cmd, core, eth, light, trie: add trie read caching layer

pull/18087/head
Péter Szilágyi 6 years ago
parent 9a000601c6
commit 434dd5bc00
No known key found for this signature in database
GPG Key ID: E9AE538CEDF8293D
  1. 1
      cmd/geth/main.go
  2. 1
      cmd/geth/usage.go
  3. 20
      cmd/utils/flags.go
  4. 15
      core/blockchain.go
  5. 14
      core/state/database.go
  6. 6
      eth/api.go
  7. 4
      eth/api_tracer.go
  8. 2
      eth/backend.go
  9. 8
      eth/config.go
  10. 28
      eth/gen_config.go
  11. 4
      light/postprocess.go
  12. 2
      tests/block_test_util.go
  13. 201
      trie/database.go
  14. 14
      trie/iterator_test.go
  15. 9
      trie/trie_test.go
  16. 201
      vendor/github.com/allegro/bigcache/LICENSE
  17. 150
      vendor/github.com/allegro/bigcache/README.md
  18. 202
      vendor/github.com/allegro/bigcache/bigcache.go
  19. 14
      vendor/github.com/allegro/bigcache/bytes.go
  20. 7
      vendor/github.com/allegro/bigcache/bytes_appengine.go
  21. 14
      vendor/github.com/allegro/bigcache/clock.go
  22. 86
      vendor/github.com/allegro/bigcache/config.go
  23. 62
      vendor/github.com/allegro/bigcache/encoding.go
  24. 17
      vendor/github.com/allegro/bigcache/entry_not_found_error.go
  25. 28
      vendor/github.com/allegro/bigcache/fnv.go
  26. 8
      vendor/github.com/allegro/bigcache/hash.go
  27. 122
      vendor/github.com/allegro/bigcache/iterator.go
  28. 30
      vendor/github.com/allegro/bigcache/logger.go
  29. 210
      vendor/github.com/allegro/bigcache/queue/bytes_queue.go
  30. 236
      vendor/github.com/allegro/bigcache/shard.go
  31. 15
      vendor/github.com/allegro/bigcache/stats.go
  32. 16
      vendor/github.com/allegro/bigcache/utils.go
  33. 12
      vendor/vendor.json

@ -89,6 +89,7 @@ var (
utils.LightKDFFlag,
utils.CacheFlag,
utils.CacheDatabaseFlag,
utils.CacheTrieFlag,
utils.CacheGCFlag,
utils.TrieCacheGenFlag,
utils.ListenPortFlag,

@ -132,6 +132,7 @@ var AppHelpFlagGroups = []flagGroup{
Flags: []cli.Flag{
utils.CacheFlag,
utils.CacheDatabaseFlag,
utils.CacheTrieFlag,
utils.CacheGCFlag,
utils.TrieCacheGenFlag,
},

@ -295,7 +295,12 @@ var (
CacheDatabaseFlag = cli.IntFlag{
Name: "cache.database",
Usage: "Percentage of cache memory allowance to use for database io",
Value: 75,
Value: 50,
}
CacheTrieFlag = cli.IntFlag{
Name: "cache.trie",
Usage: "Percentage of cache memory allowance to use for trie caching",
Value: 25,
}
CacheGCFlag = cli.IntFlag{
Name: "cache.gc",
@ -1157,8 +1162,11 @@ func SetEthConfig(ctx *cli.Context, stack *node.Node, cfg *eth.Config) {
}
cfg.NoPruning = ctx.GlobalString(GCModeFlag.Name) == "archive"
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheTrieFlag.Name) {
cfg.TrieCleanCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheTrieFlag.Name) / 100
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheGCFlag.Name) {
cfg.TrieCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheGCFlag.Name) / 100
cfg.TrieDirtyCache = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheGCFlag.Name) / 100
}
if ctx.GlobalIsSet(MinerNotifyFlag.Name) {
cfg.MinerNotify = strings.Split(ctx.GlobalString(MinerNotifyFlag.Name), ",")
@ -1394,11 +1402,15 @@ func MakeChain(ctx *cli.Context, stack *node.Node) (chain *core.BlockChain, chai
}
cache := &core.CacheConfig{
Disabled: ctx.GlobalString(GCModeFlag.Name) == "archive",
TrieNodeLimit: eth.DefaultConfig.TrieCache,
TrieCleanLimit: eth.DefaultConfig.TrieCleanCache,
TrieDirtyLimit: eth.DefaultConfig.TrieDirtyCache,
TrieTimeLimit: eth.DefaultConfig.TrieTimeout,
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheTrieFlag.Name) {
cache.TrieCleanLimit = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheTrieFlag.Name) / 100
}
if ctx.GlobalIsSet(CacheFlag.Name) || ctx.GlobalIsSet(CacheGCFlag.Name) {
cache.TrieNodeLimit = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheGCFlag.Name) / 100
cache.TrieDirtyLimit = ctx.GlobalInt(CacheFlag.Name) * ctx.GlobalInt(CacheGCFlag.Name) / 100
}
vmcfg := vm.Config{EnablePreimageRecording: ctx.GlobalBool(VMEnableDebugFlag.Name)}
chain, err = core.NewBlockChain(chainDb, cache, config, engine, vmcfg, nil)

@ -69,7 +69,8 @@ const (
// that's resident in a blockchain.
type CacheConfig struct {
Disabled bool // Whether to disable trie write caching (archive node)
TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk
TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory
TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
}
@ -140,7 +141,8 @@ type BlockChain struct {
func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) {
if cacheConfig == nil {
cacheConfig = &CacheConfig{
TrieNodeLimit: 256,
TrieCleanLimit: 256,
TrieDirtyLimit: 256,
TrieTimeLimit: 5 * time.Minute,
}
}
@ -156,7 +158,7 @@ func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *par
cacheConfig: cacheConfig,
db: db,
triegc: prque.New(nil),
stateCache: state.NewDatabase(db),
stateCache: state.NewDatabaseWithCache(db, cacheConfig.TrieCleanLimit),
quit: make(chan struct{}),
shouldPreserve: shouldPreserve,
bodyCache: bodyCache,
@ -393,6 +395,11 @@ func (bc *BlockChain) StateAt(root common.Hash) (*state.StateDB, error) {
return state.New(root, bc.stateCache)
}
// StateCache returns the caching database underpinning the blockchain instance.
func (bc *BlockChain) StateCache() state.Database {
return bc.stateCache
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() error {
return bc.ResetWithGenesisBlock(bc.genesisBlock)
@ -938,7 +945,7 @@ func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.
// If we exceeded our memory allowance, flush matured singleton nodes to disk
var (
nodes, imgs = triedb.Size()
limit = common.StorageSize(bc.cacheConfig.TrieNodeLimit) * 1024 * 1024
limit = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024
)
if nodes > limit || imgs > 4*1024*1024 {
triedb.Cap(limit - ethdb.IdealBatchSize)

@ -72,13 +72,19 @@ type Trie interface {
}
// NewDatabase creates a backing store for state. The returned database is safe for
// concurrent use and retains cached trie nodes in memory. The pool is an optional
// intermediate trie-node memory pool between the low level storage layer and the
// high level trie abstraction.
// concurrent use and retains a few recent expanded trie nodes in memory. To keep
// more historical state in memory, use the NewDatabaseWithCache constructor.
func NewDatabase(db ethdb.Database) Database {
return NewDatabaseWithCache(db, 0)
}
// NewDatabase creates a backing store for state. The returned database is safe for
// concurrent use and retains both a few recent expanded trie nodes in memory, as
// well as a lot of collapsed RLP trie nodes in a large memory cache.
func NewDatabaseWithCache(db ethdb.Database, cache int) Database {
csc, _ := lru.New(codeSizeCacheSize)
return &cachingDB{
db: trie.NewDatabase(db),
db: trie.NewDatabaseWithCache(db, cache),
codeSizeCache: csc,
}
}

@ -444,16 +444,16 @@ func (api *PrivateDebugAPI) getModifiedAccounts(startBlock, endBlock *types.Bloc
if startBlock.Number().Uint64() >= endBlock.Number().Uint64() {
return nil, fmt.Errorf("start block height (%d) must be less than end block height (%d)", startBlock.Number().Uint64(), endBlock.Number().Uint64())
}
triedb := api.eth.BlockChain().StateCache().TrieDB()
oldTrie, err := trie.NewSecure(startBlock.Root(), trie.NewDatabase(api.eth.chainDb), 0)
oldTrie, err := trie.NewSecure(startBlock.Root(), triedb, 0)
if err != nil {
return nil, err
}
newTrie, err := trie.NewSecure(endBlock.Root(), trie.NewDatabase(api.eth.chainDb), 0)
newTrie, err := trie.NewSecure(endBlock.Root(), triedb, 0)
if err != nil {
return nil, err
}
diff, _ := trie.NewDifferenceIterator(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}))
iter := trie.NewIterator(diff)

