core, trie: new trie

pull/1405/head
Felix Lange 10 years ago
parent 6b91a4abe5
commit 565d9f2306
  1. 3
      build/update-license.go
  2. 15
      core/state/state_object.go
  3. 24
      core/state/statedb.go
  4. 15
      core/types/derive_sha.go
  5. 194
      trie/arc.go
  6. 78
      trie/cache.go
  7. 72
      trie/encoding.go
  8. 36
      trie/encoding_test.go
  9. 94
      trie/fullnode.go
  10. 46
      trie/hashnode.go
  11. 64
      trie/iterator.go
  12. 6
      trie/iterator_test.go
  13. 174
      trie/node.go
  14. 97
      trie/secure_trie.go
  15. 74
      trie/secure_trie_test.go
  16. 57
      trie/shortnode.go
  17. 69
      trie/slice.go
  18. 639
      trie/trie.go
  19. 264
      trie/trie_test.go
  20. 42
      trie/valuenode.go

@ -46,9 +46,10 @@ var (
skipPrefixes = []string{
// boring stuff
"Godeps/", "tests/files/", "build/",
// don't relicense vendored packages
// don't relicense vendored sources
"crypto/sha3/", "crypto/ecies/", "logger/glog/",
"crypto/curve.go",
"trie/arc.go",
}
// paths with this prefix are licensed as GPL. all other files are LGPL.

@ -90,15 +90,13 @@ type StateObject struct {
func NewStateObject(address common.Address, db ethdb.Database) *StateObject {
object := &StateObject{db: db, address: address, balance: new(big.Int), gasPool: new(big.Int), dirty: true}
object.trie = trie.NewSecure((common.Hash{}).Bytes(), db)
object.trie, _ = trie.NewSecure(common.Hash{}, db)
object.storage = make(Storage)
object.gasPool = new(big.Int)
return object
}
func NewStateObjectFromBytes(address common.Address, data []byte, db ethdb.Database) *StateObject {
// TODO clean me up
var extobject struct {
Nonce uint64
Balance *big.Int
@ -107,7 +105,13 @@ func NewStateObjectFromBytes(address common.Address, data []byte, db ethdb.Datab
}
err := rlp.Decode(bytes.NewReader(data), &extobject)
if err != nil {
fmt.Println(err)
glog.Errorf("can't decode state object %x: %v", address, err)
return nil
}
trie, err := trie.NewSecure(extobject.Root, db)
if err != nil {
// TODO: bubble this up or panic
glog.Errorf("can't create account trie with root %x: %v", extobject.Root[:], err)
return nil
}
@ -115,11 +119,10 @@ func NewStateObjectFromBytes(address common.Address, data []byte, db ethdb.Datab
object.nonce = extobject.Nonce
object.balance = extobject.Balance
object.codeHash = extobject.CodeHash
object.trie = trie.NewSecure(extobject.Root[:], db)
object.trie = trie
object.storage = make(map[string]common.Hash)
object.gasPool = new(big.Int)
object.code, _ = db.Get(extobject.CodeHash)
return object
}

@ -49,12 +49,20 @@ type StateDB struct {
// Create a new state from a given trie
func New(root common.Hash, db ethdb.Database) *StateDB {
trie := trie.NewSecure(root[:], db)
return &StateDB{root: root, db: db, trie: trie, stateObjects: make(map[string]*StateObject), refund: new(big.Int), logs: make(map[common.Hash]Logs)}
}
func (self *StateDB) PrintRoot() {
self.trie.Trie.PrintRoot()
tr, err := trie.NewSecure(root, db)
if err != nil {
// TODO: bubble this up
tr, _ = trie.NewSecure(common.Hash{}, db)
glog.Errorf("can't create state trie with root %x: %v", root[:], err)
}
return &StateDB{
root: root,
db: db,
trie: tr,
stateObjects: make(map[string]*StateObject),
refund: new(big.Int),
logs: make(map[common.Hash]Logs),
}
}
func (self *StateDB) StartRecord(thash, bhash common.Hash, ti int) {
@ -304,7 +312,7 @@ func (self *StateDB) Set(state *StateDB) {
}
func (s *StateDB) Root() common.Hash {
return common.BytesToHash(s.trie.Root())
return s.trie.Hash()
}
// Syncs the trie and all siblings
@ -348,7 +356,7 @@ func (self *StateDB) SyncIntermediate() {
// SyncObjects syncs the changed objects to the trie
func (self *StateDB) SyncObjects() {
self.trie = trie.NewSecure(self.root[:], self.db)
self.trie, _ = trie.NewSecure(self.root, self.db)
self.refund = new(big.Int)

