matchers := make([]matcher, len(topics)+1)
// matchAddress signals a match when there is a match for any of the given
// addresses.
// If the list of addresses is empty then it creates a "wild card" matcher
// that signals every index as a potential match.
matchAddress := make(matchAny, len(addresses))
for i, address := range addresses {
matchAddress[i] = &singleMatcher{backend: backend, value: addressValue(address)}
}
matchers[0] = matchAddress
for i, topicList := range topics {
// matchTopic signals a match when there is a match for any of the topics
// specified for the given position (topicList).
// If topicList is empty then it creates a "wild card" matcher that signals
// every index as a potential match.
matchTopic := make(matchAny, len(topicList))
for j, topic := range topicList {
matchTopic[j] = &singleMatcher{backend: backend, value: topicValue(topic)}
}
matchers[i+1] = matchTopic
}
// matcher is the final sequence matcher that signals a match when all underlying
// matchers signal a match for consecutive log value indices.
matcher := newMatchSequence(params, matchers)
// processEpoch returns the potentially matching logs from the given epoch.
processEpoch := func(epochIndex uint32) ([]*types.Log, error) {
var logs []*types.Log
// create a list of map indices to process
fm, lm := epochIndex<<params.logMapsPerEpoch, (epochIndex+1)<<params.logMapsPerEpoch-1
if fm < firstMap {
fm = firstMap
}
if lm > lastMap {
lm = lastMap
}
//
mapIndices := make([]uint32, lm+1-fm)
for i := range mapIndices {
mapIndices[i] = fm + uint32(i)
}
// find potential matches
matches, err := getAllMatches(ctx, matcher, mapIndices)
if err != nil {
return logs, err
}
// get the actual logs located at the matching log value indices
for _, m := range matches {
if m == nil {
return nil, ErrMatchAll
}
mlogs, err := getLogsFromMatches(ctx, backend, firstIndex, lastIndex, m)
if err != nil {
return logs, err
}
logs = append(logs, mlogs...)
}
return logs, nil
}
type task struct {
epochIndex uint32
logs []*types.Log
err error
done chan struct{}
}
taskCh := make(chan *task)
var wg sync.WaitGroup
defer func() {
close(taskCh)
wg.Wait()
}()
worker := func() {
for task := range taskCh {
if task == nil {
break
}
task.logs, task.err = processEpoch(task.epochIndex)
close(task.done)
}
wg.Done()
}
start := time.Now()
for i := 0; i < 4; i++ {
wg.Add(1)
go worker()
}
var logs []*types.Log
// startEpoch is the next task to send whenever a worker can accept it.
// waitEpoch is the next task we are waiting for to finish in order to append
// results in the correct order.
startEpoch, waitEpoch := firstEpoch, firstEpoch
tasks := make(map[uint32]*task)
tasks[startEpoch] = &task{epochIndex: startEpoch, done: make(chan struct{})}
for waitEpoch <= lastEpoch {
select {
case taskCh <- tasks[startEpoch]:
startEpoch++
if startEpoch <= lastEpoch {
if tasks[startEpoch] == nil {
tasks[startEpoch] = &task{epochIndex: startEpoch, done: make(chan struct{})}
}
}
case <-tasks[waitEpoch].done:
logs = append(logs, tasks[waitEpoch].logs...)
if err := tasks[waitEpoch].err; err != nil {
return logs, err
}
delete(tasks, waitEpoch)
waitEpoch++
if waitEpoch <= lastEpoch {
if tasks[waitEpoch] == nil {
tasks[waitEpoch] = &task{epochIndex: waitEpoch, done: make(chan struct{})}
}
}
}
}
if useTimeStats {
log.Info("Log search finished", "elapsed", time.Since(start))
for i, ma := range matchers {
for j, m := range ma.(matchAny) {
log.Info("Single matcher stats", "matchSequence", i, "matchAny", j)
m.(*singleMatcher).stats.print()
}
}
}
return logs, nil
}
// getLogsFromMatches returns the list of potentially matching logs located at
// the given list of matching log indices. Matches outside the firstIndex to
// lastIndex range are not returned.
func getLogsFromMatches(ctx context.Context, backend MatcherBackend, firstIndex, lastIndex uint64, matches potentialMatches) ([]*types.Log, error) {
var logs []*types.Log
for _, match := range matches {
if match < firstIndex || match > lastIndex {
continue
}
log, err := backend.GetLogByLvIndex(ctx, match)
if err != nil {
return logs, err
}
if log != nil {
logs = append(logs, log)
}
}
return logs, nil
}
// matcher defines a general abstraction for any matcher configuration that
// can instantiate a matcherInstance.
type matcher interface {
newInstance(mapIndices []uint32) matcherInstance
}
// matcherInstance defines a general abstraction for a matcher configuration
// working on a specific set of map indices and eventually returning a list of
// potentially matching log value indices.
// Note that processing happens per mapping layer, each call returning a set
// of results for the maps where the processing has been finished at the given
// layer. Map indices can also be dropped before a result is returned for them
// in case the result is no longer interesting. Dropping indices twice or after
// a result has been returned has no effect. Exactly one matcherResult is
// returned per requested map index unless dropped.
type matcherInstance interface {
getMatchesForLayer(ctx context.Context, layerIndex uint32) ([]matcherResult, error)
dropIndices(mapIndices []uint32)
}
// matcherResult contains the list of potentially matching log value indices
// for a given map index.
type matcherResult struct {
mapIndex uint32
matches potentialMatches
}
// getAllMatches creates an instance for a given matcher and set of map indices,
// iterates through mapping layers and collects all results, then returns all
// results in the same order as the map indices were specified.
func getAllMatches(ctx context.Context, matcher matcher, mapIndices []uint32) ([]potentialMatches, error) {
instance := matcher.newInstance(mapIndices)
resultsMap := make(map[uint32]potentialMatches)
for layerIndex := uint32(0); len(resultsMap) < len(mapIndices); layerIndex++ {
results, err := instance.getMatchesForLayer(ctx, layerIndex)
if err != nil {
return nil, err
}
for _, result := range results {
resultsMap[result.mapIndex] = result.matches
}
}
matches := make([]potentialMatches, len(mapIndices))
for i, mapIndex := range mapIndices {
matches[i] = resultsMap[mapIndex]
}
return matches, nil
}
// singleMatcher implements matcher by returning matches for a single log value hash.
type singleMatcher struct {
backend MatcherBackend
value common.Hash
stats timeStats
}
// singleMatcherInstance is an instance of singleMatcher.
type singleMatcherInstance struct {
*singleMatcher
mapIndices []uint32
filterRows map[uint32][]FilterRow
}
// newInstance creates a new instance of singleMatcher.
func (m *singleMatcher) newInstance(mapIndices []uint32) matcherInstance {
filterRows := make(map[uint32][]FilterRow)
for _, idx := range mapIndices {
filterRows[idx] = []FilterRow{}
}
copiedIndices := make([]uint32, len(mapIndices))
copy(copiedIndices, mapIndices)
return &singleMatcherInstance{
singleMatcher: m,
mapIndices: copiedIndices,
filterRows: filterRows,
}
}
// getMatchesForLayer implements matcherInstance.
func (m *singleMatcherInstance) getMatchesForLayer(ctx context.Context, layerIndex uint32) (results []matcherResult, err error) {
var st int
m.stats.set(&st, stOther)
params := m.backend.GetParams()
maskedMapIndex, rowIndex := uint32(math.MaxUint32), uint32(0)
for _, mapIndex := range m.mapIndices {
filterRows, ok := m.filterRows[mapIndex]
if !ok {
continue
}
if mm := params.maskedMapIndex(mapIndex, layerIndex); mm != maskedMapIndex {
// only recalculate rowIndex when necessary
m.stats.set(&st, stRowCalc)
maskedMapIndex = mm
rowIndex = params.rowIndex(mapIndex, layerIndex, m.value)
}
if layerIndex == 0 {
m.stats.set(&st, stFetchFirst)
} else {
m.stats.set(&st, stFetchMore)
}
filterRow, err := m.backend.GetFilterMapRow(ctx, mapIndex, rowIndex, layerIndex == 0)
m.stats.set(&st, stOther)
if err != nil {
m.stats.set(&st, stNone)
return nil, err
}
filterRows = append(filterRows, filterRow)
if uint32(len(filterRow)) < params.maxRowLength(layerIndex) {
m.stats.set(&st, stProcess)
results = append(results, matcherResult{
mapIndex: mapIndex,
matches: params.potentialMatches(filterRows, mapIndex, m.value),
})
m.stats.set(&st, stOther)
delete(m.filterRows, mapIndex)
} else {
m.filterRows[mapIndex] = filterRows
}
}
m.cleanMapIndices()
m.stats.set(&st, stNone)
return results, nil
}
// dropIndices implements matcherInstance.