@ -138,7 +138,7 @@ func (api *PrivateDebugAPI) traceChain(ctx context.Context, start, end *types.Bl
// Ensure we have a valid starting state before doing any work
origin := start.NumberU64()
database := state.NewDatabase(api.eth.ChainDb())
database := state.NewDatabaseWithCache(api.eth.ChainDb(), 16) // Chain tracing will probably start at genesis
if number := start.NumberU64(); number > 0 {
start = api.eth.blockchain.GetBlock(start.ParentHash(), start.NumberU64()-1)
@ -492,7 +492,7 @@ func (api *PrivateDebugAPI) computeStateDB(block *types.Block, reexec uint64) (*
}
// Otherwise try to reexec blocks until we find a state or reach our limit
origin := block.NumberU64()
database := state.NewDatabase(api.eth.ChainDb())
database := state.NewDatabaseWithCache(api.eth.ChainDb(), 16)
for i := uint64(0); i < reexec; i++ {
block = api.eth.blockchain.GetBlock(block.ParentHash(), block.NumberU64()-1)

@ -154,7 +154,7 @@ func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
EWASMInterpreter: config.EWASMInterpreter,
EVMInterpreter: config.EVMInterpreter,
}
cacheConfig = &core.CacheConfig{Disabled: config.NoPruning, TrieNodeLimit: config.TrieCache, TrieTimeLimit: config.TrieTimeout}
cacheConfig = &core.CacheConfig{Disabled: config.NoPruning, TrieCleanLimit: config.TrieCleanCache, TrieDirtyLimit: config.TrieDirtyCache, TrieTimeLimit: config.TrieTimeout}
)
eth.blockchain, err = core.NewBlockChain(chainDb, cacheConfig, eth.chainConfig, eth.engine, vmConfig, eth.shouldPreserve)
if err != nil {

@ -45,8 +45,9 @@ var DefaultConfig = Config{
},
NetworkId: 1,
LightPeers: 100,
DatabaseCache: 768,
TrieCache: 256,
DatabaseCache: 512,
TrieCleanCache: 256,
TrieDirtyCache: 256,
TrieTimeout: 60 * time.Minute,
MinerGasFloor: 8000000,
MinerGasCeil: 8000000,
@ -94,7 +95,8 @@ type Config struct {
SkipBcVersionCheck bool `toml:"-"`
DatabaseHandles int `toml:"-"`
DatabaseCache int
TrieCache int
TrieCleanCache int
TrieDirtyCache int
TrieTimeout time.Duration
// Mining-related options

@ -28,7 +28,8 @@ func (c Config) MarshalTOML() (interface{}, error) {
SkipBcVersionCheck bool `toml:"-"`
DatabaseHandles int `toml:"-"`
DatabaseCache int
TrieCache int
TrieCleanCache int
TrieDirtyCache int
TrieTimeout time.Duration
Etherbase common.Address `toml:",omitempty"`
MinerNotify []string `toml:",omitempty"`
@ -43,6 +44,8 @@ func (c Config) MarshalTOML() (interface{}, error) {
GPO gasprice.Config
EnablePreimageRecording bool
DocRoot string `toml:"-"`
EWASMInterpreter string
EVMInterpreter string
}
var enc Config
enc.Genesis = c.Genesis
@ -54,7 +57,8 @@ func (c Config) MarshalTOML() (interface{}, error) {
enc.SkipBcVersionCheck = c.SkipBcVersionCheck
enc.DatabaseHandles = c.DatabaseHandles
enc.DatabaseCache = c.DatabaseCache
enc.TrieCache = c.TrieCache
enc.TrieCleanCache = c.TrieCleanCache
enc.TrieDirtyCache = c.TrieDirtyCache
enc.TrieTimeout = c.TrieTimeout
enc.Etherbase = c.Etherbase
enc.MinerNotify = c.MinerNotify
@ -69,6 +73,8 @@ func (c Config) MarshalTOML() (interface{}, error) {
enc.GPO = c.GPO
enc.EnablePreimageRecording = c.EnablePreimageRecording
enc.DocRoot = c.DocRoot
enc.EWASMInterpreter = c.EWASMInterpreter
enc.EVMInterpreter = c.EVMInterpreter
return &enc, nil
}
@ -84,7 +90,8 @@ func (c *Config) UnmarshalTOML(unmarshal func(interface{}) error) error {
SkipBcVersionCheck *bool `toml:"-"`
DatabaseHandles *int `toml:"-"`
DatabaseCache *int
TrieCache *int
TrieCleanCache *int
TrieDirtyCache *int
TrieTimeout *time.Duration
Etherbase *common.Address `toml:",omitempty"`
MinerNotify []string `toml:",omitempty"`
@ -99,6 +106,8 @@ func (c *Config) UnmarshalTOML(unmarshal func(interface{}) error) error {
GPO *gasprice.Config
EnablePreimageRecording *bool
DocRoot *string `toml:"-"`
EWASMInterpreter *string
EVMInterpreter *string
}
var dec Config
if err := unmarshal(&dec); err != nil {
@ -131,8 +140,11 @@ func (c *Config) UnmarshalTOML(unmarshal func(interface{}) error) error {
if dec.DatabaseCache != nil {
c.DatabaseCache = *dec.DatabaseCache
}
if dec.TrieCache != nil {
c.TrieCache = *dec.TrieCache
if dec.TrieCleanCache != nil {
c.TrieCleanCache = *dec.TrieCleanCache
}
if dec.TrieDirtyCache != nil {
c.TrieDirtyCache = *dec.TrieDirtyCache
}
if dec.TrieTimeout != nil {
c.TrieTimeout = *dec.TrieTimeout
@ -176,5 +188,11 @@ func (c *Config) UnmarshalTOML(unmarshal func(interface{}) error) error {
if dec.DocRoot != nil {
c.DocRoot = *dec.DocRoot
}
if dec.EWASMInterpreter != nil {
c.EWASMInterpreter = *dec.EWASMInterpreter
}
if dec.EVMInterpreter != nil {
c.EVMInterpreter = *dec.EVMInterpreter
}
return nil
}

@ -159,7 +159,7 @@ func NewChtIndexer(db ethdb.Database, odr OdrBackend, size, confirms uint64) *co
diskdb: db,
odr: odr,
trieTable: trieTable,
triedb: trie.NewDatabase(trieTable),
triedb: trie.NewDatabaseWithCache(trieTable, 1), // Use a tiny cache only to keep memory down
sectionSize: size,
}
return core.NewChainIndexer(db, ethdb.NewTable(db, "chtIndex-"), backend, size, confirms, time.Millisecond*100, "cht")
@ -281,7 +281,7 @@ func NewBloomTrieIndexer(db ethdb.Database, odr OdrBackend, parentSize, size uin
diskdb: db,
odr: odr,
trieTable: trieTable,
triedb: trie.NewDatabase(trieTable),
triedb: trie.NewDatabaseWithCache(trieTable, 1), // Use a tiny cache only to keep memory down
parentSize: parentSize,
size: size,
}

@ -118,7 +118,7 @@ func (t *BlockTest) Run() error {
} else {
engine = ethash.NewShared()
}
chain, err := core.NewBlockChain(db, nil, config, engine, vm.Config{}, nil)
chain, err := core.NewBlockChain(db, &core.CacheConfig{TrieCleanLimit: 0}, config, engine, vm.Config{}, nil)
if err != nil {
return err
}