@ -17,8 +17,9 @@
package types
import (
"bytes"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
@ -29,12 +30,12 @@ type DerivableList interface {
}
func DeriveSha(list DerivableList) common.Hash {
db, _ := ethdb.NewMemDatabase()
trie := trie.New(nil, db)
keybuf := new(bytes.Buffer)
trie := new(trie.Trie)
for i := 0; i < list.Len(); i++ {
key, _ := rlp.EncodeToBytes(uint(i))
trie.Update(key, list.GetRlp(i))
keybuf.Reset()
rlp.Encode(keybuf, uint(i))
trie.Update(keybuf.Bytes(), list.GetRlp(i))
}
return common.BytesToHash(trie.Root())
return trie.Hash()
}

@ -0,0 +1,194 @@
// Copyright (c) 2015 Hans Alexander Gugel <alexander.gugel@gmail.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// This file contains a modified version of package arc from
// https://github.com/alexanderGugel/arc
//
// It implements the ARC (Adaptive Replacement Cache) algorithm as detailed in
// https://www.usenix.org/legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf
package trie
import (
"container/list"
"sync"
)
type arc struct {
p int
c int
t1 *list.List
b1 *list.List
t2 *list.List
b2 *list.List
cache map[string]*entry
mutex sync.Mutex
}
type entry struct {
key hashNode
value node
ll *list.List
el *list.Element
}
// newARC returns a new Adaptive Replacement Cache with the
// given capacity.
func newARC(c int) *arc {
return &arc{
c: c,
t1: list.New(),
b1: list.New(),
t2: list.New(),
b2: list.New(),
cache: make(map[string]*entry, c),
}
}
// Put inserts a new key-value pair into the cache.
// This optimizes future access to this entry (side effect).
func (a *arc) Put(key hashNode, value node) bool {
a.mutex.Lock()
defer a.mutex.Unlock()
ent, ok := a.cache[string(key)]
if ok != true {
ent = &entry{key: key, value: value}
a.req(ent)
a.cache[string(key)] = ent
} else {
ent.value = value
a.req(ent)
}
return ok
}
// Get retrieves a previously via Set inserted entry.
// This optimizes future access to this entry (side effect).
func (a *arc) Get(key hashNode) (value node, ok bool) {
a.mutex.Lock()
defer a.mutex.Unlock()
ent, ok := a.cache[string(key)]
if ok {
a.req(ent)
return ent.value, ent.value != nil
}
return nil, false
}
func (a *arc) req(ent *entry) {
if ent.ll == a.t1 || ent.ll == a.t2 {
// Case I
ent.setMRU(a.t2)
} else if ent.ll == a.b1 {
// Case II
// Cache Miss in t1 and t2
// Adaptation
var d int
if a.b1.Len() >= a.b2.Len() {
d = 1
} else {
d = a.b2.Len() / a.b1.Len()
}
a.p = a.p + d
if a.p > a.c {
a.p = a.c
}
a.replace(ent)
ent.setMRU(a.t2)
} else if ent.ll == a.b2 {
// Case III
// Cache Miss in t1 and t2
// Adaptation
var d int
if a.b2.Len() >= a.b1.Len() {
d = 1
} else {
d = a.b1.Len() / a.b2.Len()
}
a.p = a.p - d
if a.p < 0 {
a.p = 0
}
a.replace(ent)
ent.setMRU(a.t2)
} else if ent.ll == nil {
// Case IV
if a.t1.Len()+a.b1.Len() == a.c {
// Case A
if a.t1.Len() < a.c {
a.delLRU(a.b1)
a.replace(ent)
} else {
a.delLRU(a.t1)
}
} else if a.t1.Len()+a.b1.Len() < a.c {
// Case B
if a.t1.Len()+a.t2.Len()+a.b1.Len()+a.b2.Len() >= a.c {
if a.t1.Len()+a.t2.Len()+a.b1.Len()+a.b2.Len() == 2*a.c {
a.delLRU(a.b2)
}
a.replace(ent)
}
}
ent.setMRU(a.t1)
}
}
func (a *arc) delLRU(list *list.List) {
lru := list.Back()
list.Remove(lru)
delete(a.cache, string(lru.Value.(*entry).key))
}
func (a *arc) replace(ent *entry) {
if a.t1.Len() > 0 && ((a.t1.Len() > a.p) || (ent.ll == a.b2 && a.t1.Len() == a.p)) {
lru := a.t1.Back().Value.(*entry)
lru.value = nil
lru.setMRU(a.b1)
} else {
lru := a.t2.Back().Value.(*entry)
lru.value = nil
lru.setMRU(a.b2)
}
}
func (e *entry) setLRU(list *list.List) {
e.detach()
e.ll = list
e.el = e.ll.PushBack(e)
}
func (e *entry) setMRU(list *list.List) {
e.detach()
e.ll = list
e.el = e.ll.PushFront(e)
}
func (e *entry) detach() {
if e.ll != nil {
e.ll.Remove(e.el)
}
}