func (m *singleMatcherInstance) dropIndices(dropIndices []uint32) {
for _, mapIndex := range dropIndices {
delete(m.filterRows, mapIndex)
}
m.cleanMapIndices()
}
// cleanMapIndices removes map indices from the list if there is no matching
// filterRows entry because a result has been returned or the index has been
// dropped.
func (m *singleMatcherInstance) cleanMapIndices() {
var j int
for i, mapIndex := range m.mapIndices {
if _, ok := m.filterRows[mapIndex]; ok {
if i != j {
m.mapIndices[j] = mapIndex
}
j++
}
}
m.mapIndices = m.mapIndices[:j]
}
// matchAny combinines a set of matchers and returns a match for every position
// where any of the underlying matchers signaled a match. A zero-length matchAny
// acts as a "wild card" that signals a potential match at every position.
type matchAny []matcher
// matchAnyInstance is an instance of matchAny.
type matchAnyInstance struct {
matchAny
childInstances []matcherInstance
childResults map[uint32]matchAnyResults
}
// matchAnyResults is used by matchAnyInstance to collect results from all
// child matchers for a specific map index. Once all results has been received
// a merged result is returned for the given map and this structure is discarded.
type matchAnyResults struct {
matches []potentialMatches
done []bool
needMore int
}
// newInstance creates a new instance of matchAny.
func (m matchAny) newInstance(mapIndices []uint32) matcherInstance {
if len(m) == 1 {
return m[0].newInstance(mapIndices)
}
childResults := make(map[uint32]matchAnyResults)
for _, idx := range mapIndices {
childResults[idx] = matchAnyResults{
matches: make([]potentialMatches, len(m)),
done: make([]bool, len(m)),
needMore: len(m),
}
}
childInstances := make([]matcherInstance, len(m))
for i, matcher := range m {
childInstances[i] = matcher.newInstance(mapIndices)
}
return &matchAnyInstance{
matchAny: m,
childInstances: childInstances,
childResults: childResults,
}
}
// getMatchesForLayer implements matcherInstance.
func (m *matchAnyInstance) getMatchesForLayer(ctx context.Context, layerIndex uint32) (mergedResults []matcherResult, err error) {
if len(m.matchAny) == 0 {
// return "wild card" results (potentialMatches(nil) is interpreted as a
// potential match at every log value index of the map).
mergedResults = make([]matcherResult, len(m.childResults))
var i int
for mapIndex := range m.childResults {
mergedResults[i] = matcherResult{mapIndex: mapIndex, matches: nil}
i++
}
return mergedResults, nil
}
for i, childInstance := range m.childInstances {
results, err := childInstance.getMatchesForLayer(ctx, layerIndex)
if err != nil {
return nil, err
}
for _, result := range results {
mr, ok := m.childResults[result.mapIndex]
if !ok || mr.done[i] {
continue
}
mr.done[i] = true
mr.matches[i] = result.matches
mr.needMore--
if mr.needMore == 0 || result.matches == nil {
mergedResults = append(mergedResults, matcherResult{
mapIndex: result.mapIndex,
matches: mergeResults(mr.matches),
})
delete(m.childResults, result.mapIndex)
} else {
m.childResults[result.mapIndex] = mr
}
}
}
return mergedResults, nil
}
// dropIndices implements matcherInstance.
func (m *matchAnyInstance) dropIndices(dropIndices []uint32) {
for _, childInstance := range m.childInstances {
childInstance.dropIndices(dropIndices)
}
for _, mapIndex := range dropIndices {
delete(m.childResults, mapIndex)
}
}
// mergeResults merges multiple lists of matches into a single one, preserving
// ascending order and filtering out any duplicates.
func mergeResults(results []potentialMatches) potentialMatches {
if len(results) == 0 {
return nil
}
var sumLen int
for _, res := range results {
if res == nil {
// nil is a wild card; all indices in map range are potential matches
return nil
}
sumLen += len(res)
}
merged := make(potentialMatches, 0, sumLen)
for {
best := -1
for i, res := range results {
if len(res) == 0 {
continue
}
if best < 0 || res[0] < results[best][0] {
best = i
}
}
if best < 0 {
return merged
}
if len(merged) == 0 || results[best][0] > merged[len(merged)-1] {
merged = append(merged, results[best][0])
}
results[best] = results[best][1:]
}
}
// matchSequence combines two matchers, a "base" and a "next" matcher with a
// positive integer offset so that the resulting matcher signals a match at log
// value index X when the base matcher returns a match at X and the next matcher
// gives a match at X+offset. Note that matchSequence can be used recursively to
// detect any log value sequence.
type matchSequence struct {
params *Params
base, next matcher
offset uint64
statsLock sync.Mutex
baseStats, nextStats matchOrderStats
}
// newInstance creates a new instance of matchSequence.
func (m *matchSequence) newInstance(mapIndices []uint32) matcherInstance {
// determine set of indices to request from next matcher
nextIndices := make([]uint32, 0, len(mapIndices)*3/2)
needMatched := make(map[uint32]struct{})
baseRequested := make(map[uint32]struct{})
nextRequested := make(map[uint32]struct{})
for _, mapIndex := range mapIndices {
needMatched[mapIndex] = struct{}{}
baseRequested[mapIndex] = struct{}{}
if _, ok := nextRequested[mapIndex]; !ok {
nextIndices = append(nextIndices, mapIndex)
nextRequested[mapIndex] = struct{}{}
}
nextIndices = append(nextIndices, mapIndex+1)
nextRequested[mapIndex+1] = struct{}{}
}
return &matchSequenceInstance{
matchSequence: m,
baseInstance: m.base.newInstance(mapIndices),
nextInstance: m.next.newInstance(nextIndices),
needMatched: needMatched,
baseRequested: baseRequested,
nextRequested: nextRequested,
baseResults: make(map[uint32]potentialMatches),
nextResults: make(map[uint32]potentialMatches),
}
}
// matchOrderStats collects statistics about the evaluating cost and the
// occurence of empty result sets from both base and next child matchers.
// This allows the optimization of the evaluation order by evaluating the
// child first that is cheaper and/or gives empty results more often and not
// evaluating the other child in most cases.
// Note that matchOrderStats is specific to matchSequence and the results are
// carried over to future instances as the results are mostly useful when
// evaluating layer zero of each instance. For this reason it should be used
// in a thread safe way as is may be accessed from multiple worker goroutines.
type matchOrderStats struct {
totalCount, nonEmptyCount, totalCost uint64
}
// add collects statistics after a child has been evaluated for a certain layer.
func (ms *matchOrderStats) add(empty bool, layerIndex uint32) {
if empty && layerIndex != 0 {
// matchers may be evaluated for higher layers after all results have
// been returned. Also, empty results are not relevant when previous
// layers yielded matches already, so these cases can be ignored.
return
}
ms.totalCount++
if !empty {
ms.nonEmptyCount++
}
ms.totalCost += uint64(layerIndex + 1)
}
// mergeStats merges two sets of matchOrderStats.
func (ms *matchOrderStats) mergeStats(add matchOrderStats) {
ms.totalCount += add.totalCount
ms.nonEmptyCount += add.nonEmptyCount
ms.totalCost += add.totalCost
}
// baseFirst returns true if the base child matcher should be evaluated first.