@ -22,6 +22,7 @@ import (
"sync"
"time"
"github.com/allegro/bigcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
@ -30,6 +31,11 @@ import (
)
var (
memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
@ -64,7 +70,8 @@ type DatabaseReader interface {
type Database struct {
diskdb ethdb.Database // Persistent storage for matured trie nodes
nodes map[common.Hash]*cachedNode // Data and references relationships of a node
cleans *bigcache.BigCache // GC friendly memory cache of clean node RLPs
dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes
oldest common.Hash // Oldest tracked node, flush-list head
newest common.Hash // Newest tracked node, flush-list tail
@ -79,7 +86,7 @@ type Database struct {
flushnodes uint64 // Nodes flushed since last commit
flushsize common.StorageSize // Data storage flushed since last commit
nodesSize common.StorageSize // Storage size of the nodes cache (exc. flushlist)
dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. flushlist)
preimagesSize common.StorageSize // Storage size of the preimages cache
lock sync.RWMutex
@ -262,11 +269,30 @@ func expandNode(hash hashNode, n node, cachegen uint16) node {
}
// NewDatabase creates a new trie database to store ephemeral trie content before
// its written out to disk or garbage collected.
// its written out to disk or garbage collected. No read cache is created, so all
// data retrievals will hit the underlying disk database.
func NewDatabase(diskdb ethdb.Database) *Database {
return NewDatabaseWithCache(diskdb, 0)
}
// NewDatabaseWithCache creates a new trie database to store ephemeral trie content
// before its written out to disk or garbage collected. It also acts as a read cache
// for nodes loaded from disk.
func NewDatabaseWithCache(diskdb ethdb.Database, cache int) *Database {
var cleans *bigcache.BigCache
if cache > 0 {
cleans, _ = bigcache.NewBigCache(bigcache.Config{
Shards: 1024,
LifeWindow: time.Hour,
MaxEntriesInWindow: cache * 1024,
MaxEntrySize: 512,
HardMaxCacheSize: cache,
})
}
return &Database{
diskdb: diskdb,
nodes: map[common.Hash]*cachedNode{{}: {}},
cleans: cleans,
dirties: map[common.Hash]*cachedNode{{}: {}},
preimages: make(map[common.Hash][]byte),
}
}
@ -293,7 +319,7 @@ func (db *Database) InsertBlob(hash common.Hash, blob []byte) {
// size tracking.
func (db *Database) insert(hash common.Hash, blob []byte, node node) {
// If the node's already cached, skip
if _, ok := db.nodes[hash]; ok {
if _, ok := db.dirties[hash]; ok {
return
}
// Create the cached entry for this node
@ -303,19 +329,19 @@ func (db *Database) insert(hash common.Hash, blob []byte, node node) {
flushPrev: db.newest,
}
for _, child := range entry.childs() {
if c := db.nodes[child]; c != nil {
if c := db.dirties[child]; c != nil {
c.parents++
}
}
db.nodes[hash] = entry
db.dirties[hash] = entry
// Update the flush-list endpoints
if db.oldest == (common.Hash{}) {
db.oldest, db.newest = hash, hash
} else {
db.nodes[db.newest].flushNext, db.newest = hash, hash
db.dirties[db.newest].flushNext, db.newest = hash, hash
}
db.nodesSize += common.StorageSize(common.HashLength + entry.size)
db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
}
// insertPreimage writes a new trie node pre-image to the memory database if it's
@ -333,35 +359,64 @@ func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
// node retrieves a cached trie node from memory, or returns nil if none can be
// found in the memory cache.
func (db *Database) node(hash common.Hash, cachegen uint16) node {
// Retrieve the node from cache if available
// Retrieve the node from the clean cache if available
if db.cleans != nil {
if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
memcacheCleanHitMeter.Mark(1)
memcacheCleanReadMeter.Mark(int64(len(enc)))
return mustDecodeNode(hash[:], enc, cachegen)
}
}
// Retrieve the node from the dirty cache if available
db.lock.RLock()
node := db.nodes[hash]
dirty := db.dirties[hash]
db.lock.RUnlock()
if node != nil {
return node.obj(hash, cachegen)
if dirty != nil {
return dirty.obj(hash, cachegen)
}
// Content unavailable in memory, attempt to retrieve from disk
enc, err := db.diskdb.Get(hash[:])
if err != nil || enc == nil {
return nil
}
if db.cleans != nil {
db.cleans.Set(string(hash[:]), enc)
memcacheCleanMissMeter.Mark(1)
memcacheCleanWriteMeter.Mark(int64(len(enc)))
}
return mustDecodeNode(hash[:], enc, cachegen)
}
// Node retrieves an encoded cached trie node from memory. If it cannot be found
// cached, the method queries the persistent database for the content.
func (db *Database) Node(hash common.Hash) ([]byte, error) {
// Retrieve the node from cache if available
// Retrieve the node from the clean cache if available
if db.cleans != nil {
if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
memcacheCleanHitMeter.Mark(1)
memcacheCleanReadMeter.Mark(int64(len(enc)))
return enc, nil
}
}
// Retrieve the node from the dirty cache if available
db.lock.RLock()
node := db.nodes[hash]
dirty := db.dirties[hash]
db.lock.RUnlock()
if node != nil {
return node.rlp(), nil
if dirty != nil {
return dirty.rlp(), nil
}
// Content unavailable in memory, attempt to retrieve from disk
return db.diskdb.Get(hash[:])
enc, err := db.diskdb.Get(hash[:])
if err == nil && enc != nil {
if db.cleans != nil {
db.cleans.Set(string(hash[:]), enc)
memcacheCleanMissMeter.Mark(1)
memcacheCleanWriteMeter.Mark(int64(len(enc)))
}
}
return enc, err
}
// preimage retrieves a cached trie node pre-image from memory. If it cannot be
@ -395,8 +450,8 @@ func (db *Database) Nodes() []common.Hash {
db.lock.RLock()
defer db.lock.RUnlock()
var hashes = make([]common.Hash, 0, len(db.nodes))
for hash := range db.nodes {
var hashes = make([]common.Hash, 0, len(db.dirties))
for hash := range db.dirties {
if hash != (common.Hash{}) { // Special case for "root" references/nodes
hashes = append(hashes, hash)
}
@ -415,18 +470,18 @@ func (db *Database) Reference(child common.Hash, parent common.Hash) {
// reference is the private locked version of Reference.
func (db *Database) reference(child common.Hash, parent common.Hash) {
// If the node does not exist, it's a node pulled from disk, skip
node, ok := db.nodes[child]
node, ok := db.dirties[child]
if !ok {
return
}
// If the reference already exists, only duplicate for roots
if db.nodes[parent].children == nil {
db.nodes[parent].children = make(map[common.Hash]uint16)
} else if _, ok = db.nodes[parent].children[child]; ok && parent != (common.Hash{}) {
if db.dirties[parent].children == nil {
db.dirties[parent].children = make(map[common.Hash]uint16)
} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
return
}
node.parents++
db.nodes[parent].children[child]++
db.dirties[parent].children[child]++
}
// Dereference removes an existing reference from a root node.
@ -439,25 +494,25 @@ func (db *Database) Dereference(root common.Hash) {
db.lock.Lock()
defer db.lock.Unlock()
nodes, storage, start := len(db.nodes), db.nodesSize, time.Now()
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
db.dereference(root, common.Hash{})
db.gcnodes += uint64(nodes - len(db.nodes))
db.gcsize += storage - db.nodesSize
db.gcnodes += uint64(nodes - len(db.dirties))
db.gcsize += storage - db.dirtiesSize
db.gctime += time.Since(start)
memcacheGCTimeTimer.Update(time.Since(start))
memcacheGCSizeMeter.Mark(int64(storage - db.nodesSize))
memcacheGCNodesMeter.Mark(int64(nodes - len(db.nodes)))
memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.nodes), "size", storage-db.nodesSize, "time", time.Since(start),
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.nodes), "livesize", db.nodesSize)
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
}
// dereference is the private locked version of Dereference.
func (db *Database) dereference(child common.Hash, parent common.Hash) {
// Dereference the parent-child
node := db.nodes[parent]
node := db.dirties[parent]
if node.children != nil && node.children[child] > 0 {
node.children[child]--
@ -466,7 +521,7 @@ func (db *Database) dereference(child common.Hash, parent common.Hash) {
}
}
// If the child does not exist, it's a previously committed node.
node, ok := db.nodes[child]
node, ok := db.dirties[child]
if !ok {
return
}
@ -483,20 +538,20 @@ func (db *Database) dereference(child common.Hash, parent common.Hash) {
switch child {
case db.oldest:
db.oldest = node.flushNext
db.nodes[node.flushNext].flushPrev = common.Hash{}
db.dirties[node.flushNext].flushPrev = common.Hash{}
case db.newest:
db.newest = node.flushPrev
db.nodes[node.flushPrev].flushNext = common.Hash{}
db.dirties[node.flushPrev].flushNext = common.Hash{}
default:
db.nodes[node.flushPrev].flushNext = node.flushNext
db.nodes[node.flushNext].flushPrev = node.flushPrev
db.dirties[node.flushPrev].flushNext = node.flushNext
db.dirties[node.flushNext].flushPrev = node.flushPrev
}
// Dereference all children and delete the node
for _, hash := range node.childs() {
db.dereference(hash, child)
}
delete(db.nodes, child)
db.nodesSize -= common.StorageSize(common.HashLength + int(node.size))
delete(db.dirties, child)
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
}
}
@ -509,13 +564,13 @@ func (db *Database) Cap(limit common.StorageSize) error {
// by only uncaching existing data when the database write finalizes.
db.lock.RLock()
nodes, storage, start := len(db.nodes), db.nodesSize, time.Now()
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
batch := db.diskdb.NewBatch()
// db.nodesSize only contains the useful data in the cache, but when reporting
// db.dirtiesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted. For every useful node, we track 2 extra hashes as the flushlist.
size := db.nodesSize + common.StorageSize((len(db.nodes)-1)*2*common.HashLength)
size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*2*common.HashLength)
// If the preimage cache got large enough, push to disk. If it's still small
// leave for later to deduplicate writes.
@ -540,7 +595,7 @@ func (db *Database) Cap(limit common.StorageSize) error {
oldest := db.oldest
for size > limit && oldest != (common.Hash{}) {
// Fetch the oldest referenced node and push into the batch
node := db.nodes[oldest]
node := db.dirties[oldest]
if err := batch.Put(oldest[:], node.rlp()); err != nil {
db.lock.RUnlock()
return err
@ -578,25 +633,25 @@ func (db *Database) Cap(limit common.StorageSize) error {
db.preimagesSize = 0
}
for db.oldest != oldest {
node := db.nodes[db.oldest]
delete(db.nodes, db.oldest)
node := db.dirties[db.oldest]
delete(db.dirties, db.oldest)
db.oldest = node.flushNext
db.nodesSize -= common.StorageSize(common.HashLength + int(node.size))
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
}
if db.oldest != (common.Hash{}) {
db.nodes[db.oldest].flushPrev = common.Hash{}
db.dirties[db.oldest].flushPrev = common.Hash{}
}
db.flushnodes += uint64(nodes - len(db.nodes))
db.flushsize += storage - db.nodesSize
db.flushnodes += uint64(nodes - len(db.dirties))
db.flushsize += storage - db.dirtiesSize
db.flushtime += time.Since(start)
memcacheFlushTimeTimer.Update(time.Since(start))
memcacheFlushSizeMeter.Mark(int64(storage - db.nodesSize))
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.nodes)))
memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.nodes), "size", storage-db.nodesSize, "time", time.Since(start),
"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.nodes), "livesize", db.nodesSize)
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
return nil
}
@ -630,7 +685,7 @@ func (db *Database) Commit(node common.Hash, report bool) error {
}
}
// Move the trie itself into the batch, flushing if enough data is accumulated
nodes, storage := len(db.nodes), db.nodesSize
nodes, storage := len(db.dirties), db.dirtiesSize
if err := db.commit(node, batch); err != nil {
log.Error("Failed to commit trie from trie database", "err", err)
db.lock.RUnlock()
@ -654,15 +709,15 @@ func (db *Database) Commit(node common.Hash, report bool) error {
db.uncache(node)
memcacheCommitTimeTimer.Update(time.Since(start))
memcacheCommitSizeMeter.Mark(int64(storage - db.nodesSize))
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.nodes)))
memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
logger := log.Info
if !report {
logger = log.Debug
}
logger("Persisted trie from memory database", "nodes", nodes-len(db.nodes)+int(db.flushnodes), "size", storage-db.nodesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.nodes), "livesize", db.nodesSize)
logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
// Reset the garbage collection statistics
db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
@ -674,7 +729,7 @@ func (db *Database) Commit(node common.Hash, report bool) error {
// commit is the private locked version of Commit.
func (db *Database) commit(hash common.Hash, batch ethdb.Batch) error {
// If the node does not exist, it's a previously committed node
node, ok := db.nodes[hash]
node, ok := db.dirties[hash]
if !ok {
return nil
}
@ -702,7 +757,7 @@ func (db *Database) commit(hash common.Hash, batch ethdb.Batch) error {
// to disk.
func (db *Database) uncache(hash common.Hash) {
// If the node does not exist, we're done on this path
node, ok := db.nodes[hash]
node, ok := db.dirties[hash]
if !ok {
return
}
@ -710,20 +765,20 @@ func (db *Database) uncache(hash common.Hash) {
switch hash {
case db.oldest:
db.oldest = node.flushNext
db.nodes[node.flushNext].flushPrev = common.Hash{}
db.dirties[node.flushNext].flushPrev = common.Hash{}
case db.newest:
db.newest = node.flushPrev
db.nodes[node.flushPrev].flushNext = common.Hash{}
db.dirties[node.flushPrev].flushNext = common.Hash{}
default:
db.nodes[node.flushPrev].flushNext = node.flushNext
db.nodes[node.flushNext].flushPrev = node.flushPrev
db.dirties[node.flushPrev].flushNext = node.flushNext
db.dirties[node.flushNext].flushPrev = node.flushPrev
}
// Uncache the node's subtries and remove the node itself too
for _, child := range node.childs() {
db.uncache(child)
}
delete(db.nodes, hash)
db.nodesSize -= common.StorageSize(common.HashLength + int(node.size))
delete(db.dirties, hash)
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
}
// Size returns the current storage size of the memory cache in front of the
@ -732,11 +787,11 @@ func (db *Database) Size() (common.StorageSize, common.StorageSize) {
db.lock.RLock()
defer db.lock.RUnlock()
// db.nodesSize only contains the useful data in the cache, but when reporting
// db.dirtiesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted. For every useful node, we track 2 extra hashes as the flushlist.
var flushlistSize = common.StorageSize((len(db.nodes) - 1) * 2 * common.HashLength)
return db.nodesSize + flushlistSize, db.preimagesSize
var flushlistSize = common.StorageSize((len(db.dirties) - 1) * 2 * common.HashLength)
return db.dirtiesSize + flushlistSize, db.preimagesSize
}
// verifyIntegrity is a debug method to iterate over the entire trie stored in
@ -749,12 +804,12 @@ func (db *Database) verifyIntegrity() {
// Iterate over all the cached nodes and accumulate them into a set
reachable := map[common.Hash]struct{}{{}: {}}
for child := range db.nodes[common.Hash{}].children {
for child := range db.dirties[common.Hash{}].children {
db.accumulate(child, reachable)
}
// Find any unreachable but cached nodes
unreachable := []string{}
for hash, node := range db.nodes {
for hash, node := range db.dirties {
if _, ok := reachable[hash]; !ok {
unreachable = append(unreachable, fmt.Sprintf("%x: {Node: %v, Parents: %d, Prev: %x, Next: %x}",
hash, node.node, node.parents, node.flushPrev, node.flushNext))
@ -769,7 +824,7 @@ func (db *Database) verifyIntegrity() {
// cached children found in memory.
func (db *Database) accumulate(hash common.Hash, reachable map[common.Hash]struct{}) {
// Mark the node reachable if present in the memory cache
node, ok := db.nodes[hash]
node, ok := db.dirties[hash]
if !ok {
return
}