@ -1,78 +0,0 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/syndtr/goleveldb/leveldb"
)
type Backend interface {
Get([]byte) ([]byte, error)
Put([]byte, []byte) error
}
type Cache struct {
batch *leveldb.Batch
store map[string][]byte
backend Backend
}
func NewCache(backend Backend) *Cache {
return &Cache{new(leveldb.Batch), make(map[string][]byte), backend}
}
func (self *Cache) Get(key []byte) []byte {
data := self.store[string(key)]
if data == nil {
data, _ = self.backend.Get(key)
}
return data
}
func (self *Cache) Put(key []byte, data []byte) {
self.batch.Put(key, data)
self.store[string(key)] = data
}
// Flush flushes the trie to the backing layer. If this is a leveldb instance
// we'll use a batched write, otherwise we'll use regular put.
func (self *Cache) Flush() {
if db, ok := self.backend.(*ethdb.LDBDatabase); ok {
if err := db.LDB().Write(self.batch, nil); err != nil {
glog.Fatal("db write err:", err)
}
} else {
for k, v := range self.store {
self.backend.Put([]byte(k), v)
}
}
}
func (self *Cache) Copy() *Cache {
cache := NewCache(self.backend)
for k, v := range self.store {
cache.store[k] = v
}
return cache
}
func (self *Cache) Reset() {
//self.store = make(map[string][]byte)
}