func (m *matchSequence) baseFirst() bool {
m.statsLock.Lock()
bf := float64(m.baseStats.totalCost)*float64(m.nextStats.totalCount)+
float64(m.baseStats.nonEmptyCount)*float64(m.nextStats.totalCost) <
float64(m.baseStats.totalCost)*float64(m.nextStats.nonEmptyCount)+
float64(m.nextStats.totalCost)*float64(m.baseStats.totalCount)
m.statsLock.Unlock()
return bf
}
// mergeBaseStats merges a set of matchOrderStats into the base matcher stats.
func (m *matchSequence) mergeBaseStats(stats matchOrderStats) {
m.statsLock.Lock()
m.baseStats.mergeStats(stats)
m.statsLock.Unlock()
}
// mergeNextStats merges a set of matchOrderStats into the next matcher stats.
func (m *matchSequence) mergeNextStats(stats matchOrderStats) {
m.statsLock.Lock()
m.nextStats.mergeStats(stats)
m.statsLock.Unlock()
}
// newMatchSequence creates a recursive sequence matcher from a list of underlying
// matchers. The resulting matcher signals a match at log value index X when each
// underlying matcher matchers[i] returns a match at X+i.
func newMatchSequence(params *Params, matchers []matcher) matcher {
if len(matchers) == 0 {
panic("zero length sequence matchers are not allowed")
}
if len(matchers) == 1 {
return matchers[0]
}
return &matchSequence{
params: params,
base: newMatchSequence(params, matchers[:len(matchers)-1]),
next: matchers[len(matchers)-1],
offset: uint64(len(matchers) - 1),
}
}
// matchSequenceInstance is an instance of matchSequence.
type matchSequenceInstance struct {
*matchSequence
baseInstance, nextInstance matcherInstance
baseRequested, nextRequested, needMatched map[uint32]struct{}
baseResults, nextResults map[uint32]potentialMatches
}
// getMatchesForLayer implements matcherInstance.
func (m *matchSequenceInstance) getMatchesForLayer(ctx context.Context, layerIndex uint32) (matchedResults []matcherResult, err error) {
// decide whether to evaluate base or next matcher first
baseFirst := m.baseFirst()
if baseFirst {
if err := m.evalBase(ctx, layerIndex); err != nil {
return nil, err
}
}
if err := m.evalNext(ctx, layerIndex); err != nil {
return nil, err
}
if !baseFirst {
if err := m.evalBase(ctx, layerIndex); err != nil {
return nil, err
}
}
// evaluate and return matched results where possible
for mapIndex := range m.needMatched {
if _, ok := m.baseRequested[mapIndex]; ok {
continue
}
if _, ok := m.nextRequested[mapIndex]; ok {
continue
}
if _, ok := m.nextRequested[mapIndex+1]; ok {
continue
}
matchedResults = append(matchedResults, matcherResult{
mapIndex: mapIndex,
matches: m.params.matchResults(mapIndex, m.offset, m.baseResults[mapIndex], m.nextResults[mapIndex], m.nextResults[mapIndex+1]),
})
delete(m.needMatched, mapIndex)
}
return matchedResults, nil
}
// dropIndices implements matcherInstance.
func (m *matchSequenceInstance) dropIndices(dropIndices []uint32) {
for _, mapIndex := range dropIndices {
delete(m.needMatched, mapIndex)
}
var dropBase, dropNext []uint32
for _, mapIndex := range dropIndices {
if m.dropBase(mapIndex) {
dropBase = append(dropBase, mapIndex)
}
}
m.baseInstance.dropIndices(dropBase)
for _, mapIndex := range dropIndices {
if m.dropNext(mapIndex) {
dropNext = append(dropNext, mapIndex)
}
if m.dropNext(mapIndex + 1) {
dropNext = append(dropNext, mapIndex+1)
}
}
m.nextInstance.dropIndices(dropNext)
}
// evalBase evaluates the base child matcher and drops map indices from the
// next matcher if possible.
func (m *matchSequenceInstance) evalBase(ctx context.Context, layerIndex uint32) error {
results, err := m.baseInstance.getMatchesForLayer(ctx, layerIndex)
if err != nil {
return err
}
var (
dropIndices []uint32
stats matchOrderStats
)
for _, r := range results {
m.baseResults[r.mapIndex] = r.matches
delete(m.baseRequested, r.mapIndex)
stats.add(r.matches != nil && len(r.matches) == 0, layerIndex)
}
m.mergeBaseStats(stats)
for _, r := range results {
if m.dropNext(r.mapIndex) {
dropIndices = append(dropIndices, r.mapIndex)
}
if m.dropNext(r.mapIndex + 1) {
dropIndices = append(dropIndices, r.mapIndex+1)
}
}
if len(dropIndices) > 0 {
m.nextInstance.dropIndices(dropIndices)
}
return nil
}
// evalNext evaluates the next child matcher and drops map indices from the
// base matcher if possible.
func (m *matchSequenceInstance) evalNext(ctx context.Context, layerIndex uint32) error {
results, err := m.nextInstance.getMatchesForLayer(ctx, layerIndex)
if err != nil {
return err
}
var (
dropIndices []uint32
stats matchOrderStats
)
for _, r := range results {
m.nextResults[r.mapIndex] = r.matches
delete(m.nextRequested, r.mapIndex)
stats.add(r.matches != nil && len(r.matches) == 0, layerIndex)
}
m.mergeNextStats(stats)
for _, r := range results {
if r.mapIndex > 0 && m.dropBase(r.mapIndex-1) {
dropIndices = append(dropIndices, r.mapIndex-1)
}
if m.dropBase(r.mapIndex) {
dropIndices = append(dropIndices, r.mapIndex)
}
}
if len(dropIndices) > 0 {
m.baseInstance.dropIndices(dropIndices)
}
return nil
}
// dropBase checks whether the given map index can be dropped from the base
// matcher based on the known results from the next matcher and removes it
// from the internal requested set and returns true if possible.
func (m *matchSequenceInstance) dropBase(mapIndex uint32) bool {
if _, ok := m.baseRequested[mapIndex]; !ok {
return false
}
if _, ok := m.needMatched[mapIndex]; ok {
if next := m.nextResults[mapIndex]; next == nil ||
(len(next) > 0 && next[len(next)-1] >= (uint64(mapIndex)<<m.params.logValuesPerMap)+m.offset) {
return false
}
if nextNext := m.nextResults[mapIndex+1]; nextNext == nil ||
(len(nextNext) > 0 && nextNext[0] < (uint64(mapIndex+1)<<m.params.logValuesPerMap)+m.offset) {
return false
}
}
delete(m.baseRequested, mapIndex)
return true
}
// dropNext checks whether the given map index can be dropped from the next
// matcher based on the known results from the base matcher and removes it
// from the internal requested set and returns true if possible.
func (m *matchSequenceInstance) dropNext(mapIndex uint32) bool {
if _, ok := m.nextRequested[mapIndex]; !ok {
return false
}
if _, ok := m.needMatched[mapIndex-1]; ok {
if prevBase := m.baseResults[mapIndex-1]; prevBase == nil ||
(len(prevBase) > 0 && prevBase[len(prevBase)-1]+m.offset >= (uint64(mapIndex)<<m.params.logValuesPerMap)) {
return false
}
}
if _, ok := m.needMatched[mapIndex]; ok {
if base := m.baseResults[mapIndex]; base == nil ||
(len(base) > 0 && base[0]+m.offset < (uint64(mapIndex+1)<<m.params.logValuesPerMap)) {
return false
}
}
delete(m.nextRequested, mapIndex)
return true
}
// matchResults returns a list of sequence matches for the given mapIndex and
// offset based on the base matcher's results at mapIndex and the next matcher's
// results at mapIndex and mapIndex+1. Note that acquiring nextNextRes may be
// skipped and it can be substituted with an empty list if baseRes has no potential
// matches that could be sequence matched with anything that could be in nextNextRes.
func (params *Params) matchResults(mapIndex uint32, offset uint64, baseRes, nextRes, nextNextRes potentialMatches) potentialMatches {
if nextRes == nil || (baseRes != nil && len(baseRes) == 0) {
// if nextRes is a wild card or baseRes is empty then the sequence matcher
// result equals baseRes.
return baseRes
}
if len(nextRes) > 0 {
// discard items from nextRes whose corresponding base matcher results
// with the negative offset applied would be located at mapIndex-1.
