core/rawdb, core/state/snapshot: runtime snapshot generation

pull/20152/head
Péter Szilágyi 5 years ago
parent f300c0df01
commit 351a5903b0
No known key found for this signature in database
GPG Key ID: E9AE538CEDF8293D
  1. 1
      cmd/geth/main.go
  2. 1
      cmd/geth/usage.go
  3. 13
      cmd/utils/flags.go
  4. 24
      core/blockchain.go
  5. 4
      core/rawdb/database.go
  6. 15
      core/rawdb/schema.go
  7. 202
      core/state/snapshot/difflayer.go
  8. 137
      core/state/snapshot/difflayer_journal.go
  9. 54
      core/state/snapshot/difflayer_test.go
  10. 55
      core/state/snapshot/disklayer.go
  11. 433
      core/state/snapshot/disklayer_test.go
  12. 294
      core/state/snapshot/generate.go
  13. 257
      core/state/snapshot/journal.go
  14. 266
      core/state/snapshot/snapshot.go
  15. 29
      core/state/snapshot/snapshot_test.go
  16. 130
      core/state/snapshot/wipe.go
  17. 38
      core/state/snapshot/wipe_test.go
  18. 4
      core/state/statedb.go
  19. 6
      eth/backend.go
  20. 2
      eth/config.go
  21. 2
      trie/iterator.go

@ -106,6 +106,7 @@ var (
utils.CacheDatabaseFlag,
utils.CacheTrieFlag,
utils.CacheGCFlag,
utils.CacheSnapshotFlag,
utils.CacheNoPrefetchFlag,
utils.ListenPortFlag,
utils.MaxPeersFlag,

@ -137,6 +137,7 @@ var AppHelpFlagGroups = []flagGroup{
utils.CacheDatabaseFlag,
utils.CacheTrieFlag,
utils.CacheGCFlag,
utils.CacheSnapshotFlag,
utils.CacheNoPrefetchFlag,
},
},

@ -383,14 +383,19 @@ var (
}
CacheTrieFlag = cli.IntFlag{
Name: "cache.trie",
Usage: "Percentage of cache memory allowance to use for trie caching (default = 25% full mode, 50% archive mode)",
Value: 25,
Usage: "Percentage of cache memory allowance to use for trie caching (default = 15% full mode, 30% archive mode)",
Value: 15,
}
CacheGCFlag = cli.IntFlag{
Name: "cache.gc",
Usage: "Percentage of cache memory allowance to use for trie pruning (default = 25% full mode, 0% archive mode)",
Value: 25,
}
CacheSnapshotFlag = cli.IntFlag{
Name: "cache.snapshot",
Usage: "Percentage of cache memory allowance to use for snapshot caching (default = 10% full mode, 20% archive mode)",
Value: 10,
}
CacheNoPrefetchFlag = cli.BoolFlag{
Name: "cache.noprefetch",
Usage: "Disable heuristic state prefetch during block import (less CPU and disk IO, more time waiting for data)",
@ -1463,6 +1468,9 @@ func SetEthConfig(ctx *cli.Context, stack *node.Node, cfg *eth.Config) {
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheGCFlag.Name) {
cfg.TrieDirtyCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheGCFlag.Name) / 100
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheSnapshotFlag.Name) {
cfg.SnapshotCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheSnapshotFlag.Name) / 100
}
if ctx.GlobalIsSet(DocRootFlag.Name) {
cfg.DocRoot = ctx.GlobalString(DocRootFlag.Name)
}
@ -1724,6 +1732,7 @@ func MakeChain(ctx *cli.Context, stack *node.Node) (chain *core.BlockChain, chai
TrieDirtyLimit: eth.DefaultConfig.TrieDirtyCache,
TrieDirtyDisabled: ctx.GlobalString(GCModeFlag.Name) == "archive",
TrieTimeLimit: eth.DefaultConfig.TrieTimeout,
SnapshotLimit: eth.DefaultConfig.SnapshotCache,
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheTrieFlag.Name) {
cache.TrieCleanLimit = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheTrieFlag.Name) / 100

@ -62,8 +62,8 @@ var (
storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil)
storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil)
snapshotAccountReadTimer = metrics.NewRegisteredTimer("chain/snapshot/accountreads", nil)
snapshotStorageReadTimer = metrics.NewRegisteredTimer("chain/snapshot/storagereads", nil)
snapshotAccountReadTimer = metrics.NewRegisteredTimer("chain/snapshot/account/reads", nil)
snapshotStorageReadTimer = metrics.NewRegisteredTimer("chain/snapshot/storage/reads", nil)
snapshotCommitTimer = metrics.NewRegisteredTimer("chain/snapshot/commits", nil)
blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil)
@ -120,6 +120,7 @@ type CacheConfig struct {
TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk
TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node)
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
SnapshotLimit int // Memory allowance (MB) to use for caching snapshot entries in memory
}
// BlockChain represents the canonical chain given a database with a genesis
@ -194,6 +195,7 @@ func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *par
TrieCleanLimit: 256,
TrieDirtyLimit: 256,
TrieTimeLimit: 5 * time.Minute,
SnapshotLimit: 256,
}
}
bodyCache, _ := lru.New(bodyCacheLimit)
@ -300,10 +302,8 @@ func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *par
}
}
// Load any existing snapshot, regenerating it if loading failed
head := bc.CurrentBlock()
if bc.snaps, err = snapshot.New(bc.db, "snapshot.rlp", head.Root()); err != nil {
return nil, err
}
bc.snaps = snapshot.New(bc.db, bc.stateCache.TrieDB(), "snapshot.rlp", bc.cacheConfig.SnapshotLimit, bc.CurrentBlock().Root())
// Take ownership of this particular state
go bc.update()
return bc, nil
@ -497,6 +497,9 @@ func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
headBlockGauge.Update(int64(block.NumberU64()))
bc.chainmu.Unlock()
// Destroy any existing state snapshot and regenerate it in the background
bc.snaps.Rebuild(block.Root())
log.Info("Committed new head block", "number", block.Number(), "hash", hash)
return nil
}
@ -851,7 +854,8 @@ func (bc *BlockChain) Stop() {
bc.wg.Wait()
// Ensure that the entirety of the state snapshot is journalled to disk.
if err := bc.snaps.Journal(bc.CurrentBlock().Root()); err != nil {
snapBase, err := bc.snaps.Journal(bc.CurrentBlock().Root(), "snapshot.rlp")
if err != nil {
log.Error("Failed to journal state snapshot", "err", err)
}
// Ensure the state of a recent block is also stored to disk before exiting.
@ -872,6 +876,12 @@ func (bc *BlockChain) Stop() {
}
}
}
if snapBase != (common.Hash{}) {
log.Info("Writing snapshot state to disk", "root", snapBase)
if err := triedb.Commit(snapBase, true); err != nil {
log.Error("Failed to commit recent state trie", "err", err)
}
}
for !bc.triegc.Empty() {
triedb.Dereference(bc.triegc.PopItem().(common.Hash))
}

@ -282,9 +282,9 @@ func InspectDatabase(db ethdb.Database) error {
receiptSize += size
case bytes.HasPrefix(key, txLookupPrefix) && len(key) == (len(txLookupPrefix)+common.HashLength):
txlookupSize += size
case bytes.HasPrefix(key, StateSnapshotPrefix) && len(key) == (len(StateSnapshotPrefix)+common.HashLength):
case bytes.HasPrefix(key, SnapshotAccountPrefix) && len(key) == (len(SnapshotAccountPrefix)+common.HashLength):
accountSnapSize += size
case bytes.HasPrefix(key, StateSnapshotPrefix) && len(key) == (len(StateSnapshotPrefix)+2*common.HashLength):
case bytes.HasPrefix(key, SnapshotStoragePrefix) && len(key) == (len(SnapshotStoragePrefix)+2*common.HashLength):
storageSnapSize += size
case bytes.HasPrefix(key, preimagePrefix) && len(key) == (len(preimagePrefix)+common.HashLength):
preimageSize += size

@ -55,7 +55,8 @@ var (
txLookupPrefix = []byte("l") // txLookupPrefix + hash -> transaction/receipt lookup metadata
bloomBitsPrefix = []byte("B") // bloomBitsPrefix + bit (uint16 big endian) + section (uint64 big endian) + hash -> bloom bits
StateSnapshotPrefix = []byte("s") // StateSnapshotPrefix + account hash [+ storage hash] -> account/storage trie value
SnapshotAccountPrefix = []byte("a") // SnapshotAccountPrefix + account hash -> account trie value
SnapshotStoragePrefix = []byte("s") // SnapshotStoragePrefix + account hash + storage hash -> storage trie value
preimagePrefix = []byte("secure-key-") // preimagePrefix + hash -> preimage
configPrefix = []byte("ethereum-config-") // config prefix for the db
@ -149,19 +150,19 @@ func txLookupKey(hash common.Hash) []byte {
return append(txLookupPrefix, hash.Bytes()...)
}
// accountSnapshotKey = StateSnapshotPrefix + hash
// accountSnapshotKey = SnapshotAccountPrefix + hash
func accountSnapshotKey(hash common.Hash) []byte {
return append(StateSnapshotPrefix, hash.Bytes()...)
return append(SnapshotAccountPrefix, hash.Bytes()...)
}
// storageSnapshotKey = StateSnapshotPrefix + account hash + storage hash
// storageSnapshotKey = SnapshotStoragePrefix + account hash + storage hash
func storageSnapshotKey(accountHash, storageHash common.Hash) []byte {
return append(append(StateSnapshotPrefix, accountHash.Bytes()...), storageHash.Bytes()...)
return append(append(SnapshotStoragePrefix, accountHash.Bytes()...), storageHash.Bytes()...)
}
// storageSnapshotsKey = StateSnapshotPrefix + account hash + storage hash
// storageSnapshotsKey = SnapshotStoragePrefix + account hash + storage hash
func storageSnapshotsKey(accountHash common.Hash) []byte {
return append(StateSnapshotPrefix, accountHash.Bytes()...)
return append(SnapshotStoragePrefix, accountHash.Bytes()...)
}
// bloomBitsKey = bloomBitsPrefix + bit (uint16 big endian) + section (uint64 big endian) + hash