@ -16,34 +16,36 @@
package trie
func CompactEncode(hexSlice []byte) []byte {
terminator := 0
func compactEncode(hexSlice []byte) []byte {
terminator := byte(0)
if hexSlice[len(hexSlice)-1] == 16 {
terminator = 1
}
if terminator == 1 {
hexSlice = hexSlice[:len(hexSlice)-1]
}
oddlen := len(hexSlice) % 2
flags := byte(2*terminator + oddlen)
if oddlen != 0 {
hexSlice = append([]byte{flags}, hexSlice...)
} else {
hexSlice = append([]byte{flags, 0}, hexSlice...)
var (
odd = byte(len(hexSlice) % 2)
buflen = len(hexSlice)/2 + 1
bi, hi = 0, 0 // indices
hs = byte(0) // shift: flips between 0 and 4
)
if odd == 0 {
bi = 1
hs = 4
}
l := len(hexSlice) / 2
var buf = make([]byte, l)
for i := 0; i < l; i++ {
buf[i] = 16*hexSlice[2*i] + hexSlice[2*i+1]
buf := make([]byte, buflen)
buf[0] = terminator<<5 | byte(odd)<<4
for bi < len(buf) && hi < len(hexSlice) {
buf[bi] |= hexSlice[hi] << hs
if hs == 0 {
bi++
}
hi, hs = hi+1, hs^(1<<2)
}
return buf
}
func CompactDecode(str []byte) []byte {
base := CompactHexDecode(str)
func compactDecode(str []byte) []byte {
base := compactHexDecode(str)
base = base[:len(base)-1]
if base[0] >= 2 {
base = append(base, 16)
@ -53,11 +55,10 @@ func CompactDecode(str []byte) []byte {
} else {
base = base[2:]
}
return base
}
func CompactHexDecode(str []byte) []byte {
func compactHexDecode(str []byte) []byte {
l := len(str)*2 + 1
var nibbles = make([]byte, l)
for i, b := range str {
@ -68,7 +69,7 @@ func CompactHexDecode(str []byte) []byte {
return nibbles
}
func DecodeCompact(key []byte) []byte {
func decodeCompact(key []byte) []byte {
l := len(key) / 2
var res = make([]byte, l)
for i := 0; i < l; i++ {
@ -77,3 +78,30 @@ func DecodeCompact(key []byte) []byte {
}
return res
}
// prefixLen returns the length of the common prefix of a and b.
func prefixLen(a, b []byte) int {
var i, length = 0, len(a)
if len(b) < length {
length = len(b)
}
for ; i < length; i++ {
if a[i] != b[i] {
break
}
}
return i
}
func hasTerm(s []byte) bool {
return s[len(s)-1] == 16
}
func remTerm(s []byte) []byte {
if hasTerm(s) {
b := make([]byte, len(s)-1)
copy(b, s)
return b
}
return s
}