start := 0
for start < len(nextRes) && nextRes[start] < uint64(mapIndex)<<params.logValuesPerMap+offset {
start++
}
nextRes = nextRes[start:]
}
if len(nextNextRes) > 0 {
// discard items from nextNextRes whose corresponding base matcher results
// with the negative offset applied would still be located at mapIndex+1.
stop := 0
for stop < len(nextNextRes) && nextNextRes[stop] < uint64(mapIndex+1)<<params.logValuesPerMap+offset {
stop++
}
nextNextRes = nextNextRes[:stop]
}
maxLen := len(nextRes) + len(nextNextRes)
if maxLen == 0 {
return nextRes
}
if len(baseRes) < maxLen {
maxLen = len(baseRes)
}
// iterate through baseRes, nextRes and nextNextRes and collect matching results.
matchedRes := make(potentialMatches, 0, maxLen)
for _, nextRes := range []potentialMatches{nextRes, nextNextRes} {
if baseRes != nil {
for len(nextRes) > 0 && len(baseRes) > 0 {
if nextRes[0] > baseRes[0]+offset {
baseRes = baseRes[1:]
} else if nextRes[0] < baseRes[0]+offset {
nextRes = nextRes[1:]
} else {
matchedRes = append(matchedRes, baseRes[0])
baseRes = baseRes[1:]
nextRes = nextRes[1:]
}
}
} else {
// baseRes is a wild card so just return next matcher results with
// negative offset.
for len(nextRes) > 0 {
matchedRes = append(matchedRes, nextRes[0]-offset)
nextRes = nextRes[1:]
}
}
}
return matchedRes
}
// timeStats collects processing time statistics while searching in the log
// index. Used only when the useTimeStats global flag is true.
type timeStats struct {
dt, cnt [stCount]int64
}
const (
stNone = iota
stRowCalc
stFetchFirst
stFetchMore
stProcess
stOther
stCount
)
var stNames = []string{"", "rowCalc", "fetchFirst", "fetchMore", "process", "other"}
// set sets the processing state to one of the pre-defined constants.
// Processing time spent in each state is measured separately.
func (ts *timeStats) set(state *int, newState int) {
if !useTimeStats || newState == *state {
return
}
now := int64(mclock.Now())
atomic.AddInt64(&ts.dt[*state], now)
atomic.AddInt64(&ts.dt[newState], -now)
atomic.AddInt64(&ts.cnt[newState], 1)
*state = newState
}
// print prints the collected statistics.
func (ts *timeStats) print() {
for i := 1; i < stCount; i++ {
log.Info("Matcher stats", "name", stNames[i], "dt", time.Duration(ts.dt[i]), "count", ts.cnt[i])
}
}

@ -0,0 +1,199 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"context"
"errors"
"github.com/ethereum/go-ethereum/core/types"
)
// FilterMapsMatcherBackend implements MatcherBackend.
type FilterMapsMatcherBackend struct {
f *FilterMaps
// these fields should be accessed under f.matchersLock mutex.
valid bool
firstValid, lastValid uint64
syncCh chan SyncRange
}
// NewMatcherBackend returns a FilterMapsMatcherBackend after registering it in
// the active matcher set.
// Note that Close should always be called when the matcher is no longer used.
func (f *FilterMaps) NewMatcherBackend() *FilterMapsMatcherBackend {
f.indexLock.RLock()
f.matchersLock.Lock()
defer func() {
f.matchersLock.Unlock()
f.indexLock.RUnlock()
}()
fm := &FilterMapsMatcherBackend{
f: f,
valid: f.initialized && f.afterLastIndexedBlock > f.firstIndexedBlock,
firstValid: f.firstIndexedBlock,
lastValid: f.afterLastIndexedBlock - 1,
}
f.matchers[fm] = struct{}{}
return fm
}
// GetParams returns the filtermaps parameters.
// GetParams implements MatcherBackend.
func (fm *FilterMapsMatcherBackend) GetParams() *Params {
return &fm.f.Params
}
// Close removes the matcher from the set of active matchers and ensures that
// any SyncLogIndex calls are cancelled.
// Close implements MatcherBackend.
func (fm *FilterMapsMatcherBackend) Close() {
fm.f.matchersLock.Lock()
defer fm.f.matchersLock.Unlock()
delete(fm.f.matchers, fm)
}
// GetFilterMapRow returns the given row of the given map. If the row is empty
// then a non-nil zero length row is returned. If baseLayerOnly is true then
// only the first baseRowLength entries of the row are guaranteed to be
// returned.
// Note that the returned slices should not be modified, they should be copied
// on write.
// GetFilterMapRow implements MatcherBackend.
func (fm *FilterMapsMatcherBackend) GetFilterMapRow(ctx context.Context, mapIndex, rowIndex uint32, baseLayerOnly bool) (FilterRow, error) {
return fm.f.getFilterMapRow(mapIndex, rowIndex, baseLayerOnly)
}
// GetBlockLvPointer returns the starting log value index where the log values
// generated by the given block are located. If blockNumber is beyond the current
// head then the first unoccupied log value index is returned.
// GetBlockLvPointer implements MatcherBackend.
func (fm *FilterMapsMatcherBackend) GetBlockLvPointer(ctx context.Context, blockNumber uint64) (uint64, error) {
fm.f.indexLock.RLock()
defer fm.f.indexLock.RUnlock()
return fm.f.getBlockLvPointer(blockNumber)
}
// GetLogByLvIndex returns the log at the given log value index.
// Note that this function assumes that the log index structure is consistent
// with the canonical chain at the point where the given log value index points.
// If this is not the case then an invalid result may be returned or certain
// logs might not be returned at all.
// No error is returned though because of an inconsistency between the chain and
// the log index. It is the caller's responsibility to verify this consistency
// using SyncLogIndex and re-process certain blocks if necessary.
// GetLogByLvIndex implements MatcherBackend.
func (fm *FilterMapsMatcherBackend) GetLogByLvIndex(ctx context.Context, lvIndex uint64) (*types.Log, error) {
fm.f.indexLock.RLock()
defer fm.f.indexLock.RUnlock()
return fm.f.getLogByLvIndex(lvIndex)
}
// synced signals to the matcher that has triggered a synchronisation that it
// has been finished and the log index is consistent with the chain head passed
// as a parameter.
// Note that if the log index head was far behind the chain head then it might not
// be synced up to the given head in a single step. Still, the latest chain head
// should be passed as a parameter and the existing log index should be consistent
// with that chain.
func (fm *FilterMapsMatcherBackend) synced(headNumber uint64) {
fm.f.indexLock.RLock()
fm.f.matchersLock.Lock()
defer func() {
fm.f.matchersLock.Unlock()
fm.f.indexLock.RUnlock()
}()
fm.syncCh <- SyncRange{
HeadNumber: headNumber,
Valid: fm.valid,
FirstValid: fm.firstValid,
LastValid: fm.lastValid,
Indexed: fm.f.hasIndexedBlocks(),
FirstIndexed: fm.f.firstIndexedBlock,
LastIndexed: fm.f.afterLastIndexedBlock - 1,
}
fm.valid = fm.f.hasIndexedBlocks()
fm.firstValid = fm.f.firstIndexedBlock
fm.lastValid = fm.f.afterLastIndexedBlock - 1
fm.syncCh = nil
}
// SyncLogIndex ensures that the log index is consistent with the current state
// of the chain and is synced up to the current head. It blocks until this state
// is achieved or the context is cancelled.
// If successful, it returns a SyncRange that contains the latest chain head,
// the indexed range that is currently consistent with the chain and the valid
// range that has not been changed and has been consistent with all states of the
// chain since the previous SyncLogIndex or the creation of the matcher backend.
func (fm *FilterMapsMatcherBackend) SyncLogIndex(ctx context.Context) (SyncRange, error) {
if fm.f.noHistory {
if !fm.f.initialized {
return SyncRange{}, errors.New("canonical chain head not available")
}
return SyncRange{HeadNumber: fm.f.targetBlockNumber}, nil
}
// add SyncRange return channel, ensuring that
syncCh := make(chan SyncRange, 1)
fm.f.matchersLock.Lock()
fm.syncCh = syncCh
fm.f.matchersLock.Unlock()
select {
case fm.f.matcherSyncCh <- fm:
case <-ctx.Done():
return SyncRange{}, ctx.Err()
}
select {
case vr := <-syncCh:
return vr, nil
case <-ctx.Done():
return SyncRange{}, ctx.Err()
}
}
// updateMatchersValidRange iterates through active matchers and limits their
// valid range with the current indexed range. This function should be called
// whenever a part of the log index has been removed, before adding new blocks
// to it.