@ -17,13 +17,52 @@
package snapshot
import (
"encoding/binary"
"fmt"
"math"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/steakknife/bloomfilter"
)
var (
// aggregatorMemoryLimit is the maximum size of the bottom-most diff layer
// that aggregates the writes from above until it's flushed into the disk
// layer.
//
// Note, bumping this up might drastically increase the size of the bloom
// filters that's stored in every diff layer. Don't do that without fully
// understanding all the implications.
aggregatorMemoryLimit = uint64(4 * 1024 * 1024)
// aggregatorItemLimit is an approximate number of items that will end up
// in the agregator layer before it's flushed out to disk. A plain account
// weighs around 14B (+hash), a storage slot 32B (+hash), so 50 is a very
// rough average of what we might see.
aggregatorItemLimit = aggregatorMemoryLimit / 55
// bloomTargetError is the target false positive rate when the aggregator
// layer is at its fullest. The actual value will probably move around up
// and down from this number, it's mostly a ballpark figure.
//
// Note, dropping this down might drastically increase the size of the bloom
// filters that's stored in every diff layer. Don't do that without fully
// understanding all the implications.
bloomTargetError = 0.02
// bloomSize is the ideal bloom filter size given the maximum number of items
// it's expected to hold and the target false positive error rate.
bloomSize = math.Ceil(float64(aggregatorItemLimit) * math.Log(bloomTargetError) / math.Log(1/math.Pow(2, math.Log(2))))
// bloomFuncs is the ideal number of bits a single entry should set in the
// bloom filter to keep its size to a minimum (given it's size and maximum
// entry count).
bloomFuncs = math.Round((bloomSize / float64(aggregatorItemLimit)) * math.Log(2))
)
// diffLayer represents a collection of modifications made to a state snapshot
@ -33,6 +72,7 @@ import (
// The goal of a diff layer is to act as a journal, tracking recent modifications
// made to the state, that have not yet graduated into a semi-immutable state.
type diffLayer struct {
origin *diskLayer // Base disk layer to directly use on bloom misses
parent snapshot // Parent snapshot modified by this one, never nil
memory uint64 // Approximate guess as to how much memory we use
@ -44,9 +84,39 @@ type diffLayer struct {
storageList map[common.Hash][]common.Hash // List of storage slots for iterated retrievals, one per account. Any existing lists are sorted if non-nil
storageData map[common.Hash]map[common.Hash][]byte // Keyed storage slots for direct retrival. one per account (nil means deleted)
diffed *bloomfilter.Filter // Bloom filter tracking all the diffed items up to the disk layer
lock sync.RWMutex
}
// accountBloomHasher is a wrapper around a common.Hash to satisfy the interface
// API requirements of the bloom library used. It's used to convert an account
// hash into a 64 bit mini hash.
type accountBloomHasher common.Hash
func (h accountBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") }
func (h accountBloomHasher) Sum(b []byte) []byte { panic("not implemented") }
func (h accountBloomHasher) Reset() { panic("not implemented") }
func (h accountBloomHasher) BlockSize() int { panic("not implemented") }
func (h accountBloomHasher) Size() int { return 8 }
func (h accountBloomHasher) Sum64() uint64 {
return binary.BigEndian.Uint64(h[:8])
}
// storageBloomHasher is a wrapper around a [2]common.Hash to satisfy the interface
// API requirements of the bloom library used. It's used to convert an account
// hash into a 64 bit mini hash.
type storageBloomHasher [2]common.Hash
func (h storageBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") }
func (h storageBloomHasher) Sum(b []byte) []byte { panic("not implemented") }
func (h storageBloomHasher) Reset() { panic("not implemented") }
func (h storageBloomHasher) BlockSize() int { panic("not implemented") }
func (h storageBloomHasher) Size() int { return 8 }
func (h storageBloomHasher) Sum64() uint64 {
return binary.BigEndian.Uint64(h[0][:8]) ^ binary.BigEndian.Uint64(h[1][:8])
}
// newDiffLayer creates a new diff on top of an existing snapshot, whether that's a low
// level persistent database or a hierarchical diff already.
func newDiffLayer(parent snapshot, root common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
@ -57,9 +127,18 @@ func newDiffLayer(parent snapshot, root common.Hash, accounts map[common.Hash][]
accountData: accounts,
storageData: storage,
}
// Determine mem size
switch parent := parent.(type) {
case *diskLayer:
dl.rebloom(parent)
case *diffLayer:
dl.rebloom(parent.origin)
default:
panic("unknown parent type")
}
// Determine memory size and track the dirty writes
for _, data := range accounts {
dl.memory += uint64(len(data))
dl.memory += uint64(common.HashLength + len(data))
snapshotDirtyAccountWriteMeter.Mark(int64(len(data)))
}
// Fill the storage hashes and sort them for the iterator
dl.storageList = make(map[common.Hash][]common.Hash)
@ -80,16 +159,56 @@ func newDiffLayer(parent snapshot, root common.Hash, accounts map[common.Hash][]
if account, ok := accounts[accountHash]; account == nil || !ok {
log.Error(fmt.Sprintf("storage in %#x exists, but account nil (exists: %v)", accountHash, ok))
}
// Determine mem size
// Determine memory size and track the dirty writes
for _, data := range slots {
dl.memory += uint64(len(data))
dl.memory += uint64(common.HashLength + len(data))
snapshotDirtyStorageWriteMeter.Mark(int64(len(data)))
}
}
dl.memory += uint64(len(dl.storageList) * common.HashLength)
return dl
}
// rebloom discards the layer's current bloom and rebuilds it from scratch based
// on the parent's and the local diffs.
func (dl *diffLayer) rebloom(origin *diskLayer) {
dl.lock.Lock()
defer dl.lock.Unlock()
defer func(start time.Time) {
snapshotBloomIndexTimer.Update(time.Since(start))
}(time.Now())
// Inject the new origin that triggered the rebloom
dl.origin = origin
// Retrieve the parent bloom or create a fresh empty one
if parent, ok := dl.parent.(*diffLayer); ok {
parent.lock.RLock()
dl.diffed, _ = parent.diffed.Copy()
parent.lock.RUnlock()
} else {
dl.diffed, _ = bloomfilter.New(uint64(bloomSize), uint64(bloomFuncs))
}
// Iterate over all the accounts and storage slots and index them
for hash := range dl.accountData {
dl.diffed.Add(accountBloomHasher(hash))
}
for accountHash, slots := range dl.storageData {
for storageHash := range slots {
dl.diffed.Add(storageBloomHasher{accountHash, storageHash})
}
}
// Calculate the current false positive rate and update the error rate meter.
// This is a bit cheating because subsequent layers will overwrite it, but it
// should be fine, we're only interested in ballpark figures.
k := float64(dl.diffed.K())
n := float64(dl.diffed.N())
m := float64(dl.diffed.M())
snapshotBloomErrorGauge.Update(math.Pow(1.0-math.Exp((-k)*(n+0.5)/(m-1)), k))
}
// Root returns the root hash for which this snapshot was made.
func (dl *diffLayer) Root() common.Hash {
return dl.root
@ -124,6 +243,26 @@ func (dl *diffLayer) Account(hash common.Hash) (*Account, error) {
// AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format.
func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) {
// Check the bloom filter first whether there's even a point in reaching into
// all the maps in all the layers below
dl.lock.RLock()
hit := dl.diffed.Contains(accountBloomHasher(hash))
dl.lock.RUnlock()
// If the bloom filter misses, don't even bother with traversing the memory
// diff layers, reach straight into the bottom persistent disk layer
if !hit {
snapshotBloomAccountMissMeter.Mark(1)
return dl.origin.AccountRLP(hash)
}
// The bloom filter hit, start poking in the internal maps
return dl.accountRLP(hash)
}
// accountRLP is an internal version of AccountRLP that skips the bloom filter
// checks and uses the internal maps to try and retrieve the data. It's meant
// to be used if a higher layer's bloom filter hit already.
func (dl *diffLayer) accountRLP(hash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
@ -135,9 +274,17 @@ func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) {
// If the account is known locally, return it. Note, a nil account means it was
// deleted, and is a different notion than an unknown account!
if data, ok := dl.accountData[hash]; ok {
snapshotDirtyAccountHitMeter.Mark(1)
snapshotDirtyAccountReadMeter.Mark(int64(len(data)))
snapshotBloomAccountTrueHitMeter.Mark(1)
return data, nil
}
// Account unknown to this diff, resolve from parent
if diff, ok := dl.parent.(*diffLayer); ok {
return diff.accountRLP(hash)
}
// Failed to resolve through diff layers, mark a bloom error and use the disk
snapshotBloomAccountFalseHitMeter.Mark(1)
return dl.parent.AccountRLP(hash)
}
@ -145,6 +292,26 @@ func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) {
// within a particular account. If the slot is unknown to this diff, it's parent
// is consulted.
func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
// Check the bloom filter first whether there's even a point in reaching into
// all the maps in all the layers below
dl.lock.RLock()
hit := dl.diffed.Contains(storageBloomHasher{accountHash, storageHash})
dl.lock.RUnlock()
// If the bloom filter misses, don't even bother with traversing the memory
// diff layers, reach straight into the bottom persistent disk layer
if !hit {
snapshotBloomStorageMissMeter.Mark(1)
return dl.origin.Storage(accountHash, storageHash)
}
// The bloom filter hit, start poking in the internal maps
return dl.storage(accountHash, storageHash)
}
// storage is an internal version of Storage that skips the bloom filter checks
// and uses the internal maps to try and retrieve the data. It's meant to be
// used if a higher layer's bloom filter hit already.
func (dl *diffLayer) storage(accountHash, storageHash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
@ -157,13 +324,23 @@ func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) ([]byte, erro
// account means it was deleted, and is a different notion than an unknown account!
if storage, ok := dl.storageData[accountHash]; ok {
if storage == nil {
snapshotDirtyStorageHitMeter.Mark(1)
snapshotBloomStorageTrueHitMeter.Mark(1)
return nil, nil
}
if data, ok := storage[storageHash]; ok {
snapshotDirtyStorageHitMeter.Mark(1)
snapshotDirtyStorageReadMeter.Mark(int64(len(data)))
snapshotBloomStorageTrueHitMeter.Mark(1)
return data, nil
}
}
// Account - or slot within - unknown to this diff, resolve from parent
// Storage slot unknown to this diff, resolve from parent
if diff, ok := dl.parent.(*diffLayer); ok {
return diff.storage(accountHash, storageHash)
}
// Failed to resolve through diff layers, mark a bloom error and use the disk
snapshotBloomStorageFalseHitMeter.Mark(1)
return dl.parent.Storage(accountHash, storageHash)
}
@ -224,22 +401,11 @@ func (dl *diffLayer) flatten() snapshot {
storageData: parent.storageData,
accountList: parent.accountList,
accountData: parent.accountData,
diffed: dl.diffed,
memory: parent.memory + dl.memory,
}
}
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
func (dl *diffLayer) Journal() error {
writer, err := dl.journal()
if err != nil {
return err
}
writer.Close()
return nil
}
// AccountList returns a sorted list of all accounts in this difflayer.
func (dl *diffLayer) AccountList() []common.Hash {
dl.lock.Lock()

@ -1,137 +0,0 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bufio"
"fmt"
"io"
"os"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
)
// journalAccount is an account entry in a diffLayer's disk journal.
type journalAccount struct {
Hash common.Hash
Blob []byte
}
// journalStorage is an account's storage map in a diffLayer's disk journal.
type journalStorage struct {
Hash common.Hash
Keys []common.Hash
Vals [][]byte
}
// loadDiffLayer reads the next sections of a snapshot journal, reconstructing a new
// diff and verifying that it can be linked to the requested parent.
func loadDiffLayer(parent snapshot, r *rlp.Stream) (snapshot, error) {
// Read the next diff journal entry
var root common.Hash
if err := r.Decode(&root); err != nil {
// The first read may fail with EOF, marking the end of the journal
if err == io.EOF {
return parent, nil
}
return nil, fmt.Errorf("load diff root: %v", err)
}
var accounts []journalAccount
if err := r.Decode(&accounts); err != nil {
return nil, fmt.Errorf("load diff accounts: %v", err)
}
accountData := make(map[common.Hash][]byte)
for _, entry := range accounts {
accountData[entry.Hash] = entry.Blob
}
var storage []journalStorage
if err := r.Decode(&storage); err != nil {
return nil, fmt.Errorf("load diff storage: %v", err)
}
storageData := make(map[common.Hash]map[common.Hash][]byte)
for _, entry := range storage {
slots := make(map[common.Hash][]byte)
for i, key := range entry.Keys {
slots[key] = entry.Vals[i]
}
storageData[entry.Hash] = slots
}
return loadDiffLayer(newDiffLayer(parent, root, accountData, storageData), r)
}
// journal is the internal version of Journal that also returns the journal file
// so subsequent layers know where to write to.
func (dl *diffLayer) journal() (io.WriteCloser, error) {
// If we've reached the bottom, open the journal
var writer io.WriteCloser
if parent, ok := dl.parent.(*diskLayer); ok {
file, err := os.Create(parent.journal)
if err != nil {
return nil, err
}
writer = file
}
// If we haven't reached the bottom yet, journal the parent first
if writer == nil {
file, err := dl.parent.(*diffLayer).journal()
if err != nil {
return nil, err
}
writer = file
}
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
writer.Close()
return nil, ErrSnapshotStale
}
// Everything below was journalled, persist this layer too
buf := bufio.NewWriter(writer)
if err := rlp.Encode(buf, dl.root); err != nil {
buf.Flush()
writer.Close()
return nil, err
}
accounts := make([]journalAccount, 0, len(dl.accountData))
for hash, blob := range dl.accountData {
accounts = append(accounts, journalAccount{Hash: hash, Blob: blob})
}
if err := rlp.Encode(buf, accounts); err != nil {
buf.Flush()
writer.Close()
return nil, err
}
storage := make([]journalStorage, 0, len(dl.storageData))
for hash, slots := range dl.storageData {
keys := make([]common.Hash, 0, len(slots))
vals := make([][]byte, 0, len(slots))
for key, val := range slots {
keys = append(keys, key)
vals = append(vals, val)
}
storage = append(storage, journalStorage{Hash: hash, Keys: keys, Vals: vals})
}
if err := rlp.Encode(buf, storage); err != nil {
buf.Flush()
writer.Close()
return nil, err
}
buf.Flush()
return writer, nil
}