@ -113,7 +113,7 @@ func TestNodeIteratorCoverage(t *testing.T) {
t.Errorf("failed to retrieve reported node %x: %v", hash, err)
}
}
for hash, obj := range db.nodes {
for hash, obj := range db.dirties {
if obj != nil && hash != (common.Hash{}) {
if _, ok := hashes[hash]; !ok {
t.Errorf("state entry not reported %x", hash)
@ -333,8 +333,8 @@ func testIteratorContinueAfterError(t *testing.T, memonly bool) {
}
}
if memonly {
robj = triedb.nodes[rkey]
delete(triedb.nodes, rkey)
robj = triedb.dirties[rkey]
delete(triedb.dirties, rkey)
} else {
rval, _ = diskdb.Get(rkey[:])
diskdb.Delete(rkey[:])
@ -350,7 +350,7 @@ func testIteratorContinueAfterError(t *testing.T, memonly bool) {
// Add the node back and continue iteration.
if memonly {
triedb.nodes[rkey] = robj
triedb.dirties[rkey] = robj
} else {
diskdb.Put(rkey[:], rval)
}
@ -393,8 +393,8 @@ func testIteratorContinueAfterSeekError(t *testing.T, memonly bool) {
barNodeObj *cachedNode
)
if memonly {
barNodeObj = triedb.nodes[barNodeHash]
delete(triedb.nodes, barNodeHash)
barNodeObj = triedb.dirties[barNodeHash]
delete(triedb.dirties, barNodeHash)
} else {
barNodeBlob, _ = diskdb.Get(barNodeHash[:])
diskdb.Delete(barNodeHash[:])
@ -411,7 +411,7 @@ func testIteratorContinueAfterSeekError(t *testing.T, memonly bool) {
}
// Reinsert the missing node.
if memonly {
triedb.nodes[barNodeHash] = barNodeObj
triedb.dirties[barNodeHash] = barNodeObj
} else {
diskdb.Put(barNodeHash[:], barNodeBlob)
}

@ -119,7 +119,7 @@ func testMissingNode(t *testing.T, memonly bool) {
hash := common.HexToHash("0xe1d943cc8f061a0c0b98162830b970395ac9315654824bf21b73b891365262f9")
if memonly {
delete(triedb.nodes, hash)
delete(triedb.dirties, hash)
} else {
diskdb.Delete(hash[:])
}
@ -342,15 +342,16 @@ func TestCacheUnload(t *testing.T) {
// Commit the trie repeatedly and access key1.
// The branch containing it is loaded from DB exactly two times:
// in the 0th and 6th iteration.
db := &countingDB{Database: trie.db.diskdb, gets: make(map[string]int)}
trie, _ = New(root, NewDatabase(db))
diskdb := &countingDB{Database: trie.db.diskdb, gets: make(map[string]int)}
triedb := NewDatabase(diskdb)
trie, _ = New(root, triedb)
trie.SetCacheLimit(5)
for i := 0; i < 12; i++ {
getString(trie, key1)
trie.Commit(nil)
}
// Check that it got loaded two times.
for dbkey, count := range db.gets {
for dbkey, count := range diskdb.gets {
if count != 2 {
t.Errorf("db key %x loaded %d times, want %d times", []byte(dbkey), count, 2)
}