// Note that this function assumes that the index read lock is being held.
func (f *FilterMaps) updateMatchersValidRange() {
f.matchersLock.Lock()
defer f.matchersLock.Unlock()
for fm := range f.matchers {
if !f.hasIndexedBlocks() {
fm.valid = false
}
if !fm.valid {
continue
}
if fm.firstValid < f.firstIndexedBlock {
fm.firstValid = f.firstIndexedBlock
}
if fm.lastValid >= f.afterLastIndexedBlock {
fm.lastValid = f.afterLastIndexedBlock - 1
}
if fm.firstValid > fm.lastValid {
fm.valid = false
}
}
}

@ -0,0 +1,87 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"context"
crand "crypto/rand"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
)
func TestMatcher(t *testing.T) {
ts := newTestSetup(t)
defer ts.close()
ts.chain.addBlocks(100, 10, 10, 4, true)
ts.setHistory(0, false)
ts.fm.WaitIdle()
for i := 0; i < 2000; i++ {
bhash := ts.chain.canonical[rand.Intn(len(ts.chain.canonical))]
receipts := ts.chain.receipts[bhash]
if len(receipts) == 0 {
continue
}
receipt := receipts[rand.Intn(len(receipts))]
if len(receipt.Logs) == 0 {
continue
}
log := receipt.Logs[rand.Intn(len(receipt.Logs))]
var ok bool
addresses := make([]common.Address, rand.Intn(3))
for i := range addresses {
crand.Read(addresses[i][:])
}
if len(addresses) > 0 {
addresses[rand.Intn(len(addresses))] = log.Address
ok = true
}
topics := make([][]common.Hash, rand.Intn(len(log.Topics)+1))
for j := range topics {
topics[j] = make([]common.Hash, rand.Intn(3))
for i := range topics[j] {
crand.Read(topics[j][i][:])
}
if len(topics[j]) > 0 {
topics[j][rand.Intn(len(topics[j]))] = log.Topics[j]
ok = true
}
}
if !ok {
continue // cannot search for match-all pattern
}
mb := ts.fm.NewMatcherBackend()
logs, err := GetPotentialMatches(context.Background(), mb, 0, 1000, addresses, topics)
mb.Close()
if err != nil {
t.Fatalf("Log search error: %v", err)
}
var found bool
for _, l := range logs {
if l == log {
found = true
break
}
}
if !found {
t.Fatalf("Log search did not return expected log (addresses: %v, topics: %v, expected log: %v)", addresses, topics, *log)
}
}
}

@ -0,0 +1,249 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
"crypto/sha256"
"encoding/binary"
"math"
"sort"
"github.com/ethereum/go-ethereum/common"
)
// Params defines the basic parameters of the log index structure.
type Params struct {
logMapHeight uint // log2(mapHeight)
logMapsPerEpoch uint // log2(mapsPerEpoch)
logValuesPerMap uint // log2(logValuesPerMap)
baseRowLengthRatio uint // baseRowLength / average row length
logLayerDiff uint // maxRowLength log2 growth per layer
// derived fields
mapHeight uint32 // filter map height (number of rows)
mapsPerEpoch uint32 // number of maps in an epoch
baseRowLength uint32 // maximum number of log values per row on layer 0
valuesPerMap uint64 // number of log values marked on each filter map
// not affecting consensus
baseRowGroupLength uint32 // length of base row groups in local database
}
// DefaultParams is the set of parameters used on mainnet.
var DefaultParams = Params{
logMapHeight: 16,
logMapsPerEpoch: 10,
logValuesPerMap: 16,
baseRowGroupLength: 32,
baseRowLengthRatio: 8,
logLayerDiff: 2,
}
// deriveFields calculates the derived fields of the parameter set.
func (p *Params) deriveFields() {
p.mapHeight = uint32(1) << p.logMapHeight
p.mapsPerEpoch = uint32(1) << p.logMapsPerEpoch
p.valuesPerMap = uint64(1) << p.logValuesPerMap
p.baseRowLength = uint32(p.valuesPerMap * uint64(p.baseRowLengthRatio) / uint64(p.mapHeight))
}
// addressValue returns the log value hash of a log emitting address.
func addressValue(address common.Address) common.Hash {
var result common.Hash
hasher := sha256.New()
hasher.Write(address[:])
hasher.Sum(result[:0])
return result
}
// topicValue returns the log value hash of a log topic.
func topicValue(topic common.Hash) common.Hash {
var result common.Hash
hasher := sha256.New()
hasher.Write(topic[:])
hasher.Sum(result[:0])
return result
}
// rowIndex returns the row index in which the given log value should be marked
// on the given map and mapping layer. Note that row assignments are re-shuffled
// with a different frequency on each mapping layer, allowing efficient disk
// access and Merkle proofs for long sections of short rows on lower order
// layers while avoiding putting too many heavy rows next to each other on
// higher order layers.
func (p *Params) rowIndex(mapIndex, layerIndex uint32, logValue common.Hash) uint32 {
hasher := sha256.New()
hasher.Write(logValue[:])
var indexEnc [8]byte
binary.LittleEndian.PutUint32(indexEnc[0:4], p.maskedMapIndex(mapIndex, layerIndex))
binary.LittleEndian.PutUint32(indexEnc[4:8], layerIndex)
hasher.Write(indexEnc[:])
var hash common.Hash
hasher.Sum(hash[:0])
return binary.LittleEndian.Uint32(hash[:4]) % p.mapHeight
}
// columnIndex returns the column index that should be added to the appropriate
// row in order to place a mark for the next log value.
func (p *Params) columnIndex(lvIndex uint64, logValue common.Hash) uint32 {
x := uint32(lvIndex % p.valuesPerMap) // log value sub-index
transformHash := transformHash(uint32(lvIndex/p.valuesPerMap), logValue)
// apply column index transformation function
x += binary.LittleEndian.Uint32(transformHash[0:4])
x *= binary.LittleEndian.Uint32(transformHash[4:8])*2 + 1
x ^= binary.LittleEndian.Uint32(transformHash[8:12])
x *= binary.LittleEndian.Uint32(transformHash[12:16])*2 + 1
x += binary.LittleEndian.Uint32(transformHash[16:20])
x *= binary.LittleEndian.Uint32(transformHash[20:24])*2 + 1
x ^= binary.LittleEndian.Uint32(transformHash[24:28])
x *= binary.LittleEndian.Uint32(transformHash[28:32])*2 + 1
return x
}
// maxRowLength returns the maximum length filter rows are populated up to
// when using the given mapping layer. A log value can be marked on the map
// according to a given mapping layer if the row mapping on that layer points
// to a row that has not yet reached the maxRowLength belonging to that layer.
// This means that a row that is considered full on a given layer may still be
// extended further on a higher order layer.
// Each value is marked on the lowest order layer possible, assuming that marks
// are added in ascending log value index order.