@ -24,7 +24,9 @@ import (
"path"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
"github.com/ethereum/go-ethereum/rlp"
)
@ -61,7 +63,7 @@ func TestMergeBasics(t *testing.T) {
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer{}, common.Hash{}, accounts, storage)
parent := newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage)
child := newDiffLayer(parent, common.Hash{}, accounts, storage)
child = newDiffLayer(child, common.Hash{}, accounts, storage)
child = newDiffLayer(child, common.Hash{}, accounts, storage)
@ -122,7 +124,7 @@ func TestMergeDelete(t *testing.T) {
}
// Add some flip-flopping layers on top
parent := newDiffLayer(emptyLayer{}, common.Hash{}, flip(), storage)
parent := newDiffLayer(emptyLayer(), common.Hash{}, flip(), storage)
child := parent.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
@ -165,7 +167,7 @@ func TestInsertAndMerge(t *testing.T) {
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
parent = newDiffLayer(emptyLayer{}, common.Hash{}, accounts, storage)
parent = newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage)
}
{
var accounts = make(map[common.Hash][]byte)
@ -186,34 +188,11 @@ func TestInsertAndMerge(t *testing.T) {
}
}
type emptyLayer struct{}
func (emptyLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
panic("implement me")
}
func (emptyLayer) Journal() error {
panic("implement me")
}
func (emptyLayer) Stale() bool {
panic("implement me")
}
func (emptyLayer) Root() common.Hash {
return common.Hash{}
}
func (emptyLayer) Account(hash common.Hash) (*Account, error) {
return nil, nil
}
func (emptyLayer) AccountRLP(hash common.Hash) ([]byte, error) {
return nil, nil
}
func (emptyLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
return nil, nil
func emptyLayer() *diskLayer {
return &diskLayer{
diskdb: memorydb.New(),
cache: fastcache.New(500 * 1024),
}
}
// BenchmarkSearch checks how long it takes to find a non-existing key
@ -234,7 +213,7 @@ func BenchmarkSearch(b *testing.B) {
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer{}
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
@ -272,7 +251,7 @@ func BenchmarkSearchSlot(b *testing.B) {
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer{}
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
@ -313,7 +292,7 @@ func BenchmarkFlatten(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer snapshot
layer = emptyLayer{}
layer = emptyLayer()
for i := 1; i < 128; i++ {
layer = fill(layer)
}
@ -357,17 +336,14 @@ func BenchmarkJournal(b *testing.B) {
}
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = &diskLayer{
journal: path.Join(os.TempDir(), "difflayer_journal.tmp"),
}
layer := snapshot(new(diskLayer))
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
f, _ := layer.(*diffLayer).journal()
f, _, _ := layer.Journal(path.Join(os.TempDir(), "difflayer_journal.tmp"))
f.Close()
}
}

@ -17,6 +17,7 @@
package snapshot
import (
"bytes"
"sync"
"github.com/VictoriaMetrics/fastcache"
@ -24,17 +25,21 @@ import (
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// diskLayer is a low level persistent snapshot built on top of a key-value store.
type diskLayer struct {
journal string // Path of the snapshot journal to use on shutdown
db ethdb.KeyValueStore // Key-value store containing the base snapshot
diskdb ethdb.KeyValueStore // Key-value store containing the base snapshot
triedb *trie.Database // Trie node cache for reconstuction purposes
cache *fastcache.Cache // Cache to avoid hitting the disk for direct access
root common.Hash // Root hash of the base snapshot
stale bool // Signals that the layer became stale (state progressed)
genMarker []byte // Marker for the state that's indexed during initial layer generation
genAbort chan chan *generatorStats // Notification channel to abort generating the snapshot in this layer
lock sync.RWMutex
}
@ -80,18 +85,26 @@ func (dl *diskLayer) AccountRLP(hash common.Hash) ([]byte, error) {
if dl.stale {
return nil, ErrSnapshotStale
}
// If the layer is being generated, ensure the requested hash has already been
// covered by the generator.
if dl.genMarker != nil && bytes.Compare(hash[:], dl.genMarker) > 0 {
return nil, ErrNotCoveredYet
}
// If we're in the disk layer, all diff layers missed
snapshotDirtyAccountMissMeter.Mark(1)
// Try to retrieve the account from the memory cache
if blob := dl.cache.Get(nil, hash[:]); blob != nil {
snapshotCleanHitMeter.Mark(1)
snapshotCleanReadMeter.Mark(int64(len(blob)))
if blob, found := dl.cache.HasGet(nil, hash[:]); found {
snapshotCleanAccountHitMeter.Mark(1)
snapshotCleanAccountReadMeter.Mark(int64(len(blob)))
return blob, nil
}
// Cache doesn't contain account, pull from disk and cache for later
blob := rawdb.ReadAccountSnapshot(dl.db, hash)
blob := rawdb.ReadAccountSnapshot(dl.diskdb, hash)
dl.cache.Set(hash[:], blob)
snapshotCleanMissMeter.Mark(1)
snapshotCleanWriteMeter.Mark(int64(len(blob)))
snapshotCleanAccountMissMeter.Mark(1)
snapshotCleanAccountWriteMeter.Mark(int64(len(blob)))
return blob, nil
}
@ -109,18 +122,26 @@ func (dl *diskLayer) Storage(accountHash, storageHash common.Hash) ([]byte, erro
}
key := append(accountHash[:], storageHash[:]...)
// If the layer is being generated, ensure the requested hash has already been
// covered by the generator.
if dl.genMarker != nil && bytes.Compare(key, dl.genMarker) > 0 {
return nil, ErrNotCoveredYet
}
// If we're in the disk layer, all diff layers missed
snapshotDirtyStorageMissMeter.Mark(1)
// Try to retrieve the storage slot from the memory cache
if blob := dl.cache.Get(nil, key); blob != nil {
snapshotCleanHitMeter.Mark(1)
snapshotCleanReadMeter.Mark(int64(len(blob)))
if blob, found := dl.cache.HasGet(nil, key); found {
snapshotCleanStorageHitMeter.Mark(1)
snapshotCleanStorageReadMeter.Mark(int64(len(blob)))
return blob, nil
}
// Cache doesn't contain storage slot, pull from disk and cache for later
blob := rawdb.ReadStorageSnapshot(dl.db, accountHash, storageHash)
blob := rawdb.ReadStorageSnapshot(dl.diskdb, accountHash, storageHash)
dl.cache.Set(key, blob)
snapshotCleanMissMeter.Mark(1)
snapshotCleanWriteMeter.Mark(int64(len(blob)))
snapshotCleanStorageMissMeter.Mark(1)
snapshotCleanStorageWriteMeter.Mark(int64(len(blob)))
return blob, nil
}
@ -131,9 +152,3 @@ func (dl *diskLayer) Storage(accountHash, storageHash common.Hash) ([]byte, erro
func (dl *diskLayer) Update(blockHash common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
return newDiffLayer(dl, blockHash, accounts, storage)
}
// Journal commits an entire diff hierarchy to disk into a single journal file.
func (dl *diskLayer) Journal() error {
// There's no journalling a disk layer
return nil
}