@ -23,7 +23,7 @@ import (
checker "gopkg.in/check.v1"
)
func Test(t *testing.T) { checker.TestingT(t) }
func TestEncoding(t *testing.T) { checker.TestingT(t) }
type TrieEncodingSuite struct{}
@ -32,64 +32,64 @@ var _ = checker.Suite(&TrieEncodingSuite{})
func (s *TrieEncodingSuite) TestCompactEncode(c *checker.C) {
// even compact encode
test1 := []byte{1, 2, 3, 4, 5}
res1 := CompactEncode(test1)
res1 := compactEncode(test1)
c.Assert(res1, checker.DeepEquals, []byte("\x11\x23\x45"))
// odd compact encode
test2 := []byte{0, 1, 2, 3, 4, 5}
res2 := CompactEncode(test2)
res2 := compactEncode(test2)
c.Assert(res2, checker.DeepEquals, []byte("\x00\x01\x23\x45"))
//odd terminated compact encode
test3 := []byte{0, 15, 1, 12, 11, 8 /*term*/, 16}
res3 := CompactEncode(test3)
res3 := compactEncode(test3)
c.Assert(res3, checker.DeepEquals, []byte("\x20\x0f\x1c\xb8"))
// even terminated compact encode
test4 := []byte{15, 1, 12, 11, 8 /*term*/, 16}
res4 := CompactEncode(test4)
res4 := compactEncode(test4)
c.Assert(res4, checker.DeepEquals, []byte("\x3f\x1c\xb8"))
}
func (s *TrieEncodingSuite) TestCompactHexDecode(c *checker.C) {
exp := []byte{7, 6, 6, 5, 7, 2, 6, 2, 16}
res := CompactHexDecode([]byte("verb"))
res := compactHexDecode([]byte("verb"))
c.Assert(res, checker.DeepEquals, exp)
}
func (s *TrieEncodingSuite) TestCompactDecode(c *checker.C) {
// odd compact decode
exp := []byte{1, 2, 3, 4, 5}
res := CompactDecode([]byte("\x11\x23\x45"))
res := compactDecode([]byte("\x11\x23\x45"))
c.Assert(res, checker.DeepEquals, exp)
// even compact decode
exp = []byte{0, 1, 2, 3, 4, 5}
res = CompactDecode([]byte("\x00\x01\x23\x45"))
res = compactDecode([]byte("\x00\x01\x23\x45"))
c.Assert(res, checker.DeepEquals, exp)
// even terminated compact decode
exp = []byte{0, 15, 1, 12, 11, 8 /*term*/, 16}
res = CompactDecode([]byte("\x20\x0f\x1c\xb8"))
res = compactDecode([]byte("\x20\x0f\x1c\xb8"))
c.Assert(res, checker.DeepEquals, exp)
// even terminated compact decode
exp = []byte{15, 1, 12, 11, 8 /*term*/, 16}
res = CompactDecode([]byte("\x3f\x1c\xb8"))
res = compactDecode([]byte("\x3f\x1c\xb8"))
c.Assert(res, checker.DeepEquals, exp)
}
func (s *TrieEncodingSuite) TestDecodeCompact(c *checker.C) {
exp, _ := hex.DecodeString("012345")
res := DecodeCompact([]byte{0, 1, 2, 3, 4, 5})
res := decodeCompact([]byte{0, 1, 2, 3, 4, 5})
c.Assert(res, checker.DeepEquals, exp)
exp, _ = hex.DecodeString("012345")
res = DecodeCompact([]byte{0, 1, 2, 3, 4, 5, 16})
res = decodeCompact([]byte{0, 1, 2, 3, 4, 5, 16})
c.Assert(res, checker.DeepEquals, exp)
exp, _ = hex.DecodeString("abcdef")
res = DecodeCompact([]byte{10, 11, 12, 13, 14, 15})
res = decodeCompact([]byte{10, 11, 12, 13, 14, 15})
c.Assert(res, checker.DeepEquals, exp)
}
@ -97,29 +97,27 @@ func BenchmarkCompactEncode(b *testing.B) {
testBytes := []byte{0, 15, 1, 12, 11, 8 /*term*/, 16}
for i := 0; i < b.N; i++ {
CompactEncode(testBytes)
compactEncode(testBytes)
}
}
func BenchmarkCompactDecode(b *testing.B) {
testBytes := []byte{0, 15, 1, 12, 11, 8 /*term*/, 16}
for i := 0; i < b.N; i++ {
CompactDecode(testBytes)
compactDecode(testBytes)
}
}
func BenchmarkCompactHexDecode(b *testing.B) {
testBytes := []byte{7, 6, 6, 5, 7, 2, 6, 2, 16}
for i := 0; i < b.N; i++ {
CompactHexDecode(testBytes)
compactHexDecode(testBytes)
}
}
func BenchmarkDecodeCompact(b *testing.B) {
testBytes := []byte{7, 6, 6, 5, 7, 2, 6, 2, 16}
for i := 0; i < b.N; i++ {
DecodeCompact(testBytes)
decodeCompact(testBytes)
}
}

@ -1,94 +0,0 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
type FullNode struct {
trie *Trie
nodes [17]Node
dirty bool
}
func NewFullNode(t *Trie) *FullNode {
return &FullNode{trie: t}
}
func (self *FullNode) Dirty() bool { return self.dirty }
func (self *FullNode) Value() Node {
self.nodes[16] = self.trie.trans(self.nodes[16])
return self.nodes[16]
}
func (self *FullNode) Branches() []Node {
return self.nodes[:16]
}
func (self *FullNode) Copy(t *Trie) Node {
nnode := NewFullNode(t)
for i, node := range self.nodes {
if node != nil {
nnode.nodes[i] = node
}
}
nnode.dirty = true
return nnode
}
// Returns the length of non-nil nodes
func (self *FullNode) Len() (amount int) {
for _, node := range self.nodes {
if node != nil {
amount++
}
}
return
}
func (self *FullNode) Hash() interface{} {
return self.trie.store(self)
}
func (self *FullNode) RlpData() interface{} {
t := make([]interface{}, 17)
for i, node := range self.nodes {
if node != nil {
t[i] = node.Hash()
} else {
t[i] = ""
}
}
return t
}
func (self *FullNode) set(k byte, value Node) {
self.nodes[int(k)] = value
self.dirty = true
}
func (self *FullNode) branch(i byte) Node {
if self.nodes[int(i)] != nil {
self.nodes[int(i)] = self.trie.trans(self.nodes[int(i)])
return self.nodes[int(i)]
}
return nil
}
func (self *FullNode) setDirty(dirty bool) {
self.dirty = dirty
}