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@ -0,0 +1,150 @@
# BigCache [![Build Status](https://travis-ci.org/allegro/bigcache.svg?branch=master)](https://travis-ci.org/allegro/bigcache)&nbsp;[![Coverage Status](https://coveralls.io/repos/github/allegro/bigcache/badge.svg?branch=master)](https://coveralls.io/github/allegro/bigcache?branch=master)&nbsp;[![GoDoc](https://godoc.org/github.com/allegro/bigcache?status.svg)](https://godoc.org/github.com/allegro/bigcache)&nbsp;[![Go Report Card](https://goreportcard.com/badge/github.com/allegro/bigcache)](https://goreportcard.com/report/github.com/allegro/bigcache)
Fast, concurrent, evicting in-memory cache written to keep big number of entries without impact on performance.
BigCache keeps entries on heap but omits GC for them. To achieve that operations on bytes arrays take place,
therefore entries (de)serialization in front of the cache will be needed in most use cases.
## Usage
### Simple initialization
```go
import "github.com/allegro/bigcache"
cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(10 * time.Minute))
cache.Set("my-unique-key", []byte("value"))
entry, _ := cache.Get("my-unique-key")
fmt.Println(string(entry))
```
### Custom initialization
When cache load can be predicted in advance then it is better to use custom initialization because additional memory
allocation can be avoided in that way.
```go
import (
"log"
"github.com/allegro/bigcache"
)
config := bigcache.Config {
// number of shards (must be a power of 2)
Shards: 1024,
// time after which entry can be evicted
LifeWindow: 10 * time.Minute,
// rps * lifeWindow, used only in initial memory allocation
MaxEntriesInWindow: 1000 * 10 * 60,
// max entry size in bytes, used only in initial memory allocation
MaxEntrySize: 500,
// prints information about additional memory allocation
Verbose: true,
// cache will not allocate more memory than this limit, value in MB
// if value is reached then the oldest entries can be overridden for the new ones
// 0 value means no size limit
HardMaxCacheSize: 8192,
// callback fired when the oldest entry is removed because of its expiration time or no space left
// for the new entry, or because delete was called. A bitmask representing the reason will be returned.
// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
OnRemove: nil,
// OnRemoveWithReason is a callback fired when the oldest entry is removed because of its expiration time or no space left
// for the new entry, or because delete was called. A constant representing the reason will be passed through.
// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
// Ignored if OnRemove is specified.
OnRemoveWithReason: nil,
}
cache, initErr := bigcache.NewBigCache(config)
if initErr != nil {
log.Fatal(initErr)
}
cache.Set("my-unique-key", []byte("value"))
if entry, err := cache.Get("my-unique-key"); err == nil {
fmt.Println(string(entry))
}
```
## Benchmarks
Three caches were compared: bigcache, [freecache](https://github.com/coocood/freecache) and map.
Benchmark tests were made using an i7-6700K with 32GB of RAM on Windows 10.
### Writes and reads
```bash
cd caches_bench; go test -bench=. -benchtime=10s ./... -timeout 30m
BenchmarkMapSet-8 3000000 569 ns/op 202 B/op 3 allocs/op
BenchmarkConcurrentMapSet-8 1000000 1592 ns/op 347 B/op 8 allocs/op
BenchmarkFreeCacheSet-8 3000000 775 ns/op 355 B/op 2 allocs/op
BenchmarkBigCacheSet-8 3000000 640 ns/op 303 B/op 2 allocs/op
BenchmarkMapGet-8 5000000 407 ns/op 24 B/op 1 allocs/op
BenchmarkConcurrentMapGet-8 3000000 558 ns/op 24 B/op 2 allocs/op
BenchmarkFreeCacheGet-8 2000000 682 ns/op 136 B/op 2 allocs/op
BenchmarkBigCacheGet-8 3000000 512 ns/op 152 B/op 4 allocs/op
BenchmarkBigCacheSetParallel-8 10000000 225 ns/op 313 B/op 3 allocs/op
BenchmarkFreeCacheSetParallel-8 10000000 218 ns/op 341 B/op 3 allocs/op
BenchmarkConcurrentMapSetParallel-8 5000000 318 ns/op 200 B/op 6 allocs/op
BenchmarkBigCacheGetParallel-8 20000000 178 ns/op 152 B/op 4 allocs/op
BenchmarkFreeCacheGetParallel-8 20000000 295 ns/op 136 B/op 3 allocs/op
BenchmarkConcurrentMapGetParallel-8 10000000 237 ns/op 24 B/op 2 allocs/op
```
Writes and reads in bigcache are faster than in freecache.
Writes to map are the slowest.
### GC pause time
```bash
cd caches_bench; go run caches_gc_overhead_comparison.go
Number of entries: 20000000
GC pause for bigcache: 5.8658ms
GC pause for freecache: 32.4341ms
GC pause for map: 52.9661ms
```
Test shows how long are the GC pauses for caches filled with 20mln of entries.
Bigcache and freecache have very similar GC pause time.
It is clear that both reduce GC overhead in contrast to map
which GC pause time took more than 10 seconds.
## How it works
BigCache relies on optimization presented in 1.5 version of Go ([issue-9477](https://github.com/golang/go/issues/9477)).
This optimization states that if map without pointers in keys and values is used then GC will omit its content.
Therefore BigCache uses `map[uint64]uint32` where keys are hashed and values are offsets of entries.
Entries are kept in bytes array, to omit GC again.
Bytes array size can grow to gigabytes without impact on performance
because GC will only see single pointer to it.
## Bigcache vs Freecache
Both caches provide the same core features but they reduce GC overhead in different ways.
Bigcache relies on `map[uint64]uint32`, freecache implements its own mapping built on
slices to reduce number of pointers.
Results from benchmark tests are presented above.
One of the advantage of bigcache over freecache is that you don’t need to know
the size of the cache in advance, because when bigcache is full,
it can allocate additional memory for new entries instead of
overwriting existing ones as freecache does currently.
However hard max size in bigcache also can be set, check [HardMaxCacheSize](https://godoc.org/github.com/allegro/bigcache#Config).
## HTTP Server
This package also includes an easily deployable HTTP implementation of BigCache, which can be found in the [server](/server) package.
## More
Bigcache genesis is described in allegro.tech blog post: [writing a very fast cache service in Go](http://allegro.tech/2016/03/writing-fast-cache-service-in-go.html)
## License
BigCache is released under the Apache 2.0 license (see [LICENSE](LICENSE))

@ -0,0 +1,202 @@
package bigcache
import (
"fmt"
"time"
)
const (
minimumEntriesInShard = 10 // Minimum number of entries in single shard
)
// BigCache is fast, concurrent, evicting cache created to keep big number of entries without impact on performance.
// It keeps entries on heap but omits GC for them. To achieve that, operations take place on byte arrays,
// therefore entries (de)serialization in front of the cache will be needed in most use cases.
type BigCache struct {
shards []*cacheShard
lifeWindow uint64
clock clock
hash Hasher
config Config
shardMask uint64
maxShardSize uint32
close chan struct{}
}
// RemoveReason is a value used to signal to the user why a particular key was removed in the OnRemove callback.
type RemoveReason uint32
const (
// Expired means the key is past its LifeWindow.
Expired RemoveReason = iota
// NoSpace means the key is the oldest and the cache size was at its maximum when Set was called, or the
// entry exceeded the maximum shard size.
NoSpace
// Deleted means Delete was called and this key was removed as a result.
Deleted
)
// NewBigCache initialize new instance of BigCache
func NewBigCache(config Config) (*BigCache, error) {
return newBigCache(config, &systemClock{})
}
func newBigCache(config Config, clock clock) (*BigCache, error) {
if !isPowerOfTwo(config.Shards) {
return nil, fmt.Errorf("Shards number must be power of two")
}
if config.Hasher == nil {
config.Hasher = newDefaultHasher()
}
cache := &BigCache{
shards: make([]*cacheShard, config.Shards),
lifeWindow: uint64(config.LifeWindow.Seconds()),
clock: clock,
hash: config.Hasher,
config: config,
shardMask: uint64(config.Shards - 1),
maxShardSize: uint32(config.maximumShardSize()),
close: make(chan struct{}),
}
var onRemove func(wrappedEntry []byte, reason RemoveReason)
if config.OnRemove != nil {
onRemove = cache.providedOnRemove
} else if config.OnRemoveWithReason != nil {
onRemove = cache.providedOnRemoveWithReason
} else {
onRemove = cache.notProvidedOnRemove
}
for i := 0; i < config.Shards; i++ {
cache.shards[i] = initNewShard(config, onRemove, clock)
}
if config.CleanWindow > 0 {
go func() {
ticker := time.NewTicker(config.CleanWindow)
defer ticker.Stop()
for {
select {
case t := <-ticker.C:
cache.cleanUp(uint64(t.Unix()))
case <-cache.close:
return
}
}
}()
}
return cache, nil
}
// Close is used to signal a shutdown of the cache when you are done with it.
// This allows the cleaning goroutines to exit and ensures references are not
// kept to the cache preventing GC of the entire cache.
func (c *BigCache) Close() error {
close(c.close)
return nil
}
// Get reads entry for the key.
// It returns an EntryNotFoundError when
// no entry exists for the given key.
func (c *BigCache) Get(key string) ([]byte, error) {
hashedKey := c.hash.Sum64(key)
shard := c.getShard(hashedKey)
return shard.get(key, hashedKey)
}
// Set saves entry under the key
func (c *BigCache) Set(key string, entry []byte) error {
hashedKey := c.hash.Sum64(key)
shard := c.getShard(hashedKey)
return shard.set(key, hashedKey, entry)
}
// Delete removes the key
func (c *BigCache) Delete(key string) error {
hashedKey := c.hash.Sum64(key)
shard := c.getShard(hashedKey)
return shard.del(key, hashedKey)
}
// Reset empties all cache shards
func (c *BigCache) Reset() error {
for _, shard := range c.shards {
shard.reset(c.config)
}
return nil
}
// Len computes number of entries in cache
func (c *BigCache) Len() int {
var len int
for _, shard := range c.shards {
len += shard.len()
}
return len
}
// Capacity returns amount of bytes store in the cache.
func (c *BigCache) Capacity() int {
var len int
for _, shard := range c.shards {
len += shard.capacity()
}
return len
}
// Stats returns cache's statistics
func (c *BigCache) Stats() Stats {
var s Stats
for _, shard := range c.shards {
tmp := shard.getStats()
s.Hits += tmp.Hits
s.Misses += tmp.Misses
s.DelHits += tmp.DelHits
s.DelMisses += tmp.DelMisses
s.Collisions += tmp.Collisions
}
return s
}
// Iterator returns iterator function to iterate over EntryInfo's from whole cache.
func (c *BigCache) Iterator() *EntryInfoIterator {
return newIterator(c)
}
func (c *BigCache) onEvict(oldestEntry []byte, currentTimestamp uint64, evict func(reason RemoveReason) error) bool {
oldestTimestamp := readTimestampFromEntry(oldestEntry)
if currentTimestamp-oldestTimestamp > c.lifeWindow {
evict(Expired)
return true
}
return false
}
func (c *BigCache) cleanUp(currentTimestamp uint64) {
for _, shard := range c.shards {
shard.cleanUp(currentTimestamp)
}
}
func (c *BigCache) getShard(hashedKey uint64) (shard *cacheShard) {
return c.shards[hashedKey&c.shardMask]
}
func (c *BigCache) providedOnRemove(wrappedEntry []byte, reason RemoveReason) {
c.config.OnRemove(readKeyFromEntry(wrappedEntry), readEntry(wrappedEntry))
}
func (c *BigCache) providedOnRemoveWithReason(wrappedEntry []byte, reason RemoveReason) {
if c.config.onRemoveFilter == 0 || (1<<uint(reason))&c.config.onRemoveFilter > 0 {
c.config.OnRemoveWithReason(readKeyFromEntry(wrappedEntry), readEntry(wrappedEntry), reason)
}
}
func (c *BigCache) notProvidedOnRemove(wrappedEntry []byte, reason RemoveReason) {
}