@ -0,0 +1,433 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
// reverse reverses the contents of a byte slice. It's used to update random accs
// with deterministic changes.
func reverse(blob []byte) []byte {
res := make([]byte, len(blob))
for i, b := range blob {
res[len(blob)-1-i] = b
}
return res
}
// Tests that merging something into a disk layer persists it into the database
// and invalidates any previously written and cached values.
func TestDiskMerge(t *testing.T) {
// Create some accounts in the disk layer
db := memorydb.New()
var (
accNoModNoCache = common.Hash{0x1}
accNoModCache = common.Hash{0x2}
accModNoCache = common.Hash{0x3}
accModCache = common.Hash{0x4}
accDelNoCache = common.Hash{0x5}
accDelCache = common.Hash{0x6}
conNoModNoCache = common.Hash{0x7}
conNoModNoCacheSlot = common.Hash{0x70}
conNoModCache = common.Hash{0x8}
conNoModCacheSlot = common.Hash{0x80}
conModNoCache = common.Hash{0x9}
conModNoCacheSlot = common.Hash{0x90}
conModCache = common.Hash{0xa}
conModCacheSlot = common.Hash{0xa0}
conDelNoCache = common.Hash{0xb}
conDelNoCacheSlot = common.Hash{0xb0}
conDelCache = common.Hash{0xc}
conDelCacheSlot = common.Hash{0xc0}
conNukeNoCache = common.Hash{0xd}
conNukeNoCacheSlot = common.Hash{0xd0}
conNukeCache = common.Hash{0xe}
conNukeCacheSlot = common.Hash{0xe0}
baseRoot = randomHash()
diffRoot = randomHash()
)
rawdb.WriteAccountSnapshot(db, accNoModNoCache, accNoModNoCache[:])
rawdb.WriteAccountSnapshot(db, accNoModCache, accNoModCache[:])
rawdb.WriteAccountSnapshot(db, accModNoCache, accModNoCache[:])
rawdb.WriteAccountSnapshot(db, accModCache, accModCache[:])
rawdb.WriteAccountSnapshot(db, accDelNoCache, accDelNoCache[:])
rawdb.WriteAccountSnapshot(db, accDelCache, accDelCache[:])
rawdb.WriteAccountSnapshot(db, conNoModNoCache, conNoModNoCache[:])
rawdb.WriteStorageSnapshot(db, conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conNoModCache, conNoModCache[:])
rawdb.WriteStorageSnapshot(db, conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conModNoCache, conModNoCache[:])
rawdb.WriteStorageSnapshot(db, conModNoCache, conModNoCacheSlot, conModNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conModCache, conModCache[:])
rawdb.WriteStorageSnapshot(db, conModCache, conModCacheSlot, conModCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conDelNoCache, conDelNoCache[:])
rawdb.WriteStorageSnapshot(db, conDelNoCache, conDelNoCacheSlot, conDelNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conDelCache, conDelCache[:])
rawdb.WriteStorageSnapshot(db, conDelCache, conDelCacheSlot, conDelCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conNukeNoCache, conNukeNoCache[:])
rawdb.WriteStorageSnapshot(db, conNukeNoCache, conNukeNoCacheSlot, conNukeNoCacheSlot[:])
rawdb.WriteAccountSnapshot(db, conNukeCache, conNukeCache[:])
rawdb.WriteStorageSnapshot(db, conNukeCache, conNukeCacheSlot, conNukeCacheSlot[:])
rawdb.WriteSnapshotRoot(db, baseRoot)
// Create a disk layer based on the above and cache in some data
snaps := &Tree{
layers: map[common.Hash]snapshot{
baseRoot: &diskLayer{
diskdb: db,
cache: fastcache.New(500 * 1024),
root: baseRoot,
},
},
}
base := snaps.Snapshot(baseRoot)
base.AccountRLP(accNoModCache)
base.AccountRLP(accModCache)
base.AccountRLP(accDelCache)
base.Storage(conNoModCache, conNoModCacheSlot)
base.Storage(conModCache, conModCacheSlot)
base.Storage(conDelCache, conDelCacheSlot)
base.Storage(conNukeCache, conNukeCacheSlot)
// Modify or delete some accounts, flatten everything onto disk
if err := snaps.Update(diffRoot, baseRoot, map[common.Hash][]byte{
accModNoCache: reverse(accModNoCache[:]),
accModCache: reverse(accModCache[:]),
accDelNoCache: nil,
accDelCache: nil,
conNukeNoCache: nil,
conNukeCache: nil,
}, map[common.Hash]map[common.Hash][]byte{
conModNoCache: {conModNoCacheSlot: reverse(conModNoCacheSlot[:])},
conModCache: {conModCacheSlot: reverse(conModCacheSlot[:])},
conDelNoCache: {conDelNoCacheSlot: nil},
conDelCache: {conDelCacheSlot: nil},
}); err != nil {
t.Fatalf("failed to update snapshot tree: %v", err)
}
if err := snaps.Cap(diffRoot, 0); err != nil {
t.Fatalf("failed to flatten snapshot tree: %v", err)
}
// Retrieve all the data through the disk layer and validate it
base = snaps.Snapshot(diffRoot)
if _, ok := base.(*diskLayer); !ok {
t.Fatalf("update not flattend into the disk layer")
}
// assertAccount ensures that an account matches the given blob.
assertAccount := func(account common.Hash, data []byte) {
t.Helper()
blob, err := base.AccountRLP(account)
if err != nil {
t.Errorf("account access (%x) failed: %v", account, err)
} else if !bytes.Equal(blob, data) {
t.Errorf("account access (%x) mismatch: have %x, want %x", account, blob, data)
}
}
assertAccount(accNoModNoCache, accNoModNoCache[:])
assertAccount(accNoModCache, accNoModCache[:])
assertAccount(accModNoCache, reverse(accModNoCache[:]))
assertAccount(accModCache, reverse(accModCache[:]))
assertAccount(accDelNoCache, nil)
assertAccount(accDelCache, nil)
// assertStorage ensures that a storage slot matches the given blob.
assertStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
blob, err := base.Storage(account, slot)
if err != nil {
t.Errorf("storage access (%x:%x) failed: %v", account, slot, err)
} else if !bytes.Equal(blob, data) {
t.Errorf("storage access (%x:%x) mismatch: have %x, want %x", account, slot, blob, data)
}
}
assertStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertStorage(conDelCache, conDelCacheSlot, nil)
assertStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertStorage(conNukeCache, conNukeCacheSlot, nil)
// Retrieve all the data directly from the database and validate it
// assertDatabaseAccount ensures that an account from the database matches the given blob.
assertDatabaseAccount := func(account common.Hash, data []byte) {
t.Helper()
if blob := rawdb.ReadAccountSnapshot(db, account); !bytes.Equal(blob, data) {
t.Errorf("account database access (%x) mismatch: have %x, want %x", account, blob, data)
}
}
assertDatabaseAccount(accNoModNoCache, accNoModNoCache[:])
assertDatabaseAccount(accNoModCache, accNoModCache[:])
assertDatabaseAccount(accModNoCache, reverse(accModNoCache[:]))
assertDatabaseAccount(accModCache, reverse(accModCache[:]))
assertDatabaseAccount(accDelNoCache, nil)
assertDatabaseAccount(accDelCache, nil)
// assertDatabaseStorage ensures that a storage slot from the database matches the given blob.
assertDatabaseStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
if blob := rawdb.ReadStorageSnapshot(db, account, slot); !bytes.Equal(blob, data) {
t.Errorf("storage database access (%x:%x) mismatch: have %x, want %x", account, slot, blob, data)
}
}
assertDatabaseStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertDatabaseStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertDatabaseStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertDatabaseStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertDatabaseStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertDatabaseStorage(conDelCache, conDelCacheSlot, nil)
assertDatabaseStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertDatabaseStorage(conNukeCache, conNukeCacheSlot, nil)
}
// Tests that merging something into a disk layer persists it into the database
// and invalidates any previously written and cached values, discarding anything
// after the in-progress generation marker.
func TestDiskPartialMerge(t *testing.T) {
// Iterate the test a few times to ensure we pick various internal orderings
// for the data slots as well as the progress marker.
for i := 0; i < 1024; i++ {
// Create some accounts in the disk layer
db := memorydb.New()
var (
accNoModNoCache = randomHash()
accNoModCache = randomHash()
accModNoCache = randomHash()
accModCache = randomHash()
accDelNoCache = randomHash()
accDelCache = randomHash()
conNoModNoCache = randomHash()
conNoModNoCacheSlot = randomHash()
conNoModCache = randomHash()
conNoModCacheSlot = randomHash()
conModNoCache = randomHash()
conModNoCacheSlot = randomHash()
conModCache = randomHash()
conModCacheSlot = randomHash()
conDelNoCache = randomHash()
conDelNoCacheSlot = randomHash()
conDelCache = randomHash()
conDelCacheSlot = randomHash()
conNukeNoCache = randomHash()
conNukeNoCacheSlot = randomHash()
conNukeCache = randomHash()
conNukeCacheSlot = randomHash()
baseRoot = randomHash()
diffRoot = randomHash()
genMarker = append(randomHash().Bytes(), randomHash().Bytes()...)
)
// insertAccount injects an account into the database if it's after the
// generator marker, drops the op otherwise. This is needed to seed the
// database with a valid starting snapshot.
insertAccount := func(account common.Hash, data []byte) {
if bytes.Compare(account[:], genMarker) <= 0 {
rawdb.WriteAccountSnapshot(db, account, data[:])
}
}
insertAccount(accNoModNoCache, accNoModNoCache[:])
insertAccount(accNoModCache, accNoModCache[:])
insertAccount(accModNoCache, accModNoCache[:])
insertAccount(accModCache, accModCache[:])
insertAccount(accDelNoCache, accDelNoCache[:])
insertAccount(accDelCache, accDelCache[:])
// insertStorage injects a storage slot into the database if it's after
// the generator marker, drops the op otherwise. This is needed to seed
// the database with a valid starting snapshot.
insertStorage := func(account common.Hash, slot common.Hash, data []byte) {
if bytes.Compare(append(account[:], slot[:]...), genMarker) <= 0 {
rawdb.WriteStorageSnapshot(db, account, slot, data[:])
}
}
insertAccount(conNoModNoCache, conNoModNoCache[:])
insertStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
insertAccount(conNoModCache, conNoModCache[:])
insertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
insertAccount(conModNoCache, conModNoCache[:])
insertStorage(conModNoCache, conModNoCacheSlot, conModNoCacheSlot[:])
insertAccount(conModCache, conModCache[:])
insertStorage(conModCache, conModCacheSlot, conModCacheSlot[:])
insertAccount(conDelNoCache, conDelNoCache[:])
insertStorage(conDelNoCache, conDelNoCacheSlot, conDelNoCacheSlot[:])
insertAccount(conDelCache, conDelCache[:])
insertStorage(conDelCache, conDelCacheSlot, conDelCacheSlot[:])
insertAccount(conNukeNoCache, conNukeNoCache[:])
insertStorage(conNukeNoCache, conNukeNoCacheSlot, conNukeNoCacheSlot[:])
insertAccount(conNukeCache, conNukeCache[:])
insertStorage(conNukeCache, conNukeCacheSlot, conNukeCacheSlot[:])
rawdb.WriteSnapshotRoot(db, baseRoot)
// Create a disk layer based on the above using a random progress marker
// and cache in some data.
snaps := &Tree{
layers: map[common.Hash]snapshot{
baseRoot: &diskLayer{
diskdb: db,
cache: fastcache.New(500 * 1024),
root: baseRoot,
},
},
}
snaps.layers[baseRoot].(*diskLayer).genMarker = genMarker
base := snaps.Snapshot(baseRoot)
// assertAccount ensures that an account matches the given blob if it's
// already covered by the disk snapshot, and errors out otherwise.
assertAccount := func(account common.Hash, data []byte) {
t.Helper()
blob, err := base.AccountRLP(account)
if bytes.Compare(account[:], genMarker) > 0 && err != ErrNotCoveredYet {
t.Fatalf("test %d: post-marker (%x) account access (%x) succeded: %x", i, genMarker, account, blob)
}
if bytes.Compare(account[:], genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) account access (%x) mismatch: have %x, want %x", i, genMarker, account, blob, data)
}
}
assertAccount(accNoModCache, accNoModCache[:])
assertAccount(accModCache, accModCache[:])
assertAccount(accDelCache, accDelCache[:])
// assertStorage ensures that a storage slot matches the given blob if
// it's already covered by the disk snapshot, and errors out otherwise.
assertStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
blob, err := base.Storage(account, slot)
if bytes.Compare(append(account[:], slot[:]...), genMarker) > 0 && err != ErrNotCoveredYet {
t.Fatalf("test %d: post-marker (%x) storage access (%x:%x) succeded: %x", i, genMarker, account, slot, blob)
}
if bytes.Compare(append(account[:], slot[:]...), genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) storage access (%x:%x) mismatch: have %x, want %x", i, genMarker, account, slot, blob, data)
}
}
assertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertStorage(conModCache, conModCacheSlot, conModCacheSlot[:])
assertStorage(conDelCache, conDelCacheSlot, conDelCacheSlot[:])
assertStorage(conNukeCache, conNukeCacheSlot, conNukeCacheSlot[:])
// Modify or delete some accounts, flatten everything onto disk
if err := snaps.Update(diffRoot, baseRoot, map[common.Hash][]byte{
accModNoCache: reverse(accModNoCache[:]),
accModCache: reverse(accModCache[:]),
accDelNoCache: nil,
accDelCache: nil,
conNukeNoCache: nil,
conNukeCache: nil,
}, map[common.Hash]map[common.Hash][]byte{
conModNoCache: {conModNoCacheSlot: reverse(conModNoCacheSlot[:])},
conModCache: {conModCacheSlot: reverse(conModCacheSlot[:])},
conDelNoCache: {conDelNoCacheSlot: nil},
conDelCache: {conDelCacheSlot: nil},
}); err != nil {
t.Fatalf("test %d: failed to update snapshot tree: %v", i, err)
}
if err := snaps.Cap(diffRoot, 0); err != nil {
t.Fatalf("test %d: failed to flatten snapshot tree: %v", i, err)
}
// Retrieve all the data through the disk layer and validate it
base = snaps.Snapshot(diffRoot)
if _, ok := base.(*diskLayer); !ok {
t.Fatalf("test %d: update not flattend into the disk layer", i)
}
assertAccount(accNoModNoCache, accNoModNoCache[:])
assertAccount(accNoModCache, accNoModCache[:])
assertAccount(accModNoCache, reverse(accModNoCache[:]))
assertAccount(accModCache, reverse(accModCache[:]))
assertAccount(accDelNoCache, nil)
assertAccount(accDelCache, nil)
assertStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertStorage(conDelCache, conDelCacheSlot, nil)
assertStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertStorage(conNukeCache, conNukeCacheSlot, nil)
// Retrieve all the data directly from the database and validate it
// assertDatabaseAccount ensures that an account inside the database matches
// the given blob if it's already covered by the disk snapshot, and does not
// exist otherwise.
assertDatabaseAccount := func(account common.Hash, data []byte) {
t.Helper()
blob := rawdb.ReadAccountSnapshot(db, account)
if bytes.Compare(account[:], genMarker) > 0 && blob != nil {
t.Fatalf("test %d: post-marker (%x) account database access (%x) succeded: %x", i, genMarker, account, blob)
}
if bytes.Compare(account[:], genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) account database access (%x) mismatch: have %x, want %x", i, genMarker, account, blob, data)
}
}
assertDatabaseAccount(accNoModNoCache, accNoModNoCache[:])
assertDatabaseAccount(accNoModCache, accNoModCache[:])
assertDatabaseAccount(accModNoCache, reverse(accModNoCache[:]))
assertDatabaseAccount(accModCache, reverse(accModCache[:]))
assertDatabaseAccount(accDelNoCache, nil)
assertDatabaseAccount(accDelCache, nil)
// assertDatabaseStorage ensures that a storage slot inside the database
// matches the given blob if it's already covered by the disk snapshot,
// and does not exist otherwise.
assertDatabaseStorage := func(account common.Hash, slot common.Hash, data []byte) {
t.Helper()
blob := rawdb.ReadStorageSnapshot(db, account, slot)
if bytes.Compare(append(account[:], slot[:]...), genMarker) > 0 && blob != nil {
t.Fatalf("test %d: post-marker (%x) storage database access (%x:%x) succeded: %x", i, genMarker, account, slot, blob)
}
if bytes.Compare(append(account[:], slot[:]...), genMarker) <= 0 && !bytes.Equal(blob, data) {
t.Fatalf("test %d: pre-marker (%x) storage database access (%x:%x) mismatch: have %x, want %x", i, genMarker, account, slot, blob, data)
}
}
assertDatabaseStorage(conNoModNoCache, conNoModNoCacheSlot, conNoModNoCacheSlot[:])
assertDatabaseStorage(conNoModCache, conNoModCacheSlot, conNoModCacheSlot[:])
assertDatabaseStorage(conModNoCache, conModNoCacheSlot, reverse(conModNoCacheSlot[:]))
assertDatabaseStorage(conModCache, conModCacheSlot, reverse(conModCacheSlot[:]))
assertDatabaseStorage(conDelNoCache, conDelNoCacheSlot, nil)
assertDatabaseStorage(conDelCache, conDelCacheSlot, nil)
assertDatabaseStorage(conNukeNoCache, conNukeNoCacheSlot, nil)
assertDatabaseStorage(conNukeCache, conNukeCacheSlot, nil)
}
}
// Tests that merging something into a disk layer persists it into the database
// and invalidates any previously written and cached values, discarding anything
// after the in-progress generation marker.
//
// This test case is a tiny specialized case of TestDiskPartialMerge, which tests
// some very specific cornercases that random tests won't ever trigger.
func TestDiskMidAccountPartialMerge(t *testing.T) {
}