// When searching for a log value one should consider all layers and process
// corresponding rows up until the first one where the row mapped to the given
// layer is not full.
func (p *Params) maxRowLength(layerIndex uint32) uint32 {
logLayerDiff := uint(layerIndex) * p.logLayerDiff
if logLayerDiff > p.logMapsPerEpoch {
logLayerDiff = p.logMapsPerEpoch
}
return p.baseRowLength << logLayerDiff
}
// maskedMapIndex returns the index used for row mapping calculation on the
// given layer. On layer zero the mapping changes once per epoch, then the
// frequency of re-mapping increases with every new layer until it reaches
// the frequency where it is different for every mapIndex.
func (p *Params) maskedMapIndex(mapIndex, layerIndex uint32) uint32 {
logLayerDiff := uint(layerIndex) * p.logLayerDiff
if logLayerDiff > p.logMapsPerEpoch {
logLayerDiff = p.logMapsPerEpoch
}
return mapIndex & (uint32(math.MaxUint32) << (p.logMapsPerEpoch - logLayerDiff))
}
// transformHash calculates a hash specific to a given map and log value hash
// that defines a bijective function on the uint32 range. This function is used
// to transform the log value sub-index (distance from the first index of the map)
// into a 32 bit column index, then applied in reverse when searching for potential
// matches for a given log value.
func transformHash(mapIndex uint32, logValue common.Hash) (result common.Hash) {
hasher := sha256.New()
hasher.Write(logValue[:])
var indexEnc [4]byte
binary.LittleEndian.PutUint32(indexEnc[:], mapIndex)
hasher.Write(indexEnc[:])
hasher.Sum(result[:0])
return
}
// potentialMatches returns the list of log value indices potentially matching
// the given log value hash in the range of the filter map the row belongs to.
// Note that the list of indices is always sorted and potential duplicates are
// removed. Though the column indices are stored in the same order they were
// added and therefore the true matches are automatically reverse transformed
// in the right order, false positives can ruin this property. Since these can
// only be separated from true matches after the combined pattern matching of the
// outputs of individual log value matchers and this pattern matcher assumes a
// sorted and duplicate-free list of indices, we should ensure these properties
// here.
func (p *Params) potentialMatches(rows []FilterRow, mapIndex uint32, logValue common.Hash) potentialMatches {
results := make(potentialMatches, 0, 8)
transformHash := transformHash(mapIndex, logValue)
sub1 := binary.LittleEndian.Uint32(transformHash[0:4])
mul1 := uint32ModInverse(binary.LittleEndian.Uint32(transformHash[4:8])*2 + 1)
xor1 := binary.LittleEndian.Uint32(transformHash[8:12])
mul2 := uint32ModInverse(binary.LittleEndian.Uint32(transformHash[12:16])*2 + 1)
sub2 := binary.LittleEndian.Uint32(transformHash[16:20])
mul3 := uint32ModInverse(binary.LittleEndian.Uint32(transformHash[20:24])*2 + 1)
xor2 := binary.LittleEndian.Uint32(transformHash[24:28])
mul4 := uint32ModInverse(binary.LittleEndian.Uint32(transformHash[28:32])*2 + 1)
// perform reverse column index transformation on all column indices of the row.
// if a column index was added by the searched log value then the reverse
// transform will yield a valid log value sub-index of the given map.
// Column index is 32 bits long while there are 2**16 valid log value indices
// in the map's range, so this can also happen by accident with 1 in 2**16
// chance, in which case we have a false positive.
for i, row := range rows {
for _, columnIndex := range row {
if potentialSubIndex := (((((((columnIndex * mul4) ^ xor2) * mul3) - sub2) * mul2) ^ xor1) * mul1) - sub1; potentialSubIndex < uint32(p.valuesPerMap) {
results = append(results, uint64(mapIndex)<<p.logValuesPerMap+uint64(potentialSubIndex))
}
}
if uint32(len(row)) < p.maxRowLength(uint32(i)) {
break
}
if i == len(rows)-1 {
panic("potentialMatches: insufficient list of row alternatives")
}
}
sort.Sort(results)
// remove duplicates
j := 0
for i, match := range results {
if i == 0 || match != results[i-1] {
results[j] = results[i]
j++
}
}
return results[:j]
}
// potentialMatches is a strictly monotonically increasing list of log value
// indices in the range of a filter map that are potential matches for certain
// filter criteria.
// potentialMatches implements sort.Interface.
// Note that nil is used as a wildcard and therefore means that all log value
// indices in the filter map range are potential matches. If there are no
// potential matches in the given map's range then an empty slice should be used.
type potentialMatches []uint64
// noMatches means there are no potential matches in a given filter map's range.
var noMatches = potentialMatches{}
func (p potentialMatches) Len() int { return len(p) }
func (p potentialMatches) Less(i, j int) bool { return p[i] < p[j] }
func (p potentialMatches) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// uint32ModInverse takes an odd 32 bit number and returns its modular
// multiplicative inverse (mod 2**32), meaning that for any odd uint32 value v
// uint32(v * uint32ModInverse(v)) == 1.
func uint32ModInverse(v uint32) uint32 {
if v&1 == 0 {
panic("uint32ModInverse called with even argument")
}
m := int64(1) << 32
m0 := m
a := int64(v)
x, y := int64(1), int64(0)
for a > 1 {
q := a / m
m, a = a%m, m
x, y = y, x-q*y
}
if x < 0 {
x += m0
}
return uint32(x)
}

@ -0,0 +1,149 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package filtermaps
import (
crand "crypto/rand"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
)
func TestSingleMatch(t *testing.T) {
params := DefaultParams
params.deriveFields()
for count := 0; count < 100000; count++ {
// generate a row with a single random entry
mapIndex := rand.Uint32()
lvIndex := uint64(mapIndex)<<params.logValuesPerMap + uint64(rand.Intn(int(params.valuesPerMap)))
var lvHash common.Hash
crand.Read(lvHash[:])
row := FilterRow{params.columnIndex(lvIndex, lvHash)}
matches := params.potentialMatches([]FilterRow{row}, mapIndex, lvHash)
// check if it has been reverse transformed correctly
if len(matches) != 1 {
t.Fatalf("Invalid length of matches (got %d, expected 1)", len(matches))
}
if matches[0] != lvIndex {
if len(matches) != 1 {
t.Fatalf("Incorrect match returned (got %d, expected %d)", matches[0], lvIndex)
}
}
}
}
const (
testPmCount = 100
testPmLen = 1000
)
func TestPotentialMatches(t *testing.T) {
params := DefaultParams
params.deriveFields()
var falsePositives int
for count := 0; count < testPmCount; count++ {
mapIndex := rand.Uint32()
lvStart := uint64(mapIndex) << params.logValuesPerMap
var row FilterRow
lvIndices := make([]uint64, testPmLen)
lvHashes := make([]common.Hash, testPmLen+1)
for i := range lvIndices {
// add testPmLen single entries with different log value hashes at different indices
lvIndices[i] = lvStart + uint64(rand.Intn(int(params.valuesPerMap)))
crand.Read(lvHashes[i][:])
row = append(row, params.columnIndex(lvIndices[i], lvHashes[i]))
}
// add the same log value hash at the first testPmLen log value indices of the map's range
crand.Read(lvHashes[testPmLen][:])
for lvIndex := lvStart; lvIndex < lvStart+testPmLen; lvIndex++ {
row = append(row, params.columnIndex(lvIndex, lvHashes[testPmLen]))
}
// randomly duplicate some entries
for i := 0; i < testPmLen; i++ {
row = append(row, row[rand.Intn(len(row))])
}
// randomly mix up order of elements
for i := len(row) - 1; i > 0; i-- {
j := rand.Intn(i)
row[i], row[j] = row[j], row[i]
}
// split up into a list of rows if longer than allowed
var rows []FilterRow
for layerIndex := uint32(0); row != nil; layerIndex++ {
maxLen := int(params.maxRowLength(layerIndex))
if len(row) > maxLen {
rows = append(rows, row[:maxLen])
row = row[maxLen:]
} else {
rows = append(rows, row)
row = nil
}
}
// check retrieved matches while also counting false positives
for i, lvHash := range lvHashes {
matches := params.potentialMatches(rows, mapIndex, lvHash)
if i < testPmLen {
// check single entry match
if len(matches) < 1 {
t.Fatalf("Invalid length of matches (got %d, expected >=1)", len(matches))
}
var found bool
for _, lvi := range matches {
if lvi == lvIndices[i] {
found = true
} else {
falsePositives++
}
}
if !found {
t.Fatalf("Expected match not found (got %v, expected %d)", matches, lvIndices[i])
}
} else {
// check "long series" match
if len(matches) < testPmLen {
t.Fatalf("Invalid length of matches (got %d, expected >=%d)", len(matches), testPmLen)
}
// since results are ordered, first testPmLen entries should always match exactly
for j := 0; j < testPmLen; j++ {
if matches[j] != lvStart+uint64(j) {
t.Fatalf("Incorrect match at index %d (got %d, expected %d)", j, matches[j], lvStart+uint64(j))
}
}
// the rest are false positives
falsePositives += len(matches) - testPmLen
}
}
}
// Whenever looking for a certain log value hash, each entry in the row that
// was generated by another log value hash (a "foreign entry") has a
// valuesPerMap // 2^32 chance of yielding a false positive if the reverse
// transformed 32 bit integer is by random chance less than valuesPerMap and
// is therefore considered a potentially valid match.