@ -0,0 +1,14 @@
// +build !appengine
package bigcache
import (
"reflect"
"unsafe"
)
func bytesToString(b []byte) string {
bytesHeader := (*reflect.SliceHeader)(unsafe.Pointer(&b))
strHeader := reflect.StringHeader{Data: bytesHeader.Data, Len: bytesHeader.Len}
return *(*string)(unsafe.Pointer(&strHeader))
}

@ -0,0 +1,7 @@
// +build appengine
package bigcache
func bytesToString(b []byte) string {
return string(b)
}

@ -0,0 +1,14 @@
package bigcache
import "time"
type clock interface {
epoch() int64
}
type systemClock struct {
}
func (c systemClock) epoch() int64 {
return time.Now().Unix()
}

@ -0,0 +1,86 @@
package bigcache
import "time"
// Config for BigCache
type Config struct {
// Number of cache shards, value must be a power of two
Shards int
// Time after which entry can be evicted
LifeWindow time.Duration
// Interval between removing expired entries (clean up).
// If set to <= 0 then no action is performed. Setting to < 1 second is counterproductive — bigcache has a one second resolution.
CleanWindow time.Duration
// Max number of entries in life window. Used only to calculate initial size for cache shards.
// When proper value is set then additional memory allocation does not occur.
MaxEntriesInWindow int
// Max size of entry in bytes. Used only to calculate initial size for cache shards.
MaxEntrySize int
// Verbose mode prints information about new memory allocation
Verbose bool
// Hasher used to map between string keys and unsigned 64bit integers, by default fnv64 hashing is used.
Hasher Hasher
// HardMaxCacheSize is a limit for cache size in MB. Cache will not allocate more memory than this limit.
// It can protect application from consuming all available memory on machine, therefore from running OOM Killer.
// Default value is 0 which means unlimited size. When the limit is higher than 0 and reached then
// the oldest entries are overridden for the new ones.
HardMaxCacheSize int
// OnRemove is a callback fired when the oldest entry is removed because of its expiration time or no space left
// for the new entry, or because delete was called.
// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
OnRemove func(key string, entry []byte)
// OnRemoveWithReason is a callback fired when the oldest entry is removed because of its expiration time or no space left
// for the new entry, or because delete was called. A constant representing the reason will be passed through.
// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
// Ignored if OnRemove is specified.
OnRemoveWithReason func(key string, entry []byte, reason RemoveReason)
onRemoveFilter int
// Logger is a logging interface and used in combination with `Verbose`
// Defaults to `DefaultLogger()`
Logger Logger
}
// DefaultConfig initializes config with default values.
// When load for BigCache can be predicted in advance then it is better to use custom config.
func DefaultConfig(eviction time.Duration) Config {
return Config{
Shards: 1024,
LifeWindow: eviction,
CleanWindow: 0,
MaxEntriesInWindow: 1000 * 10 * 60,
MaxEntrySize: 500,
Verbose: true,
Hasher: newDefaultHasher(),
HardMaxCacheSize: 0,
Logger: DefaultLogger(),
}
}
// initialShardSize computes initial shard size
func (c Config) initialShardSize() int {
return max(c.MaxEntriesInWindow/c.Shards, minimumEntriesInShard)
}
// maximumShardSize computes maximum shard size
func (c Config) maximumShardSize() int {
maxShardSize := 0
if c.HardMaxCacheSize > 0 {
maxShardSize = convertMBToBytes(c.HardMaxCacheSize) / c.Shards
}
return maxShardSize
}
// OnRemoveFilterSet sets which remove reasons will trigger a call to OnRemoveWithReason.
// Filtering out reasons prevents bigcache from unwrapping them, which saves cpu.
func (c Config) OnRemoveFilterSet(reasons ...RemoveReason) Config {
c.onRemoveFilter = 0
for i := range reasons {
c.onRemoveFilter |= 1 << uint(reasons[i])
}
return c
}

@ -0,0 +1,62 @@
package bigcache
import (
"encoding/binary"
)
const (
timestampSizeInBytes = 8 // Number of bytes used for timestamp
hashSizeInBytes = 8 // Number of bytes used for hash
keySizeInBytes = 2 // Number of bytes used for size of entry key
headersSizeInBytes = timestampSizeInBytes + hashSizeInBytes + keySizeInBytes // Number of bytes used for all headers
)
func wrapEntry(timestamp uint64, hash uint64, key string, entry []byte, buffer *[]byte) []byte {
keyLength := len(key)
blobLength := len(entry) + headersSizeInBytes + keyLength
if blobLength > len(*buffer) {
*buffer = make([]byte, blobLength)
}
blob := *buffer
binary.LittleEndian.PutUint64(blob, timestamp)
binary.LittleEndian.PutUint64(blob[timestampSizeInBytes:], hash)
binary.LittleEndian.PutUint16(blob[timestampSizeInBytes+hashSizeInBytes:], uint16(keyLength))
copy(blob[headersSizeInBytes:], key)
copy(blob[headersSizeInBytes+keyLength:], entry)
return blob[:blobLength]
}
func readEntry(data []byte) []byte {
length := binary.LittleEndian.Uint16(data[timestampSizeInBytes+hashSizeInBytes:])
// copy on read
dst := make([]byte, len(data)-int(headersSizeInBytes+length))
copy(dst, data[headersSizeInBytes+length:])
return dst
}
func readTimestampFromEntry(data []byte) uint64 {
return binary.LittleEndian.Uint64(data)
}
func readKeyFromEntry(data []byte) string {
length := binary.LittleEndian.Uint16(data[timestampSizeInBytes+hashSizeInBytes:])
// copy on read
dst := make([]byte, length)
copy(dst, data[headersSizeInBytes:headersSizeInBytes+length])
return bytesToString(dst)
}
func readHashFromEntry(data []byte) uint64 {
return binary.LittleEndian.Uint64(data[timestampSizeInBytes:])
}
func resetKeyFromEntry(data []byte) {
binary.LittleEndian.PutUint64(data[timestampSizeInBytes:], 0)
}

@ -0,0 +1,17 @@
package bigcache
import "fmt"
// EntryNotFoundError is an error type struct which is returned when entry was not found for provided key
type EntryNotFoundError struct {
key string
}
func notFound(key string) error {
return &EntryNotFoundError{key}
}
// Error returned when entry does not exist.
func (e EntryNotFoundError) Error() string {
return fmt.Sprintf("Entry %q not found", e.key)
}

@ -0,0 +1,28 @@
package bigcache
// newDefaultHasher returns a new 64-bit FNV-1a Hasher which makes no memory allocations.
// Its Sum64 method will lay the value out in big-endian byte order.
// See https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function
func newDefaultHasher() Hasher {
return fnv64a{}
}
type fnv64a struct{}
const (
// offset64 FNVa offset basis. See https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash
offset64 = 14695981039346656037
// prime64 FNVa prime value. See https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash
prime64 = 1099511628211
)
// Sum64 gets the string and returns its uint64 hash value.
func (f fnv64a) Sum64(key string) uint64 {
var hash uint64 = offset64
for i := 0; i < len(key); i++ {
hash ^= uint64(key[i])
hash *= prime64
}
return hash
}