@ -18,12 +18,13 @@ package snapshot
import (
"bytes"
"fmt"
"encoding/binary"
"math/big"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
@ -40,103 +41,122 @@ var (
emptyCode = crypto.Keccak256Hash(nil)
)
// wipeSnapshot iterates over the entire key-value database and deletes all the
// data associated with the snapshot (accounts, storage, metadata). After all is
// done, the snapshot range of the database is compacted to free up unused data
// blocks.
func wipeSnapshot(db ethdb.KeyValueStore) error {
// Batch deletions together to avoid holding an iterator for too long
var (
batch = db.NewBatch()
items int
)
// Iterate over the snapshot key-range and delete all of them
log.Info("Deleting previous snapshot leftovers")
start, logged := time.Now(), time.Now()
it := db.NewIteratorWithStart(rawdb.StateSnapshotPrefix)
for it.Next() {
// Skip any keys with the correct prefix but wrong lenth (trie nodes)
key := it.Key()
if !bytes.HasPrefix(key, rawdb.StateSnapshotPrefix) {
break
}
if len(key) != len(rawdb.StateSnapshotPrefix)+common.HashLength && len(key) != len(rawdb.StateSnapshotPrefix)+2*common.HashLength {
continue
}
// Delete the key and periodically recreate the batch and iterator
batch.Delete(key)
items++
if items%10000 == 0 {
// Batch too large (or iterator too long lived, flush and recreate)
it.Release()
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
it = db.NewIteratorWithStart(key)
// generatorStats is a collection of statistics gathered by the snapshot generator
// for logging purposes.
type generatorStats struct {
wiping chan struct{} // Notification channel if wiping is in progress
origin uint64 // Origin prefix where generation started
start time.Time // Timestamp when generation started
accounts uint64 // Number of accounts indexed
slots uint64 // Number of storage slots indexed
storage common.StorageSize // Account and storage slot size
}
if time.Since(logged) > 8*time.Second {
log.Info("Deleting previous snapshot leftovers", "wiped", items, "elapsed", time.Since(start))
logged = time.Now()
// Log creates an contextual log with the given message and the context pulled
// from the internally maintained statistics.
func (gs *generatorStats) Log(msg string, marker []byte) {
var ctx []interface{}
// Figure out whether we're after or within an account
switch len(marker) {
case common.HashLength:
ctx = append(ctx, []interface{}{"at", common.BytesToHash(marker)}...)
case 2 * common.HashLength:
ctx = append(ctx, []interface{}{
"in", common.BytesToHash(marker[:common.HashLength]),
"at", common.BytesToHash(marker[common.HashLength:]),
}...)
}
// Add the usual measurements
ctx = append(ctx, []interface{}{
"accounts", gs.accounts,
"slots", gs.slots,
"storage", gs.storage,
"elapsed", common.PrettyDuration(time.Since(gs.start)),
}...)
// Calculate the estimated indexing time based on current stats
if len(marker) > 0 {
if done := binary.BigEndian.Uint64(marker[:8]) - gs.origin; done > 0 {
left := math.MaxUint64 - binary.BigEndian.Uint64(marker[:8])
speed := done/uint64(time.Since(gs.start)/time.Millisecond+1) + 1 // +1s to avoid division by zero
ctx = append(ctx, []interface{}{
"eta", common.PrettyDuration(time.Duration(left/speed) * time.Millisecond),
}...)
}
}
it.Release()
log.Info(msg, ctx...)
}
rawdb.DeleteSnapshotRoot(batch)
if err := batch.Write(); err != nil {
return err
// generateSnapshot regenerates a brand new snapshot based on an existing state
// database and head block asynchronously. The snapshot is returned immediately
// and generation is continued in the background until done.
func generateSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash, wiper chan struct{}) *diskLayer {
// Wipe any previously existing snapshot from the database if no wiper is
// currenty in progress.
if wiper == nil {
wiper = wipeSnapshot(diskdb, true)
}
log.Info("Deleted previous snapshot leftovers", "wiped", items, "elapsed", time.Since(start))
// Create a new disk layer with an initialized state marker at zero
rawdb.WriteSnapshotRoot(diskdb, root)
// Compact the snapshot section of the database to get rid of unused space
log.Info("Compacting snapshot area in database")
start = time.Now()
base := &diskLayer{
diskdb: diskdb,
triedb: triedb,
root: root,
cache: fastcache.New(cache * 1024 * 1024),
genMarker: []byte{}, // Initialized but empty!
genAbort: make(chan chan *generatorStats),
}
go base.generate(&generatorStats{wiping: wiper, start: time.Now()})
return base
}
end := common.CopyBytes(rawdb.StateSnapshotPrefix)
end[len(end)-1]++
// generate is a background thread that iterates over the state and storage tries,
// constructing the state snapshot. All the arguments are purely for statistics
// gethering and logging, since the method surfs the blocks as they arrive, often
// being restarted.
func (dl *diskLayer) generate(stats *generatorStats) {
// If a database wipe is in operation, wait until it's done
if stats.wiping != nil {
stats.Log("Wiper running, state snapshotting paused", dl.genMarker)
select {
// If wiper is done, resume normal mode of operation
case <-stats.wiping:
stats.wiping = nil
stats.start = time.Now()
if err := db.Compact(rawdb.StateSnapshotPrefix, end); err != nil {
return err
// If generator was aboted during wipe, return
case abort := <-dl.genAbort:
abort <- stats
return
}
}
log.Info("Compacted snapshot area in database", "elapsed", time.Since(start))
// Create an account and state iterator pointing to the current generator marker
accTrie, err := trie.NewSecure(dl.root, dl.triedb)
if err != nil {
// The account trie is missing (GC), surf the chain until one becomes available
stats.Log("Trie missing, state snapshotting paused", dl.genMarker)
return nil
}
abort := <-dl.genAbort
abort <- stats
return
}
stats.Log("Resuming state snapshot generation", dl.genMarker)
// generateSnapshot regenerates a brand new snapshot based on an existing state database and head block.
func generateSnapshot(db ethdb.KeyValueStore, journal string, root common.Hash) (snapshot, error) {
// Wipe any previously existing snapshot from the database
if err := wipeSnapshot(db); err != nil {
return nil, err
}
// Iterate the entire storage trie and re-generate the state snapshot
var (
accountCount int
storageCount int
storageNodes int
accountSize common.StorageSize
storageSize common.StorageSize
logged time.Time
)
batch := db.NewBatch()
triedb := trie.NewDatabase(db)
accTrie, err := trie.NewSecure(root, triedb)
if err != nil {
return nil, err
var accMarker []byte
if len(dl.genMarker) > 0 { // []byte{} is the start, use nil for that
accMarker = dl.genMarker[:common.HashLength]
}
accIt := trie.NewIterator(accTrie.NodeIterator(nil))
accIt := trie.NewIterator(accTrie.NodeIterator(accMarker))
batch := dl.diskdb.NewBatch()
// Iterate from the previous marker and continue generating the state snapshot
logged := time.Now()
for accIt.Next() {
var (
curStorageCount int
curStorageNodes int
curAccountSize common.StorageSize
curStorageSize common.StorageSize
accountHash = common.BytesToHash(accIt.Key)
)
// Retrieve the current account and flatten it into the internal format
accountHash := common.BytesToHash(accIt.Key)
var acc struct {
Nonce uint64
Balance *big.Int
@ -144,63 +164,97 @@ func generateSnapshot(db ethdb.KeyValueStore, journal string, root common.Hash)
CodeHash []byte
}
if err := rlp.DecodeBytes(accIt.Value, &acc); err != nil {
return nil, err
log.Crit("Invalid account encountered during snapshot creation", "err", err)
}
data := AccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash)
curAccountSize += common.StorageSize(1 + common.HashLength + len(data))
// If the account is not yet in-progress, write it out
if accMarker == nil || !bytes.Equal(accountHash[:], accMarker) {
rawdb.WriteAccountSnapshot(batch, accountHash, data)
if batch.ValueSize() > ethdb.IdealBatchSize {
stats.storage += common.StorageSize(1 + common.HashLength + len(data))
stats.accounts++
}
// If we've exceeded our batch allowance or termination was requested, flush to disk
var abort chan *generatorStats
select {
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Only write and set the marker if we actually did something useful
if batch.ValueSize() > 0 {
batch.Write()
batch.Reset()
dl.lock.Lock()
dl.genMarker = accountHash[:]
dl.lock.Unlock()
}
if abort != nil {
stats.Log("Aborting state snapshot generation", accountHash[:])
abort <- stats
return
}
}
// If the account is in-progress, continue where we left off (otherwise iterate all)
if acc.Root != emptyRoot {
storeTrie, err := trie.NewSecure(acc.Root, triedb)
storeTrie, err := trie.NewSecure(acc.Root, dl.triedb)
if err != nil {
return nil, err
log.Crit("Storage trie inaccessible for snapshot generation", "err", err)
}
storeIt := trie.NewIterator(storeTrie.NodeIterator(nil))
var storeMarker []byte
if accMarker != nil && bytes.Equal(accountHash[:], accMarker) && len(dl.genMarker) > common.HashLength {
storeMarker = dl.genMarker[common.HashLength:]
}
storeIt := trie.NewIterator(storeTrie.NodeIterator(storeMarker))
for storeIt.Next() {
curStorageSize += common.StorageSize(1 + 2*common.HashLength + len(storeIt.Value))
curStorageCount++
rawdb.WriteStorageSnapshot(batch, accountHash, common.BytesToHash(storeIt.Key), storeIt.Value)
if batch.ValueSize() > ethdb.IdealBatchSize {
stats.storage += common.StorageSize(1 + 2*common.HashLength + len(storeIt.Value))
stats.slots++
// If we've exceeded our batch allowance or termination was requested, flush to disk
var abort chan *generatorStats
select {
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Only write and set the marker if we actually did something useful
if batch.ValueSize() > 0 {
batch.Write()
batch.Reset()
dl.lock.Lock()
dl.genMarker = append(accountHash[:], storeIt.Key...)
dl.lock.Unlock()
}
if abort != nil {
stats.Log("Aborting state snapshot generation", append(accountHash[:], storeIt.Key...))
abort <- stats
return
}
}
}
curStorageNodes = storeIt.Nodes
}
accountCount++
storageCount += curStorageCount
accountSize += curAccountSize
storageSize += curStorageSize
storageNodes += curStorageNodes
if time.Since(logged) > 8*time.Second {
fmt.Printf("%#x: %9s + %9s (%6d slots, %6d nodes), total %9s (%d accs, %d nodes) + %9s (%d slots, %d nodes)\n", accIt.Key, curAccountSize.TerminalString(), curStorageSize.TerminalString(), curStorageCount, curStorageNodes, accountSize.TerminalString(), accountCount, accIt.Nodes, storageSize.TerminalString(), storageCount, storageNodes)
stats.Log("Generating state snapshot", accIt.Key)
logged = time.Now()
}
// Some account processed, unmark the marker
accMarker = nil
}
fmt.Printf("Totals: %9s (%d accs, %d nodes) + %9s (%d slots, %d nodes)\n", accountSize.TerminalString(), accountCount, accIt.Nodes, storageSize.TerminalString(), storageCount, storageNodes)
// Update the snapshot block marker and write any remainder data
rawdb.WriteSnapshotRoot(batch, root)
// Snapshot fully generated, set the marker to nil
if batch.ValueSize() > 0 {
batch.Write()
batch.Reset()
}
log.Info("Generated state snapshot", "accounts", stats.accounts, "slots", stats.slots,
"storage", stats.storage, "elapsed", common.PrettyDuration(time.Since(stats.start)))
// Compact the snapshot section of the database to get rid of unused space
log.Info("Compacting snapshot in chain database")
if err := db.Compact([]byte{'s'}, []byte{'s' + 1}); err != nil {
return nil, err
}
// New snapshot generated, construct a brand new base layer
cache := fastcache.New(512 * 1024 * 1024)
return &diskLayer{
journal: journal,
db: db,
cache: cache,
root: root,
}, nil
dl.lock.Lock()
dl.genMarker = nil
dl.lock.Unlock()
// Someone will be looking for us, wait it out
abort := <-dl.genAbort
abort <- nil
}