@ -1,46 +0,0 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import "github.com/ethereum/go-ethereum/common"
type HashNode struct {
key []byte
trie *Trie
dirty bool
}
func NewHash(key []byte, trie *Trie) *HashNode {
return &HashNode{key, trie, false}
}
func (self *HashNode) RlpData() interface{} {
return self.key
}
func (self *HashNode) Hash() interface{} {
return self.key
}
func (self *HashNode) setDirty(dirty bool) {
self.dirty = dirty
}
// These methods will never be called but we have to satisfy Node interface
func (self *HashNode) Value() Node { return nil }
func (self *HashNode) Dirty() bool { return true }
func (self *HashNode) Copy(t *Trie) Node { return NewHash(common.CopyBytes(self.key), t) }

@ -16,9 +16,7 @@
package trie
import (
"bytes"
)
import "bytes"
type Iterator struct {
trie *Trie
@ -32,32 +30,29 @@ func NewIterator(trie *Trie) *Iterator {
}
func (self *Iterator) Next() bool {
self.trie.mu.Lock()
defer self.trie.mu.Unlock()
isIterStart := false
if self.Key == nil {
isIterStart = true
self.Key = make([]byte, 32)
}
key := RemTerm(CompactHexDecode(self.Key))
key := remTerm(compactHexDecode(self.Key))
k := self.next(self.trie.root, key, isIterStart)
self.Key = []byte(DecodeCompact(k))
self.Key = []byte(decodeCompact(k))
return len(k) > 0
}
func (self *Iterator) next(node Node, key []byte, isIterStart bool) []byte {
func (self *Iterator) next(node interface{}, key []byte, isIterStart bool) []byte {
if node == nil {
return nil
}
switch node := node.(type) {
case *FullNode:
case fullNode:
if len(key) > 0 {
k := self.next(node.branch(key[0]), key[1:], isIterStart)
k := self.next(node[key[0]], key[1:], isIterStart)
if k != nil {
return append([]byte{key[0]}, k...)
}
@ -69,31 +64,31 @@ func (self *Iterator) next(node Node, key []byte, isIterStart bool) []byte {
}
for i := r; i < 16; i++ {
k := self.key(node.branch(byte(i)))
k := self.key(node[i])
if k != nil {
return append([]byte{i}, k...)
}
}
case *ShortNode:
k := RemTerm(node.Key())
if vnode, ok := node.Value().(*ValueNode); ok {
case shortNode:
k := remTerm(node.Key)
if vnode, ok := node.Val.(valueNode); ok {
switch bytes.Compare([]byte(k), key) {
case 0:
if isIterStart {
self.Value = vnode.Val()
self.Value = vnode
return k
}
case 1:
self.Value = vnode.Val()
self.Value = vnode
return k
}
} else {
cnode := node.Value()
cnode := node.Val
var ret []byte
skey := key[len(k):]
if BeginsWith(key, k) {
if bytes.HasPrefix(key, k) {
ret = self.next(cnode, skey, isIterStart)
} else if bytes.Compare(k, key[:len(k)]) > 0 {
return self.key(node)
@ -103,37 +98,36 @@ func (self *Iterator) next(node Node, key []byte, isIterStart bool) []byte {
return append(k, ret...)
}
}
}
case hashNode:
return self.next(self.trie.resolveHash(node), key, isIterStart)
}
return nil
}
func (self *Iterator) key(node Node) []byte {
func (self *Iterator) key(node interface{}) []byte {
switch node := node.(type) {
case *ShortNode:
case shortNode:
// Leaf node
if vnode, ok := node.Value().(*ValueNode); ok {
k := RemTerm(node.Key())
self.Value = vnode.Val()
k := remTerm(node.Key)
if vnode, ok := node.Val.(valueNode); ok {
self.Value = vnode
return k
} else {
k := RemTerm(node.Key())
return append(k, self.key(node.Value())...)
}
case *FullNode:
if node.Value() != nil {
self.Value = node.Value().(*ValueNode).Val()
return append(k, self.key(node.Val)...)
case fullNode:
if node[16] != nil {
self.Value = node[16].(valueNode)
return []byte{16}
}
for i := 0; i < 16; i++ {
k := self.key(node.branch(byte(i)))
k := self.key(node[i])
if k != nil {
return append([]byte{byte(i)}, k...)
}
}
case hashNode:
return self.key(self.trie.resolveHash(node))
}
return nil