@ -0,0 +1,8 @@
package bigcache
// Hasher is responsible for generating unsigned, 64 bit hash of provided string. Hasher should minimize collisions
// (generating same hash for different strings) and while performance is also important fast functions are preferable (i.e.
// you can use FarmHash family).
type Hasher interface {
Sum64(string) uint64
}

@ -0,0 +1,122 @@
package bigcache
import "sync"
type iteratorError string
func (e iteratorError) Error() string {
return string(e)
}
// ErrInvalidIteratorState is reported when iterator is in invalid state
const ErrInvalidIteratorState = iteratorError("Iterator is in invalid state. Use SetNext() to move to next position")
// ErrCannotRetrieveEntry is reported when entry cannot be retrieved from underlying
const ErrCannotRetrieveEntry = iteratorError("Could not retrieve entry from cache")
var emptyEntryInfo = EntryInfo{}
// EntryInfo holds informations about entry in the cache
type EntryInfo struct {
timestamp uint64
hash uint64
key string
value []byte
}
// Key returns entry's underlying key
func (e EntryInfo) Key() string {
return e.key
}
// Hash returns entry's hash value
func (e EntryInfo) Hash() uint64 {
return e.hash
}
// Timestamp returns entry's timestamp (time of insertion)
func (e EntryInfo) Timestamp() uint64 {
return e.timestamp
}
// Value returns entry's underlying value
func (e EntryInfo) Value() []byte {
return e.value
}
// EntryInfoIterator allows to iterate over entries in the cache
type EntryInfoIterator struct {
mutex sync.Mutex
cache *BigCache
currentShard int
currentIndex int
elements []uint32
elementsCount int
valid bool
}
// SetNext moves to next element and returns true if it exists.
func (it *EntryInfoIterator) SetNext() bool {
it.mutex.Lock()
it.valid = false
it.currentIndex++
if it.elementsCount > it.currentIndex {
it.valid = true
it.mutex.Unlock()
return true
}
for i := it.currentShard + 1; i < it.cache.config.Shards; i++ {
it.elements, it.elementsCount = it.cache.shards[i].copyKeys()
// Non empty shard - stick with it
if it.elementsCount > 0 {
it.currentIndex = 0
it.currentShard = i
it.valid = true
it.mutex.Unlock()
return true
}
}
it.mutex.Unlock()
return false
}
func newIterator(cache *BigCache) *EntryInfoIterator {
elements, count := cache.shards[0].copyKeys()
return &EntryInfoIterator{
cache: cache,
currentShard: 0,
currentIndex: -1,
elements: elements,
elementsCount: count,
}
}
// Value returns current value from the iterator
func (it *EntryInfoIterator) Value() (EntryInfo, error) {
it.mutex.Lock()
if !it.valid {
it.mutex.Unlock()
return emptyEntryInfo, ErrInvalidIteratorState
}
entry, err := it.cache.shards[it.currentShard].getEntry(int(it.elements[it.currentIndex]))
if err != nil {
it.mutex.Unlock()
return emptyEntryInfo, ErrCannotRetrieveEntry
}
it.mutex.Unlock()
return EntryInfo{
timestamp: readTimestampFromEntry(entry),
hash: readHashFromEntry(entry),
key: readKeyFromEntry(entry),
value: readEntry(entry),
}, nil
}

@ -0,0 +1,30 @@
package bigcache
import (
"log"
"os"
)
// Logger is invoked when `Config.Verbose=true`
type Logger interface {
Printf(format string, v ...interface{})
}
// this is a safeguard, breaking on compile time in case
// `log.Logger` does not adhere to our `Logger` interface.
// see https://golang.org/doc/faq#guarantee_satisfies_interface
var _ Logger = &log.Logger{}
// DefaultLogger returns a `Logger` implementation
// backed by stdlib's log
func DefaultLogger() *log.Logger {
return log.New(os.Stdout, "", log.LstdFlags)
}
func newLogger(custom Logger) Logger {
if custom != nil {
return custom
}
return DefaultLogger()
}

@ -0,0 +1,210 @@
package queue
import (
"encoding/binary"
"log"
"time"
)
const (
// Number of bytes used to keep information about entry size
headerEntrySize = 4
// Bytes before left margin are not used. Zero index means element does not exist in queue, useful while reading slice from index
leftMarginIndex = 1
// Minimum empty blob size in bytes. Empty blob fills space between tail and head in additional memory allocation.
// It keeps entries indexes unchanged
minimumEmptyBlobSize = 32 + headerEntrySize
)
// BytesQueue is a non-thread safe queue type of fifo based on bytes array.
// For every push operation index of entry is returned. It can be used to read the entry later
type BytesQueue struct {
array []byte
capacity int
maxCapacity int
head int
tail int
count int
rightMargin int
headerBuffer []byte
verbose bool
initialCapacity int
}
type queueError struct {
message string
}
// NewBytesQueue initialize new bytes queue.
// Initial capacity is used in bytes array allocation
// When verbose flag is set then information about memory allocation are printed
func NewBytesQueue(initialCapacity int, maxCapacity int, verbose bool) *BytesQueue {
return &BytesQueue{
array: make([]byte, initialCapacity),
capacity: initialCapacity,
maxCapacity: maxCapacity,
headerBuffer: make([]byte, headerEntrySize),
tail: leftMarginIndex,
head: leftMarginIndex,
rightMargin: leftMarginIndex,
verbose: verbose,
initialCapacity: initialCapacity,
}
}
// Reset removes all entries from queue
func (q *BytesQueue) Reset() {
// Just reset indexes
q.tail = leftMarginIndex
q.head = leftMarginIndex
q.rightMargin = leftMarginIndex
q.count = 0
}
// Push copies entry at the end of queue and moves tail pointer. Allocates more space if needed.
// Returns index for pushed data or error if maximum size queue limit is reached.
func (q *BytesQueue) Push(data []byte) (int, error) {
dataLen := len(data)
if q.availableSpaceAfterTail() < dataLen+headerEntrySize {
if q.availableSpaceBeforeHead() >= dataLen+headerEntrySize {
q.tail = leftMarginIndex
} else if q.capacity+headerEntrySize+dataLen >= q.maxCapacity && q.maxCapacity > 0 {
return -1, &queueError{"Full queue. Maximum size limit reached."}
} else {
q.allocateAdditionalMemory(dataLen + headerEntrySize)
}
}
index := q.tail
q.push(data, dataLen)
return index, nil
}
func (q *BytesQueue) allocateAdditionalMemory(minimum int) {
start := time.Now()
if q.capacity < minimum {
q.capacity += minimum
}
q.capacity = q.capacity * 2
if q.capacity > q.maxCapacity && q.maxCapacity > 0 {
q.capacity = q.maxCapacity
}
oldArray := q.array
q.array = make([]byte, q.capacity)
if leftMarginIndex != q.rightMargin {
copy(q.array, oldArray[:q.rightMargin])
if q.tail < q.head {
emptyBlobLen := q.head - q.tail - headerEntrySize
q.push(make([]byte, emptyBlobLen), emptyBlobLen)
q.head = leftMarginIndex
q.tail = q.rightMargin
}
}
if q.verbose {
log.Printf("Allocated new queue in %s; Capacity: %d \n", time.Since(start), q.capacity)
}
}
func (q *BytesQueue) push(data []byte, len int) {
binary.LittleEndian.PutUint32(q.headerBuffer, uint32(len))
q.copy(q.headerBuffer, headerEntrySize)
q.copy(data, len)
if q.tail > q.head {
q.rightMargin = q.tail
}
q.count++
}
func (q *BytesQueue) copy(data []byte, len int) {
q.tail += copy(q.array[q.tail:], data[:len])
}
// Pop reads the oldest entry from queue and moves head pointer to the next one
func (q *BytesQueue) Pop() ([]byte, error) {
data, size, err := q.peek(q.head)
if err != nil {
return nil, err
}
q.head += headerEntrySize + size
q.count--
if q.head == q.rightMargin {
q.head = leftMarginIndex
if q.tail == q.rightMargin {
q.tail = leftMarginIndex
}
q.rightMargin = q.tail
}
return data, nil
}
// Peek reads the oldest entry from list without moving head pointer
func (q *BytesQueue) Peek() ([]byte, error) {
data, _, err := q.peek(q.head)
return data, err
}
// Get reads entry from index
func (q *BytesQueue) Get(index int) ([]byte, error) {
data, _, err := q.peek(index)
return data, err
}
// Capacity returns number of allocated bytes for queue
func (q *BytesQueue) Capacity() int {
return q.capacity
}
// Len returns number of entries kept in queue
func (q *BytesQueue) Len() int {
return q.count
}
// Error returns error message
func (e *queueError) Error() string {
return e.message
}
func (q *BytesQueue) peek(index int) ([]byte, int, error) {
if q.count == 0 {
return nil, 0, &queueError{"Empty queue"}
}
if index <= 0 {
return nil, 0, &queueError{"Index must be grater than zero. Invalid index."}
}
if index+headerEntrySize >= len(q.array) {
return nil, 0, &queueError{"Index out of range"}
}
blockSize := int(binary.LittleEndian.Uint32(q.array[index : index+headerEntrySize]))
return q.array[index+headerEntrySize : index+headerEntrySize+blockSize], blockSize, nil
}
func (q *BytesQueue) availableSpaceAfterTail() int {
if q.tail >= q.head {
return q.capacity - q.tail
}
return q.head - q.tail - minimumEmptyBlobSize
}
func (q *BytesQueue) availableSpaceBeforeHead() int {
if q.tail >= q.head {
return q.head - leftMarginIndex - minimumEmptyBlobSize
}
return q.head - q.tail - minimumEmptyBlobSize
}