@ -0,0 +1,257 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bufio"
"encoding/binary"
"errors"
"fmt"
"io"
"os"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// journalGenerator is a disk layer entry containing the generator progress marker.
type journalGenerator struct {
Wiping bool // Whether the database was in progress of being wiped
Done bool // Whether the generator finished creating the snapshot
Marker []byte
Accounts uint64
Slots uint64
Storage uint64
}
// journalAccount is an account entry in a diffLayer's disk journal.
type journalAccount struct {
Hash common.Hash
Blob []byte
}
// journalStorage is an account's storage map in a diffLayer's disk journal.
type journalStorage struct {
Hash common.Hash
Keys []common.Hash
Vals [][]byte
}
// loadSnapshot loads a pre-existing state snapshot backed by a key-value store.
func loadSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, journal string, cache int, root common.Hash) (snapshot, error) {
// Retrieve the block number and hash of the snapshot, failing if no snapshot
// is present in the database (or crashed mid-update).
baseRoot := rawdb.ReadSnapshotRoot(diskdb)
if baseRoot == (common.Hash{}) {
return nil, errors.New("missing or corrupted snapshot")
}
base := &diskLayer{
diskdb: diskdb,
triedb: triedb,
cache: fastcache.New(cache * 1024 * 1024),
root: baseRoot,
}
// Open the journal, it must exist since even for 0 layer it stores whether
// we've already generated the snapshot or are in progress only
file, err := os.Open(journal)
if err != nil {
return nil, err
}
r := rlp.NewStream(file, 0)
// Read the snapshot generation progress for the disk layer
var generator journalGenerator
if err := r.Decode(&generator); err != nil {
return nil, fmt.Errorf("failed to load snapshot progress marker: %v", err)
}
// Load all the snapshot diffs from the journal
snapshot, err := loadDiffLayer(base, r)
if err != nil {
return nil, err
}
// Entire snapshot journal loaded, sanity check the head and return
// Journal doesn't exist, don't worry if it's not supposed to
if head := snapshot.Root(); head != root {
return nil, fmt.Errorf("head doesn't match snapshot: have %#x, want %#x", head, root)
}
// Everything loaded correctly, resume any suspended operations
if !generator.Done {
// If the generator was still wiping, restart one from scratch (fine for
// now as it's rare and the wiper deletes the stuff it touches anyway, so
// restarting won't incur a lot of extra database hops.
var wiper chan struct{}
if generator.Wiping {
log.Info("Resuming previous snapshot wipe")
wiper = wipeSnapshot(diskdb, false)
}
// Whether or not wiping was in progress, load any generator progress too
base.genMarker = generator.Marker
if base.genMarker == nil {
base.genMarker = []byte{}
}
base.genAbort = make(chan chan *generatorStats)
var origin uint64
if len(generator.Marker) >= 8 {
origin = binary.BigEndian.Uint64(generator.Marker)
}
go base.generate(&generatorStats{
wiping: wiper,
origin: origin,
start: time.Now(),
accounts: generator.Accounts,
slots: generator.Slots,
storage: common.StorageSize(generator.Storage),
})
}
return snapshot, nil
}
// loadDiffLayer reads the next sections of a snapshot journal, reconstructing a new
// diff and verifying that it can be linked to the requested parent.
func loadDiffLayer(parent snapshot, r *rlp.Stream) (snapshot, error) {
// Read the next diff journal entry
var root common.Hash
if err := r.Decode(&root); err != nil {
// The first read may fail with EOF, marking the end of the journal
if err == io.EOF {
return parent, nil
}
return nil, fmt.Errorf("load diff root: %v", err)
}
var accounts []journalAccount
if err := r.Decode(&accounts); err != nil {
return nil, fmt.Errorf("load diff accounts: %v", err)
}
accountData := make(map[common.Hash][]byte)
for _, entry := range accounts {
accountData[entry.Hash] = entry.Blob
}
var storage []journalStorage
if err := r.Decode(&storage); err != nil {
return nil, fmt.Errorf("load diff storage: %v", err)
}
storageData := make(map[common.Hash]map[common.Hash][]byte)
for _, entry := range storage {
slots := make(map[common.Hash][]byte)
for i, key := range entry.Keys {
slots[key] = entry.Vals[i]
}
storageData[entry.Hash] = slots
}
return loadDiffLayer(newDiffLayer(parent, root, accountData, storageData), r)
}
// Journal is the internal version of Journal that also returns the journal file
// so subsequent layers know where to write to.
func (dl *diskLayer) Journal(path string) (io.WriteCloser, common.Hash, error) {
// If the snapshot is currenty being generated, abort it
var stats *generatorStats
if dl.genAbort != nil {
abort := make(chan *generatorStats)
dl.genAbort <- abort
if stats = <-abort; stats != nil {
stats.Log("Journalling in-progress snapshot", dl.genMarker)
}
}
// Ensure the layer didn't get stale
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
return nil, common.Hash{}, ErrSnapshotStale
}
// We've reached the bottom, open the journal
file, err := os.Create(path)
if err != nil {
return nil, common.Hash{}, err
}
// Write out the generator marker
entry := journalGenerator{
Done: dl.genMarker == nil,
Marker: dl.genMarker,
}
if stats != nil {
entry.Wiping = (stats.wiping != nil)
entry.Accounts = stats.accounts
entry.Slots = stats.slots
entry.Storage = uint64(stats.storage)
}
if err := rlp.Encode(file, entry); err != nil {
file.Close()
return nil, common.Hash{}, err
}
return file, dl.root, nil
}
// Journal is the internal version of Journal that also returns the journal file
// so subsequent layers know where to write to.
func (dl *diffLayer) Journal(path string) (io.WriteCloser, common.Hash, error) {
// Journal the parent first
writer, base, err := dl.parent.Journal(path)
if err != nil {
return nil, common.Hash{}, err
}
// Ensure the layer didn't get stale
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
writer.Close()
return nil, common.Hash{}, ErrSnapshotStale
}
// Everything below was journalled, persist this layer too
buf := bufio.NewWriter(writer)
if err := rlp.Encode(buf, dl.root); err != nil {
buf.Flush()
writer.Close()
return nil, common.Hash{}, err
}
accounts := make([]journalAccount, 0, len(dl.accountData))
for hash, blob := range dl.accountData {
accounts = append(accounts, journalAccount{Hash: hash, Blob: blob})
}
if err := rlp.Encode(buf, accounts); err != nil {
buf.Flush()
writer.Close()
return nil, common.Hash{}, err
}
storage := make([]journalStorage, 0, len(dl.storageData))
for hash, slots := range dl.storageData {
keys := make([]common.Hash, 0, len(slots))
vals := make([][]byte, 0, len(slots))
for key, val := range slots {
keys = append(keys, key)
vals = append(vals, val)
}
storage = append(storage, journalStorage{Hash: hash, Keys: keys, Vals: vals})
}
if err := rlp.Encode(buf, storage); err != nil {
buf.Flush()
writer.Close()
return nil, common.Hash{}, err
}
buf.Flush()
return writer, base, nil
}