@ -19,7 +19,7 @@ package trie
import "testing"
func TestIterator(t *testing.T) {
trie := NewEmpty()
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
@ -32,11 +32,11 @@ func TestIterator(t *testing.T) {
v := make(map[string]bool)
for _, val := range vals {
v[val.k] = false
trie.UpdateString(val.k, val.v)
trie.Update([]byte(val.k), []byte(val.v))
}
trie.Commit()
it := trie.Iterator()
it := NewIterator(trie)
for it.Next() {
v[string(it.Key)] = true
}

@ -16,46 +16,172 @@
package trie
import "fmt"
import (
"fmt"
"io"
"strings"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
)
var indices = []string{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "[17]"}
type Node interface {
Value() Node
Copy(*Trie) Node // All nodes, for now, return them self
Dirty() bool
type node interface {
fstring(string) string
Hash() interface{}
RlpData() interface{}
setDirty(dirty bool)
}
// Value node
func (self *ValueNode) String() string { return self.fstring("") }
func (self *FullNode) String() string { return self.fstring("") }
func (self *ShortNode) String() string { return self.fstring("") }
func (self *ValueNode) fstring(ind string) string { return fmt.Sprintf("%x ", self.data) }
type (
fullNode [17]node
shortNode struct {
Key []byte
Val node
}
hashNode []byte
valueNode []byte
)
//func (self *HashNode) fstring(ind string) string { return fmt.Sprintf("< %x > ", self.key) }
func (self *HashNode) fstring(ind string) string {
return fmt.Sprintf("%v", self.trie.trans(self))
}
// Pretty printing.
func (n fullNode) String() string { return n.fstring("") }
func (n shortNode) String() string { return n.fstring("") }
func (n hashNode) String() string { return n.fstring("") }
func (n valueNode) String() string { return n.fstring("") }
// Full node
func (self *FullNode) fstring(ind string) string {
func (n fullNode) fstring(ind string) string {
resp := fmt.Sprintf("[\n%s ", ind)
for i, node := range self.nodes {
for i, node := range n {
if node == nil {
resp += fmt.Sprintf("%s: <nil> ", indices[i])
} else {
resp += fmt.Sprintf("%s: %v", indices[i], node.fstring(ind+" "))
}
}
return resp + fmt.Sprintf("\n%s] ", ind)
}
func (n shortNode) fstring(ind string) string {
return fmt.Sprintf("{%x: %v} ", n.Key, n.Val.fstring(ind+" "))
}
func (n hashNode) fstring(ind string) string {
return fmt.Sprintf("<%x> ", []byte(n))
}
func (n valueNode) fstring(ind string) string {
return fmt.Sprintf("%x ", []byte(n))
}
func mustDecodeNode(dbkey, buf []byte) node {
n, err := decodeNode(buf)
if err != nil {
panic(fmt.Sprintf("node %x: %v", dbkey, err))
}
return n
}
// decodeNode parses the RLP encoding of a trie node.
func decodeNode(buf []byte) (node, error) {
if len(buf) == 0 {
return nil, io.ErrUnexpectedEOF
}
elems, _, err := rlp.SplitList(buf)
if err != nil {
return nil, fmt.Errorf("decode error: %v", err)
}
switch c, _ := rlp.CountValues(elems); c {
case 2:
n, err := decodeShort(elems)
return n, wrapError(err, "short")
case 17:
n, err := decodeFull(elems)
return n, wrapError(err, "full")
default:
return nil, fmt.Errorf("invalid number of list elements: %v", c)
}
}
func decodeShort(buf []byte) (node, error) {
kbuf, rest, err := rlp.SplitString(buf)