@ -0,0 +1,236 @@
package bigcache
import (
"fmt"
"sync"
"sync/atomic"
"github.com/allegro/bigcache/queue"
)
type onRemoveCallback func(wrappedEntry []byte, reason RemoveReason)
type cacheShard struct {
hashmap map[uint64]uint32
entries queue.BytesQueue
lock sync.RWMutex
entryBuffer []byte
onRemove onRemoveCallback
isVerbose bool
logger Logger
clock clock
lifeWindow uint64
stats Stats
}
func (s *cacheShard) get(key string, hashedKey uint64) ([]byte, error) {
s.lock.RLock()
itemIndex := s.hashmap[hashedKey]
if itemIndex == 0 {
s.lock.RUnlock()
s.miss()
return nil, notFound(key)
}
wrappedEntry, err := s.entries.Get(int(itemIndex))
if err != nil {
s.lock.RUnlock()
s.miss()
return nil, err
}
if entryKey := readKeyFromEntry(wrappedEntry); key != entryKey {
if s.isVerbose {
s.logger.Printf("Collision detected. Both %q and %q have the same hash %x", key, entryKey, hashedKey)
}
s.lock.RUnlock()
s.collision()
return nil, notFound(key)
}
s.lock.RUnlock()
s.hit()
return readEntry(wrappedEntry), nil
}
func (s *cacheShard) set(key string, hashedKey uint64, entry []byte) error {
currentTimestamp := uint64(s.clock.epoch())
s.lock.Lock()
if previousIndex := s.hashmap[hashedKey]; previousIndex != 0 {
if previousEntry, err := s.entries.Get(int(previousIndex)); err == nil {
resetKeyFromEntry(previousEntry)
}
}
if oldestEntry, err := s.entries.Peek(); err == nil {
s.onEvict(oldestEntry, currentTimestamp, s.removeOldestEntry)
}
w := wrapEntry(currentTimestamp, hashedKey, key, entry, &s.entryBuffer)
for {
if index, err := s.entries.Push(w); err == nil {
s.hashmap[hashedKey] = uint32(index)
s.lock.Unlock()
return nil
}
if s.removeOldestEntry(NoSpace) != nil {
s.lock.Unlock()
return fmt.Errorf("entry is bigger than max shard size")
}
}
}
func (s *cacheShard) del(key string, hashedKey uint64) error {
s.lock.RLock()
itemIndex := s.hashmap[hashedKey]
if itemIndex == 0 {
s.lock.RUnlock()
s.delmiss()
return notFound(key)
}
wrappedEntry, err := s.entries.Get(int(itemIndex))
if err != nil {
s.lock.RUnlock()
s.delmiss()
return err
}
s.lock.RUnlock()
s.lock.Lock()
{
delete(s.hashmap, hashedKey)
s.onRemove(wrappedEntry, Deleted)
resetKeyFromEntry(wrappedEntry)
}
s.lock.Unlock()
s.delhit()
return nil
}
func (s *cacheShard) onEvict(oldestEntry []byte, currentTimestamp uint64, evict func(reason RemoveReason) error) bool {
oldestTimestamp := readTimestampFromEntry(oldestEntry)
if currentTimestamp-oldestTimestamp > s.lifeWindow {
evict(Expired)
return true
}
return false
}
func (s *cacheShard) cleanUp(currentTimestamp uint64) {
s.lock.Lock()
for {
if oldestEntry, err := s.entries.Peek(); err != nil {
break
} else if evicted := s.onEvict(oldestEntry, currentTimestamp, s.removeOldestEntry); !evicted {
break
}
}
s.lock.Unlock()
}
func (s *cacheShard) getOldestEntry() ([]byte, error) {
return s.entries.Peek()
}
func (s *cacheShard) getEntry(index int) ([]byte, error) {
return s.entries.Get(index)
}
func (s *cacheShard) copyKeys() (keys []uint32, next int) {
keys = make([]uint32, len(s.hashmap))
s.lock.RLock()
for _, index := range s.hashmap {
keys[next] = index
next++
}
s.lock.RUnlock()
return keys, next
}
func (s *cacheShard) removeOldestEntry(reason RemoveReason) error {
oldest, err := s.entries.Pop()
if err == nil {
hash := readHashFromEntry(oldest)
delete(s.hashmap, hash)
s.onRemove(oldest, reason)
return nil
}
return err
}
func (s *cacheShard) reset(config Config) {
s.lock.Lock()
s.hashmap = make(map[uint64]uint32, config.initialShardSize())
s.entryBuffer = make([]byte, config.MaxEntrySize+headersSizeInBytes)
s.entries.Reset()
s.lock.Unlock()
}
func (s *cacheShard) len() int {
s.lock.RLock()
res := len(s.hashmap)
s.lock.RUnlock()
return res
}
func (s *cacheShard) capacity() int {
s.lock.RLock()
res := s.entries.Capacity()
s.lock.RUnlock()
return res
}
func (s *cacheShard) getStats() Stats {
var stats = Stats{
Hits: atomic.LoadInt64(&s.stats.Hits),
Misses: atomic.LoadInt64(&s.stats.Misses),
DelHits: atomic.LoadInt64(&s.stats.DelHits),
DelMisses: atomic.LoadInt64(&s.stats.DelMisses),
Collisions: atomic.LoadInt64(&s.stats.Collisions),
}
return stats
}
func (s *cacheShard) hit() {
atomic.AddInt64(&s.stats.Hits, 1)
}
func (s *cacheShard) miss() {
atomic.AddInt64(&s.stats.Misses, 1)
}
func (s *cacheShard) delhit() {
atomic.AddInt64(&s.stats.DelHits, 1)
}
func (s *cacheShard) delmiss() {
atomic.AddInt64(&s.stats.DelMisses, 1)
}
func (s *cacheShard) collision() {
atomic.AddInt64(&s.stats.Collisions, 1)
}
func initNewShard(config Config, callback onRemoveCallback, clock clock) *cacheShard {
return &cacheShard{
hashmap: make(map[uint64]uint32, config.initialShardSize()),
entries: *queue.NewBytesQueue(config.initialShardSize()*config.MaxEntrySize, config.maximumShardSize(), config.Verbose),
entryBuffer: make([]byte, config.MaxEntrySize+headersSizeInBytes),
onRemove: callback,
isVerbose: config.Verbose,
logger: newLogger(config.Logger),
clock: clock,
lifeWindow: uint64(config.LifeWindow.Seconds()),
}
}

@ -0,0 +1,15 @@
package bigcache
// Stats stores cache statistics
type Stats struct {
// Hits is a number of successfully found keys
Hits int64 `json:"hits"`
// Misses is a number of not found keys
Misses int64 `json:"misses"`
// DelHits is a number of successfully deleted keys
DelHits int64 `json:"delete_hits"`
// DelMisses is a number of not deleted keys
DelMisses int64 `json:"delete_misses"`
// Collisions is a number of happened key-collisions
Collisions int64 `json:"collisions"`
}

@ -0,0 +1,16 @@
package bigcache
func max(a, b int) int {
if a > b {
return a
}
return b
}
func convertMBToBytes(value int) int {
return value * 1024 * 1024
}
func isPowerOfTwo(number int) bool {
return (number & (number - 1)) == 0
}

12
vendor/vendor.json vendored

@ -38,6 +38,18 @@
"revision": "5d049714c4a64225c3c79a7cf7d02f7fb5b96338",
"revisionTime": "2018-01-16T20:38:02Z"
},
{
"checksumSHA1": "9Niiu1GNhWUrXnGZrl8AU4EzbVE=",
"path": "github.com/allegro/bigcache",
"revision": "bff00e20c68d9f136477d62d182a7dc917bae0ca",
"revisionTime": "2018-10-22T20:06:25Z"
},
{
"checksumSHA1": "zqToN+R6KybEskp1D4G/lAOKXU4=",
"path": "github.com/allegro/bigcache/queue",
"revision": "bff00e20c68d9f136477d62d182a7dc917bae0ca",
"revisionTime": "2018-10-22T20:06:25Z"
},
{
"checksumSHA1": "USkefO0g1U9mr+8hagv3fpSkrxg=",
"path": "github.com/aristanetworks/goarista/monotime",

Loading…
Cancel
Save