@ -18,31 +18,67 @@
package snapshot
import (
"bytes"
"errors"
"fmt"
"os"
"io"
"sync"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
var (
snapshotCleanHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/hit", nil)
snapshotCleanMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/miss", nil)
snapshotCleanReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/read", nil)
snapshotCleanWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/write", nil)
snapshotCleanAccountHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/hit", nil)
snapshotCleanAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/miss", nil)
snapshotCleanAccountReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/read", nil)
snapshotCleanAccountWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/write", nil)
snapshotCleanStorageHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/hit", nil)
snapshotCleanStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/miss", nil)
snapshotCleanStorageReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/read", nil)
snapshotCleanStorageWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/write", nil)
snapshotDirtyAccountHitMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/hit", nil)
snapshotDirtyAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/miss", nil)
snapshotDirtyAccountReadMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/read", nil)
snapshotDirtyAccountWriteMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/write", nil)
snapshotDirtyStorageHitMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/hit", nil)
snapshotDirtyStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/miss", nil)
snapshotDirtyStorageReadMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/read", nil)
snapshotDirtyStorageWriteMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/write", nil)
snapshotFlushAccountItemMeter = metrics.NewRegisteredMeter("state/snapshot/flush/account/item", nil)
snapshotFlushAccountSizeMeter = metrics.NewRegisteredMeter("state/snapshot/flush/account/size", nil)
snapshotFlushStorageItemMeter = metrics.NewRegisteredMeter("state/snapshot/flush/storage/item", nil)
snapshotFlushStorageSizeMeter = metrics.NewRegisteredMeter("state/snapshot/flush/storage/size", nil)
snapshotBloomIndexTimer = metrics.NewRegisteredResettingTimer("state/snapshot/bloom/index", nil)
snapshotBloomErrorGauge = metrics.NewRegisteredGaugeFloat64("state/snapshot/bloom/error", nil)
snapshotBloomAccountTrueHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/truehit", nil)
snapshotBloomAccountFalseHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/falsehit", nil)
snapshotBloomAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/miss", nil)
snapshotBloomStorageTrueHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/truehit", nil)
snapshotBloomStorageFalseHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/falsehit", nil)
snapshotBloomStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/miss", nil)
// ErrSnapshotStale is returned from data accessors if the underlying snapshot
// layer had been invalidated due to the chain progressing forward far enough
// to not maintain the layer's original state.
ErrSnapshotStale = errors.New("snapshot stale")
// ErrNotCoveredYet is returned from data accessors if the underlying snapshot
// is being generated currently and the requested data item is not yet in the
// range of accounts covered.
ErrNotCoveredYet = errors.New("not covered yet")
// errSnapshotCycle is returned if a snapshot is attempted to be inserted
// that forms a cycle in the snapshot tree.
errSnapshotCycle = errors.New("snapshot cycle")
@ -79,7 +115,7 @@ type snapshot interface {
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
Journal() error
Journal(path string) (io.WriteCloser, common.Hash, error)
// Stale return whether this layer has become stale (was flattened across) or
// if it's still live.
@ -96,7 +132,10 @@ type snapshot interface {
// storage data to avoid expensive multi-level trie lookups; and to allow sorted,
// cheap iteration of the account/storage tries for sync aid.
type Tree struct {
layers map[common.Hash]snapshot // Collection of all known layers // TODO(karalabe): split Clique overlaps
diskdb ethdb.KeyValueStore // Persistent database to store the snapshot
triedb *trie.Database // In-memory cache to access the trie through
cache int // Megabytes permitted to use for read caches
layers map[common.Hash]snapshot // Collection of all known layers
lock sync.RWMutex
}
@ -105,20 +144,24 @@ type Tree struct {
// of the snapshot matches the expected one.
//
// If the snapshot is missing or inconsistent, the entirety is deleted and will
// be reconstructed from scratch based on the tries in the key-value store.
func New(db ethdb.KeyValueStore, journal string, root common.Hash) (*Tree, error) {
// Attempt to load a previously persisted snapshot
head, err := loadSnapshot(db, journal, root)
if err != nil {
log.Warn("Failed to load snapshot, regenerating", "err", err)
if head, err = generateSnapshot(db, journal, root); err != nil {
return nil, err
}
}
// Existing snapshot loaded or one regenerated, seed all the layers
// be reconstructed from scratch based on the tries in the key-value store, on a
// background thread.
func New(diskdb ethdb.KeyValueStore, triedb *trie.Database, journal string, cache int, root common.Hash) *Tree {
// Create a new, empty snapshot tree
snap := &Tree{
diskdb: diskdb,
triedb: triedb,
cache: cache,
layers: make(map[common.Hash]snapshot),
}
// Attempt to load a previously persisted snapshot and rebuild one if failed
head, err := loadSnapshot(diskdb, triedb, journal, cache, root)
if err != nil {
log.Warn("Failed to load snapshot, regenerating", "err", err)
snap.Rebuild(root)
return snap
}
// Existing snapshot loaded, seed all the layers
for head != nil {
snap.layers[head.Root()] = head
@ -131,7 +174,7 @@ func New(db ethdb.KeyValueStore, journal string, root common.Hash) (*Tree, error
panic(fmt.Sprintf("unknown data layer: %T", self))
}
}
return snap, nil
return snap
}
// Snapshot retrieves a snapshot belonging to the given block root, or nil if no
@ -173,7 +216,7 @@ func (t *Tree) Update(blockRoot common.Hash, parentRoot common.Hash, accounts ma
// Cap traverses downwards the snapshot tree from a head block hash until the
// number of allowed layers are crossed. All layers beyond the permitted number
// are flattened downwards.
func (t *Tree) Cap(root common.Hash, layers int, memory uint64) error {
func (t *Tree) Cap(root common.Hash, layers int) error {
// Retrieve the head snapshot to cap from
snap := t.Snapshot(root)
if snap == nil {
@ -190,6 +233,8 @@ func (t *Tree) Cap(root common.Hash, layers int, memory uint64) error {
// Flattening the bottom-most diff layer requires special casing since there's
// no child to rewire to the grandparent. In that case we can fake a temporary
// child for the capping and then remove it.
var persisted *diskLayer
switch layers {
case 0:
// If full commit was requested, flatten the diffs and merge onto disk
@ -210,7 +255,7 @@ func (t *Tree) Cap(root common.Hash, layers int, memory uint64) error {
)
diff.lock.RLock()
bottom = diff.flatten().(*diffLayer)
if bottom.memory >= memory {
if bottom.memory >= aggregatorMemoryLimit {
base = diffToDisk(bottom)
}
diff.lock.RUnlock()
@ -225,7 +270,7 @@ func (t *Tree) Cap(root common.Hash, layers int, memory uint64) error {
default:
// Many layers requested to be retained, cap normally
t.cap(diff, layers, memory)
persisted = t.cap(diff, layers)
}
// Remove any layer that is stale or links into a stale layer
children := make(map[common.Hash][]common.Hash)
@ -248,13 +293,28 @@ func (t *Tree) Cap(root common.Hash, layers int, memory uint64) error {
remove(root)
}
}
// If the disk layer was modified, regenerate all the cummulative blooms
if persisted != nil {
var rebloom func(root common.Hash)
rebloom = func(root common.Hash) {
if diff, ok := t.layers[root].(*diffLayer); ok {
diff.rebloom(persisted)
}
for _, child := range children[root] {
rebloom(child)
}
}
rebloom(persisted.root)
}
return nil
}
// cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. If the
// layer limit is reached, memory cap is also enforced (but not before).
func (t *Tree) cap(diff *diffLayer, layers int, memory uint64) {
//
// The method returns the new disk layer if diffs were persistend into it.
func (t *Tree) cap(diff *diffLayer, layers int) *diskLayer {
// Dive until we run out of layers or reach the persistent database
for ; layers > 2; layers-- {
// If we still have diff layers below, continue down
@ -262,14 +322,14 @@ func (t *Tree) cap(diff *diffLayer, layers int, memory uint64) {
diff = parent
} else {
// Diff stack too shallow, return without modifications
return
return nil
}
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := diff.parent.(type) {
case *diskLayer:
return
return nil
case *diffLayer:
// Flatten the parent into the grandparent. The flattening internally obtains a
@ -281,8 +341,14 @@ func (t *Tree) cap(diff *diffLayer, layers int, memory uint64) {
defer diff.lock.Unlock()
diff.parent = flattened
if flattened.memory < memory {
return
if flattened.memory < aggregatorMemoryLimit {
// Accumulator layer is smaller than the limit, so we can abort, unless
// there's a snapshot being generated currently. In that case, the trie
// will move fron underneath the generator so we **must** merge all the
// partial data down into the snapshot and restart the generation.
if flattened.parent.(*diskLayer).genAbort == nil {
return nil
}
}
default:
panic(fmt.Sprintf("unknown data layer: %T", parent))
@ -296,6 +362,7 @@ func (t *Tree) cap(diff *diffLayer, layers int, memory uint64) {
t.layers[base.root] = base
diff.parent = base
return base
}
// diffToDisk merges a bottom-most diff into the persistent disk layer underneath
@ -303,8 +370,15 @@ func (t *Tree) cap(diff *diffLayer, layers int, memory uint64) {
func diffToDisk(bottom *diffLayer) *diskLayer {
var (
base = bottom.parent.(*diskLayer)
batch = base.db.NewBatch()
batch = base.diskdb.NewBatch()
stats *generatorStats
)
// If the disk layer is running a snapshot generator, abort it
if base.genAbort != nil {
abort := make(chan *generatorStats)
base.genAbort <- abort
stats = <-abort
}
// Start by temporarily deleting the current snapshot block marker. This
// ensures that in the case of a crash, the entire snapshot is invalidated.
rawdb.DeleteSnapshotRoot(batch)
@ -319,6 +393,10 @@ func diffToDisk(bottom *diffLayer) *diskLayer {
// Push all the accounts into the database
for hash, data := range bottom.accountData {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(hash[:], base.genMarker) > 0 {
continue
}
if len(data) > 0 {
// Account was updated, push to disk
rawdb.WriteAccountSnapshot(batch, hash, data)
@ -335,19 +413,35 @@ func diffToDisk(bottom *diffLayer) *diskLayer {
rawdb.DeleteAccountSnapshot(batch, hash)
base.cache.Set(hash[:], nil)
it := rawdb.IterateStorageSnapshots(base.db, hash)
it := rawdb.IterateStorageSnapshots(base.diskdb, hash)
for it.Next() {
if key := it.Key(); len(key) == 65 { // TODO(karalabe): Yuck, we should move this into the iterator
batch.Delete(key)
base.cache.Del(key[1:])
snapshotFlushStorageItemMeter.Mark(1)
snapshotFlushStorageSizeMeter.Mark(int64(len(data)))
}
}
it.Release()
}
snapshotFlushAccountItemMeter.Mark(1)
snapshotFlushAccountSizeMeter.Mark(int64(len(data)))
}
// Push all the storage slots into the database
for accountHash, storage := range bottom.storageData {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(accountHash[:], base.genMarker) > 0 {
continue
}
// Generation might be mid-account, track that case too
midAccount := base.genMarker != nil && bytes.Equal(accountHash[:], base.genMarker[:common.HashLength])
for storageHash, data := range storage {
// Skip any slot not covered yet by the snapshot
if midAccount && bytes.Compare(storageHash[:], base.genMarker[common.HashLength:]) > 0 {
continue
}
if len(data) > 0 {
rawdb.WriteStorageSnapshot(batch, accountHash, storageHash, data)
base.cache.Set(append(accountHash[:], storageHash[:]...), data)
@ -355,6 +449,8 @@ func diffToDisk(bottom *diffLayer) *diskLayer {
rawdb.DeleteStorageSnapshot(batch, accountHash, storageHash)
base.cache.Set(append(accountHash[:], storageHash[:]...), nil)
}
snapshotFlushStorageItemMeter.Mark(1)
snapshotFlushStorageSizeMeter.Mark(int64(len(data)))
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
@ -368,65 +464,91 @@ func diffToDisk(bottom *diffLayer) *diskLayer {
if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err)
}
return &diskLayer{
res := &diskLayer{
root: bottom.root,
cache: base.cache,
db: base.db,
journal: base.journal,
diskdb: base.diskdb,
triedb: base.triedb,
genMarker: base.genMarker,
}
// If snapshot generation hasn't finished yet, port over all the starts and
// continue where the previous round left off.
//
// Note, the `base.genAbort` comparison is not used normally, it's checked
// to allow the tests to play with the marker without triggering this path.
if base.genMarker != nil && base.genAbort != nil {
res.genMarker = base.genMarker
res.genAbort = make(chan chan *generatorStats)
go res.generate(stats)
}
return res
}
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
func (t *Tree) Journal(blockRoot common.Hash) error {
//
// The method returns the root hash of the base layer that needs to be persisted
// to disk as a trie too to allow continuing any pending generation op.
func (t *Tree) Journal(root common.Hash, path string) (common.Hash, error) {
// Retrieve the head snapshot to journal from var snap snapshot
snap := t.Snapshot(blockRoot)
snap := t.Snapshot(root)
if snap == nil {
return fmt.Errorf("snapshot [%#x] missing", blockRoot)
return common.Hash{}, fmt.Errorf("snapshot [%#x] missing", root)
}
// Run the journaling
t.lock.Lock()
defer t.lock.Unlock()
return snap.(snapshot).Journal()
writer, base, err := snap.(snapshot).Journal(path)
if err != nil {
return common.Hash{}, err
}
return base, writer.Close()
}
// loadSnapshot loads a pre-existing state snapshot backed by a key-value store.
func loadSnapshot(db ethdb.KeyValueStore, journal string, root common.Hash) (snapshot, error) {
// Retrieve the block number and hash of the snapshot, failing if no snapshot
// is present in the database (or crashed mid-update).
baseRoot := rawdb.ReadSnapshotRoot(db)
if baseRoot == (common.Hash{}) {
return nil, errors.New("missing or corrupted snapshot")
}
base := &diskLayer{
journal: journal,
db: db,
cache: fastcache.New(512 * 1024 * 1024),
root: baseRoot,
}
// Load all the snapshot diffs from the journal, failing if their chain is broken
// or does not lead from the disk snapshot to the specified head.
if _, err := os.Stat(journal); os.IsNotExist(err) {
// Journal doesn't exist, don't worry if it's not supposed to
if baseRoot != root {
return nil, fmt.Errorf("snapshot journal missing, head doesn't match snapshot: have %#x, want %#x", baseRoot, root)
}
return base, nil
}
file, err := os.Open(journal)
if err != nil {
return nil, err
// Rebuild wipes all available snapshot data from the persistent database and
// discard all caches and diff layers. Afterwards, it starts a new snapshot
// generator with the given root hash.
func (t *Tree) Rebuild(root common.Hash) {
t.lock.Lock()
defer t.lock.Unlock()
// Track whether there's a wipe currently running and keep it alive if so
var wiper chan struct{}
// Iterate over and mark all layers stale
for _, layer := range t.layers {
switch layer := layer.(type) {
case *diskLayer:
// If the base layer is generating, abort it and save
if layer.genAbort != nil {
abort := make(chan *generatorStats)
layer.genAbort <- abort
if stats := <-abort; stats != nil {
wiper = stats.wiping
}
}
// Layer should be inactive now, mark it as stale
layer.lock.Lock()
layer.stale = true
layer.lock.Unlock()
case *diffLayer:
// If the layer is a simple diff, simply mark as stale
layer.lock.Lock()
layer.stale = true
layer.lock.Unlock()
default:
panic(fmt.Sprintf("unknown layer type: %T", layer))
}
snapshot, err := loadDiffLayer(base, rlp.NewStream(file, 0))
if err != nil {
return nil, err
}
// Entire snapshot journal loaded, sanity check the head and return
// Journal doesn't exist, don't worry if it's not supposed to
if head := snapshot.Root(); head != root {
return nil, fmt.Errorf("head doesn't match snapshot: have %#x, want %#x", head, root)
// Start generating a new snapshot from scratch on a backgroung thread. The
// generator will run a wiper first if there's not one running right now.
log.Info("Rebuilding state snapshot")
t.layers = map[common.Hash]snapshot{
root: generateSnapshot(t.diskdb, t.triedb, t.cache, root, wiper),
}
return snapshot, nil
}