// We have testPmLen unique hash entries and a testPmLen long series of entries
// for the same hash. For each of the testPmLen unique hash entries there are
// testPmLen*2-1 foreign entries while for the long series there are testPmLen
// foreign entries. This means that after performing all these filtering runs,
// we have processed 2*testPmLen^2 foreign entries, which given us an estimate
// of how many false positives to expect.
expFalse := int(uint64(testPmCount*testPmLen*testPmLen*2) * params.valuesPerMap >> 32)
if falsePositives < expFalse/2 || falsePositives > expFalse*3/2 {
t.Fatalf("False positive rate out of expected range (got %d, expected %d +-50%%)", falsePositives, expFalse)
}
}

@ -18,6 +18,9 @@ package rawdb
import (
"bytes"
"encoding/binary"
"errors"
//"fmt"
"math/big"
"github.com/ethereum/go-ethereum/common"
@ -179,3 +182,292 @@ func DeleteBloombits(db ethdb.Database, bit uint, from uint64, to uint64) {
log.Crit("Failed to delete bloom bits", "err", it.Error())
}
}
// ReadFilterMapRow retrieves a filter map row at the given mapRowIndex
// (see filtermaps.mapRowIndex for the storage index encoding).
// Note that zero length rows are not stored in the database and therefore all
// non-existent entries are interpreted as empty rows and return no error.
// Also note that the mapRowIndex indexing scheme is the same as the one
// proposed in EIP-7745 for tree-hashing the filter map structure and for the
// same data proximity reasons it is also suitable for database representation.
// See also:
// https://eips.ethereum.org/EIPS/eip-7745#hash-tree-structure
func ReadFilterMapExtRow(db ethdb.KeyValueReader, mapRowIndex uint64) ([]uint32, error) {
key := filterMapRowKey(mapRowIndex, false)
has, err := db.Has(key)
if err != nil {
return nil, err
}
if !has {
return nil, nil
}
encRow, err := db.Get(key)
if err != nil {
return nil, err
}
if len(encRow)&3 != 0 {
return nil, errors.New("Invalid encoded extended filter row length")
}
row := make([]uint32, len(encRow)/4)
for i := range row {
row[i] = binary.LittleEndian.Uint32(encRow[i*4 : (i+1)*4])
}
return row, nil
}
func ReadFilterMapBaseRows(db ethdb.KeyValueReader, mapRowIndex uint64, rowCount uint32) ([][]uint32, error) {
key := filterMapRowKey(mapRowIndex, true)
has, err := db.Has(key)
if err != nil {
return nil, err
}
rows := make([][]uint32, rowCount)
if !has {
return rows, nil
}
encRows, err := db.Get(key)
if err != nil {
return nil, err
}
encLen := len(encRows)
var (
entryCount, entriesInRow, rowIndex, headerLen, headerBits int
headerByte byte
)
for headerLen+4*entryCount < encLen {
if headerBits == 0 {
headerByte = encRows[headerLen]
headerLen++
headerBits = 8
}
if headerByte&1 > 0 {
entriesInRow++
entryCount++
} else {
if entriesInRow > 0 {
rows[rowIndex] = make([]uint32, entriesInRow)
entriesInRow = 0
}
rowIndex++
}
headerByte >>= 1
headerBits--
}
if headerLen+4*entryCount > encLen {
return nil, errors.New("Invalid encoded base filter rows length")
}
if entriesInRow > 0 {
rows[rowIndex] = make([]uint32, entriesInRow)
}
nextEntry := headerLen
for _, row := range rows {
for i := range row {
row[i] = binary.LittleEndian.Uint32(encRows[nextEntry : nextEntry+4])
nextEntry += 4
}
}
/*fmt.Print("read ", mapRowIndex)
for _, row := range rows {
fmt.Print(" ", len(row))
}
fmt.Println()
fmt.Println(" header", encRows[:headerLen])*/
return rows, nil
}
// WriteFilterMapRow stores a filter map row at the given mapRowIndex or deletes
// any existing entry if the row is empty.
func WriteFilterMapExtRow(db ethdb.KeyValueWriter, mapRowIndex uint64, row []uint32) {
var err error
if len(row) > 0 {
encRow := make([]byte, len(row)*4)
for i, c := range row {
binary.LittleEndian.PutUint32(encRow[i*4:(i+1)*4], c)
}
err = db.Put(filterMapRowKey(mapRowIndex, false), encRow)
} else {
err = db.Delete(filterMapRowKey(mapRowIndex, false))
}
if err != nil {
log.Crit("Failed to store extended filter map row", "err", err)
}
}
func WriteFilterMapBaseRows(db ethdb.KeyValueWriter, mapRowIndex uint64, rows [][]uint32) {
var entryCount, zeroBits int
//fmt.Print("write ", mapRowIndex)
for i, row := range rows {
//fmt.Print(" ", len(row))
if len(row) > 0 {
entryCount += len(row)
zeroBits = i
}
}
//fmt.Println()
var err error
if entryCount > 0 {
headerLen := (zeroBits + entryCount + 7) / 8
encRows := make([]byte, headerLen+entryCount*4)
nextEntry := headerLen
headerPtr, headerByte := 0, byte(1)
addHeaderBit := func(bit bool) {
if bit {
encRows[headerPtr] += headerByte
}
if headerByte += headerByte; headerByte == 0 {
headerPtr++
headerByte = 1
}
}
for _, row := range rows {
for _, entry := range row {
binary.LittleEndian.PutUint32(encRows[nextEntry:nextEntry+4], entry)
nextEntry += 4
addHeaderBit(true)
}
if zeroBits == 0 {
break
}
addHeaderBit(false)
zeroBits--
}
err = db.Put(filterMapRowKey(mapRowIndex, true), encRows)
//fmt.Println(" header", encRows[:headerLen])
} else {
err = db.Delete(filterMapRowKey(mapRowIndex, true))
}
if err != nil {
log.Crit("Failed to store base filter map rows", "err", err)
}
}
func DeleteFilterMapRows(db ethdb.KeyValueRangeDeleter, firstMapRowIndex, afterLastMapRowIndex uint64) {
if err := db.DeleteRange(filterMapRowKey(firstMapRowIndex, false), filterMapRowKey(afterLastMapRowIndex, false)); err != nil {
log.Crit("Failed to delete range of filter map rows", "err", err)
}
}
// ReadFilterMapLastBlock retrieves the number of the block that generated the
// last log value entry of the given map.
func ReadFilterMapLastBlock(db ethdb.KeyValueReader, mapIndex uint32) (uint64, common.Hash, error) {
enc, err := db.Get(filterMapLastBlockKey(mapIndex))
if err != nil {
return 0, common.Hash{}, err
}
if len(enc) != 40 {
return 0, common.Hash{}, errors.New("Invalid block number and id encoding")
}
var id common.Hash
copy(id[:], enc[8:])
return binary.BigEndian.Uint64(enc[:8]), id, nil
}
// WriteFilterMapLastBlock stores the number of the block that generated the
// last log value entry of the given map.
func WriteFilterMapLastBlock(db ethdb.KeyValueWriter, mapIndex uint32, blockNumber uint64, id common.Hash) {
var enc [40]byte
binary.BigEndian.PutUint64(enc[:8], blockNumber)
copy(enc[8:], id[:])
if err := db.Put(filterMapLastBlockKey(mapIndex), enc[:]); err != nil {
log.Crit("Failed to store filter map last block pointer", "err", err)
}
}
// DeleteFilterMapLastBlock deletes the number of the block that generated the
// last log value entry of the given map.