@ -31,7 +31,7 @@ import (
func TestDiskLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
@ -54,7 +54,7 @@ func TestDiskLayerExternalInvalidationFullFlatten(t *testing.T) {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 2)
}
// Commit the diff layer onto the disk and ensure it's persisted
if err := snaps.Cap(common.HexToHash("0x02"), 0, 0); err != nil {
if err := snaps.Cap(common.HexToHash("0x02"), 0); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievald on the external reference fail
@ -76,7 +76,7 @@ func TestDiskLayerExternalInvalidationFullFlatten(t *testing.T) {
func TestDiskLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
@ -102,7 +102,10 @@ func TestDiskLayerExternalInvalidationPartialFlatten(t *testing.T) {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 3)
}
// Commit the diff layer onto the disk and ensure it's persisted
if err := snaps.Cap(common.HexToHash("0x03"), 2, 0); err != nil {
defer func(memcap uint64) { aggregatorMemoryLimit = memcap }(aggregatorMemoryLimit)
aggregatorMemoryLimit = 0
if err := snaps.Cap(common.HexToHash("0x03"), 2); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievald on the external reference fail
@ -124,7 +127,7 @@ func TestDiskLayerExternalInvalidationPartialFlatten(t *testing.T) {
func TestDiffLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
@ -150,7 +153,7 @@ func TestDiffLayerExternalInvalidationFullFlatten(t *testing.T) {
ref := snaps.Snapshot(common.HexToHash("0x02"))
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x03"), 1, 1024*1024); err != nil {
if err := snaps.Cap(common.HexToHash("0x03"), 1); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievald on the external reference fail
@ -172,7 +175,7 @@ func TestDiffLayerExternalInvalidationFullFlatten(t *testing.T) {
func TestDiffLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
@ -202,14 +205,14 @@ func TestDiffLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Doing a Cap operation with many allowed layers should be a no-op
exp := len(snaps.layers)
if err := snaps.Cap(common.HexToHash("0x04"), 2000, 1024*1024); err != nil {
if err := snaps.Cap(common.HexToHash("0x04"), 2000); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
if got := len(snaps.layers); got != exp {
t.Errorf("layers modified, got %d exp %d", got, exp)
}
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x04"), 2, 1024*1024); err != nil {
if err := snaps.Cap(common.HexToHash("0x04"), 2); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievald on the external reference fail
@ -236,7 +239,7 @@ func TestPostCapBasicDataAccess(t *testing.T) {
}
// Create a starting base layer and a snapshot tree out of it
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
@ -280,11 +283,11 @@ func TestPostCapBasicDataAccess(t *testing.T) {
t.Error(err)
}
// Cap to a bad root should fail
if err := snaps.Cap(common.HexToHash("0x1337"), 0, 1024); err == nil {
if err := snaps.Cap(common.HexToHash("0x1337"), 0); err == nil {
t.Errorf("expected error, got none")
}
// Now, merge the a-chain
snaps.Cap(common.HexToHash("0xa3"), 0, 1024)
snaps.Cap(common.HexToHash("0xa3"), 0)
// At this point, a2 got merged into a1. Thus, a1 is now modified, and as a1 is
// the parent of b2, b2 should no longer be able to iterate into parent.
@ -308,7 +311,7 @@ func TestPostCapBasicDataAccess(t *testing.T) {
}
// Now, merge it again, just for fun. It should now error, since a3
// is a disk layer
if err := snaps.Cap(common.HexToHash("0xa3"), 0, 1024); err == nil {
if err := snaps.Cap(common.HexToHash("0xa3"), 0); err == nil {
t.Error("expected error capping the disk layer, got none")
}
}

@ -0,0 +1,130 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
)
// wipeSnapshot starts a goroutine to iterate over the entire key-value database
// and delete all the data associated with the snapshot (accounts, storage,
// metadata). After all is done, the snapshot range of the database is compacted
// to free up unused data blocks.
func wipeSnapshot(db ethdb.KeyValueStore, full bool) chan struct{} {
// Wipe the snapshot root marker synchronously
if full {
rawdb.DeleteSnapshotRoot(db)
}
// Wipe everything else asynchronously
wiper := make(chan struct{}, 1)
go func() {
if err := wipeContent(db); err != nil {
log.Error("Failed to wipe state snapshot", "err", err) // Database close will trigger this
return
}
close(wiper)
}()
return wiper
}
// wipeContent iterates over the entire key-value database and deletes all the
// data associated with the snapshot (accounts, storage), but not the root hash
// as the wiper is meant to run on a background thread but the root needs to be
// removed in sync to avoid data races. After all is done, the snapshot range of
// the database is compacted to free up unused data blocks.
func wipeContent(db ethdb.KeyValueStore) error {
if err := wipeKeyRange(db, "accounts", rawdb.SnapshotAccountPrefix, len(rawdb.SnapshotAccountPrefix)+common.HashLength); err != nil {
return err
}
if err := wipeKeyRange(db, "storage", rawdb.SnapshotStoragePrefix, len(rawdb.SnapshotStoragePrefix)+2*common.HashLength); err != nil {
return err
}
// Compact the snapshot section of the database to get rid of unused space
start := time.Now()
log.Info("Compacting snapshot account area ")
end := common.CopyBytes(rawdb.SnapshotAccountPrefix)
end[len(end)-1]++
if err := db.Compact(rawdb.SnapshotAccountPrefix, end); err != nil {
return err
}
log.Info("Compacting snapshot storage area ")
end = common.CopyBytes(rawdb.SnapshotStoragePrefix)
end[len(end)-1]++
if err := db.Compact(rawdb.SnapshotStoragePrefix, end); err != nil {
return err
}
log.Info("Compacted snapshot area in database", "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}
// wipeKeyRange deletes a range of keys from the database starting with prefix
// and having a specific total key length.
func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int) error {
// Batch deletions together to avoid holding an iterator for too long
var (
batch = db.NewBatch()
items int
)
// Iterate over the key-range and delete all of them
start, logged := time.Now(), time.Now()
it := db.NewIteratorWithStart(prefix)
for it.Next() {
// Skip any keys with the correct prefix but wrong lenth (trie nodes)
key := it.Key()
if !bytes.HasPrefix(key, prefix) {
break
}
if len(key) != keylen {
continue
}
// Delete the key and periodically recreate the batch and iterator
batch.Delete(key)
items++
if items%10000 == 0 {
// Batch too large (or iterator too long lived, flush and recreate)
it.Release()
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
it = db.NewIteratorWithStart(key)
if time.Since(logged) > 8*time.Second {
log.Info("Deleting state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
}
it.Release()
if err := batch.Write(); err != nil {
return err
}
log.Info("Deleted state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}

@ -59,17 +59,31 @@ func TestWipe(t *testing.T) {
// Randomize the suffix, dedup and inject it under the snapshot namespace
keysuffix := make([]byte, keysize)
rand.Read(keysuffix)
db.Put(append(rawdb.StateSnapshotPrefix, keysuffix...), randomHash().Bytes())
if rand.Int31n(2) == 0 {
db.Put(append(rawdb.SnapshotAccountPrefix, keysuffix...), randomHash().Bytes())
} else {
db.Put(append(rawdb.SnapshotStoragePrefix, keysuffix...), randomHash().Bytes())
}
}
// Sanity check that all the keys are present
var items int
it := db.NewIteratorWithPrefix(rawdb.StateSnapshotPrefix)
it := db.NewIteratorWithPrefix(rawdb.SnapshotAccountPrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.SnapshotAccountPrefix)+common.HashLength {
items++
}
}
it = db.NewIteratorWithPrefix(rawdb.SnapshotStoragePrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.StateSnapshotPrefix)+32 || len(key) == len(rawdb.StateSnapshotPrefix)+64 {
if len(key) == len(rawdb.SnapshotStoragePrefix)+2*common.HashLength {
items++
}
}
@ -80,16 +94,24 @@ func TestWipe(t *testing.T) {
t.Errorf("snapshot block marker mismatch: have %#x, want <not-nil>", hash)
}
// Wipe all snapshot entries from the database
if err := wipeSnapshot(db); err != nil {
t.Fatalf("failed to wipe snapshot: %v", err)
}
<-wipeSnapshot(db, true)
// Iterate over the database end ensure no snapshot information remains
it = db.NewIteratorWithPrefix(rawdb.StateSnapshotPrefix)
it = db.NewIteratorWithPrefix(rawdb.SnapshotAccountPrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.SnapshotAccountPrefix)+common.HashLength {
t.Errorf("snapshot entry remained after wipe: %x", key)
}
}
it = db.NewIteratorWithPrefix(rawdb.SnapshotStoragePrefix)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) == len(rawdb.StateSnapshotPrefix)+32 || len(key) == len(rawdb.StateSnapshotPrefix)+64 {
if len(key) == len(rawdb.SnapshotStoragePrefix)+2*common.HashLength {
t.Errorf("snapshot entry remained after wipe: %x", key)
}
}

@ -845,8 +845,8 @@ func (s *StateDB) Commit(deleteEmptyObjects bool) (common.Hash, error) {
if err := s.snaps.Update(root, parent, s.snapAccounts, s.snapStorage); err != nil {
log.Warn("Failed to update snapshot tree", "from", parent, "to", root, "err", err)
}
if err := s.snaps.Cap(root, 16, 4*1024*1024); err != nil {
log.Warn("Failed to cap snapshot tree", "root", root, "layers", 16, "memory", 4*1024*1024, "err", err)
if err := s.snaps.Cap(root, 128); err != nil {
log.Warn("Failed to cap snapshot tree", "root", root, "layers", 128, "err", err)
}
}
s.snap, s.snapAccounts, s.snapStorage = nil, nil, nil

@ -127,7 +127,8 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
config.Miner.GasPrice = new(big.Int).Set(DefaultConfig.Miner.GasPrice)
}
if config.NoPruning && config.TrieDirtyCache > 0 {
config.TrieCleanCache += config.TrieDirtyCache
config.TrieCleanCache += config.TrieDirtyCache * 3 / 5
config.SnapshotCache += config.TrieDirtyCache * 3 / 5
config.TrieDirtyCache = 0
}
log.Info("Allocated trie memory caches", "clean", common.StorageSize(config.TrieCleanCache)*1024*1024, "dirty", common.StorageSize(config.TrieDirtyCache)*1024*1024)
@ -184,6 +185,7 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
TrieDirtyLimit: config.TrieDirtyCache,
TrieDirtyDisabled: config.NoPruning,
TrieTimeLimit: config.TrieTimeout,
SnapshotLimit: config.SnapshotCache,
}
)
eth.blockchain, err = core.NewBlockChain(chainDb, cacheConfig, chainConfig, eth.engine, vmConfig, eth.shouldPreserve)
@ -204,7 +206,7 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
eth.txPool = core.NewTxPool(config.TxPool, chainConfig, eth.blockchain)
// Permit the downloader to use the trie cache allowance during fast sync
cacheLimit := cacheConfig.TrieCleanLimit + cacheConfig.TrieDirtyLimit
cacheLimit := cacheConfig.TrieCleanLimit + cacheConfig.TrieDirtyLimit + cacheConfig.SnapshotLimit
checkpoint := config.Checkpoint
if checkpoint == nil {
checkpoint = params.TrustedCheckpoints[genesisHash]

@ -50,6 +50,7 @@ var DefaultConfig = Config{
TrieCleanCache: 256,
TrieDirtyCache: 256,
TrieTimeout: 60 * time.Minute,
SnapshotCache: 256,
Miner: miner.Config{
GasFloor: 8000000,
GasCeil: 8000000,
@ -125,6 +126,7 @@ type Config struct {
TrieCleanCache int
TrieDirtyCache int
TrieTimeout time.Duration
SnapshotCache int
// Mining options
Miner miner.Config

@ -29,7 +29,6 @@ import (
type Iterator struct {
nodeIt NodeIterator
Nodes int // Number of nodes iterated over
Key []byte // Current data key on which the iterator is positioned on
Value []byte // Current data value on which the iterator is positioned on
Err error
@ -47,7 +46,6 @@ func NewIterator(it NodeIterator) *Iterator {
// Next moves the iterator forward one key-value entry.
func (it *Iterator) Next() bool {
for it.nodeIt.Next(true) {
it.Nodes++
if it.nodeIt.Leaf() {
it.Key = it.nodeIt.LeafKey()
it.Value = it.nodeIt.LeafBlob()

Loading…
Cancel
Save