func DeleteFilterMapLastBlock(db ethdb.KeyValueWriter, mapIndex uint32) {
if err := db.Delete(filterMapLastBlockKey(mapIndex)); err != nil {
log.Crit("Failed to delete filter map last block pointer", "err", err)
}
}
func DeleteFilterMapLastBlocks(db ethdb.KeyValueRangeDeleter, firstMapIndex, afterLastMapIndex uint32) {
if err := db.DeleteRange(filterMapLastBlockKey(firstMapIndex), filterMapLastBlockKey(afterLastMapIndex)); err != nil {
log.Crit("Failed to delete range of filter map last block pointers", "err", err)
}
}
// ReadBlockLvPointer retrieves the starting log value index where the log values
// generated by the given block are located.
func ReadBlockLvPointer(db ethdb.KeyValueReader, blockNumber uint64) (uint64, error) {
encPtr, err := db.Get(filterMapBlockLVKey(blockNumber))
if err != nil {
return 0, err
}
if len(encPtr) != 8 {
return 0, errors.New("Invalid log value pointer encoding")
}
return binary.BigEndian.Uint64(encPtr), nil
}
// WriteBlockLvPointer stores the starting log value index where the log values
// generated by the given block are located.
func WriteBlockLvPointer(db ethdb.KeyValueWriter, blockNumber, lvPointer uint64) {
var encPtr [8]byte
binary.BigEndian.PutUint64(encPtr[:], lvPointer)
if err := db.Put(filterMapBlockLVKey(blockNumber), encPtr[:]); err != nil {
log.Crit("Failed to store block log value pointer", "err", err)
}
}
// DeleteBlockLvPointer deletes the starting log value index where the log values
// generated by the given block are located.
func DeleteBlockLvPointer(db ethdb.KeyValueWriter, blockNumber uint64) {
if err := db.Delete(filterMapBlockLVKey(blockNumber)); err != nil {
log.Crit("Failed to delete block log value pointer", "err", err)
}
}
func DeleteBlockLvPointers(db ethdb.KeyValueRangeDeleter, firstBlockNumber, afterLastBlockNumber uint64) {
if err := db.DeleteRange(filterMapBlockLVKey(firstBlockNumber), filterMapBlockLVKey(afterLastBlockNumber)); err != nil {
log.Crit("Failed to delete range of block log value pointers", "err", err)
}
}
// FilterMapsRange is a storage representation of the block range covered by the
// filter maps structure and the corresponting log value index range.
type FilterMapsRange struct {
TargetBlockId common.Hash
TargetBlockNumber, HeadBlockDelimiter uint64
FirstIndexedBlock, AfterLastIndexedBlock uint64
FirstRenderedMap, AfterLastRenderedMap, TailPartialEpoch uint32
}
// ReadFilterMapsRange retrieves the filter maps range data. Note that if the
// database entry is not present, that is interpreted as a valid non-initialized
// state and returns a blank range structure and no error.
func ReadFilterMapsRange(db ethdb.KeyValueReader) (FilterMapsRange, bool, error) {
if has, err := db.Has(filterMapsRangeKey); !has || err != nil {
return FilterMapsRange{}, false, err
}
encRange, err := db.Get(filterMapsRangeKey)
if err != nil {
return FilterMapsRange{}, false, err
}
var fmRange FilterMapsRange
if err := rlp.DecodeBytes(encRange, &fmRange); err != nil {
return FilterMapsRange{}, false, err
}
return fmRange, true, err
}
// WriteFilterMapsRange stores the filter maps range data.
func WriteFilterMapsRange(db ethdb.KeyValueWriter, fmRange FilterMapsRange) {
encRange, err := rlp.EncodeToBytes(&fmRange)
if err != nil {
log.Crit("Failed to encode filter maps range", "err", err)
}
if err := db.Put(filterMapsRangeKey, encRange); err != nil {
log.Crit("Failed to store filter maps range", "err", err)
}
}
// DeleteFilterMapsRange deletes the filter maps range data which is interpreted
// as reverting to the un-initialized state.
func DeleteFilterMapsRange(db ethdb.KeyValueWriter) {
if err := db.Delete(filterMapsRangeKey); err != nil {
log.Crit("Failed to delete filter maps range", "err", err)
}
}

@ -376,6 +376,7 @@ func InspectDatabase(db ethdb.Database, keyPrefix, keyStart []byte) error {
storageSnaps stat
preimages stat
bloomBits stat
filterMaps stat
beaconHeaders stat
cliqueSnaps stat
@ -440,6 +441,8 @@ func InspectDatabase(db ethdb.Database, keyPrefix, keyStart []byte) error {
bloomBits.Add(size)
case bytes.HasPrefix(key, BloomBitsIndexPrefix):
bloomBits.Add(size)
case bytes.HasPrefix(key, FilterMapsPrefix):
filterMaps.Add(size)
case bytes.HasPrefix(key, skeletonHeaderPrefix) && len(key) == (len(skeletonHeaderPrefix)+8):
beaconHeaders.Add(size)
case bytes.HasPrefix(key, CliqueSnapshotPrefix) && len(key) == 7+common.HashLength:
@ -505,6 +508,7 @@ func InspectDatabase(db ethdb.Database, keyPrefix, keyStart []byte) error {
{"Key-Value store", "Block hash->number", hashNumPairings.Size(), hashNumPairings.Count()},
{"Key-Value store", "Transaction index", txLookups.Size(), txLookups.Count()},
{"Key-Value store", "Bloombit index", bloomBits.Size(), bloomBits.Count()},
{"Key-Value store", "Log search index", filterMaps.Size(), filterMaps.Count()},
{"Key-Value store", "Contract codes", codes.Size(), codes.Count()},
{"Key-Value store", "Hash trie nodes", legacyTries.Size(), legacyTries.Count()},
{"Key-Value store", "Path trie state lookups", stateLookups.Size(), stateLookups.Count()},

@ -145,6 +145,12 @@ var (
FixedCommitteeRootKey = []byte("fixedRoot-") // bigEndian64(syncPeriod) -> committee root hash
SyncCommitteeKey = []byte("committee-") // bigEndian64(syncPeriod) -> serialized committee
FilterMapsPrefix = []byte("fm-")
filterMapsRangeKey = append(FilterMapsPrefix, byte('R'))
filterMapRowPrefix = append(FilterMapsPrefix, byte('r')) // filterMapRowPrefix + mapRowIndex (uint64 big endian) -> filter row
filterMapLastBlockPrefix = append(FilterMapsPrefix, byte('b')) // filterMapLastBlockPrefix + mapIndex (uint32 big endian) -> block number (uint64 big endian)
filterMapBlockLVPrefix = append(FilterMapsPrefix, byte('p')) // filterMapBlockLVPrefix + num (uint64 big endian) -> log value pointer (uint64 big endian)
preimageCounter = metrics.NewRegisteredCounter("db/preimage/total", nil)
preimageHitCounter = metrics.NewRegisteredCounter("db/preimage/hits", nil)
)
@ -346,3 +352,27 @@ func IsStorageTrieNode(key []byte) bool {
ok, _, _ := ResolveStorageTrieNode(key)
return ok
}
// filterMapRowKey = filterMapRowPrefix + mapRowIndex (uint64 big endian)
func filterMapRowKey(mapRowIndex uint64, base bool) []byte {
extLen := 8
if base {
extLen = 9
}
key := append(filterMapRowPrefix, make([]byte, extLen)...)
l := len(filterMapRowPrefix)
binary.BigEndian.PutUint64(key[l:l+8], mapRowIndex)
return key
}
// filterMapLastBlockKey = filterMapLastBlockPrefix + mapIndex (uint32 big endian)
func filterMapLastBlockKey(mapIndex uint32) []byte {
key := append(filterMapLastBlockPrefix, make([]byte, 4)...)
binary.BigEndian.PutUint32(key[len(filterMapLastBlockPrefix):], mapIndex)
return key
}
// filterMapBlockLVKey = filterMapBlockLVPrefix + num (uint64 big endian)
func filterMapBlockLVKey(number uint64) []byte {
return append(filterMapBlockLVPrefix, encodeBlockNumber(number)...)
}

Loading…
Cancel
Save