if err != nil {
return nil, err
}
key := compactDecode(kbuf)
if key[len(key)-1] == 16 {
// value node
val, _, err := rlp.SplitString(rest)
if err != nil {
return nil, fmt.Errorf("invalid value node: %v", err)
}
return shortNode{key, valueNode(val)}, nil
}
r, _, err := decodeRef(rest)
if err != nil {
return nil, wrapError(err, "val")
}
return shortNode{key, r}, nil
}
func decodeFull(buf []byte) (fullNode, error) {
var n fullNode
for i := 0; i < 16; i++ {
cld, rest, err := decodeRef(buf)
if err != nil {
return n, wrapError(err, fmt.Sprintf("[%d]", i))
}
n[i], buf = cld, rest
}
val, _, err := rlp.SplitString(buf)
if err != nil {
return n, err
}
if len(val) > 0 {
n[16] = valueNode(val)
}
return n, nil
}
const hashLen = len(common.Hash{})
func decodeRef(buf []byte) (node, []byte, error) {
kind, val, rest, err := rlp.Split(buf)
if err != nil {
return nil, buf, err
}
switch {
case kind == rlp.List:
// 'embedded' node reference. The encoding must be smaller
// than a hash in order to be valid.
if size := len(buf) - len(rest); size > hashLen {
err := fmt.Errorf("oversized embedded node (size is %d bytes, want size < %d)", size, hashLen)
return nil, buf, err
}
n, err := decodeNode(buf)
return n, rest, err
case kind == rlp.String && len(val) == 0:
// empty node
return nil, rest, nil
case kind == rlp.String && len(val) == 32:
return hashNode(val), rest, nil
default:
return nil, nil, fmt.Errorf("invalid RLP string size %d (want 0 or 32)", len(val))
}
}
// wraps a decoding error with information about the path to the
// invalid child node (for debugging encoding issues).
type decodeError struct {
what error
stack []string
}
func wrapError(err error, ctx string) error {
if err == nil {
return nil
}
if decErr, ok := err.(*decodeError); ok {
decErr.stack = append(decErr.stack, ctx)
return decErr
}
return &decodeError{err, []string{ctx}}
}
// Short node
func (self *ShortNode) fstring(ind string) string {
return fmt.Sprintf("[ %x: %v ] ", self.key, self.value.fstring(ind+" "))
func (err *decodeError) Error() string {
return fmt.Sprintf("%v (decode path: %s)", err.what, strings.Join(err.stack, "<-"))
}

@ -16,46 +16,93 @@
package trie
import "github.com/ethereum/go-ethereum/crypto"
import (
"hash"
var keyPrefix = []byte("secure-key-")
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto/sha3"
)
var secureKeyPrefix = []byte("secure-key-")
// SecureTrie wraps a trie with key hashing. In a secure trie, all
// access operations hash the key using keccak256. This prevents
// calling code from creating long chains of nodes that
// increase the access time.
//
// Contrary to a regular trie, a SecureTrie can only be created with
// New and must have an attached database. The database also stores
// the preimage of each key.
//
// SecureTrie is not safe for concurrent use.
type SecureTrie struct {
*Trie
}
func NewSecure(root []byte, backend Backend) *SecureTrie {
return &SecureTrie{New(root, backend)}
hash hash.Hash
secKeyBuf []byte
hashKeyBuf []byte
}
func (self *SecureTrie) Update(key, value []byte) Node {
shaKey := crypto.Sha3(key)
self.Trie.cache.Put(append(keyPrefix, shaKey...), key)
return self.Trie.Update(shaKey, value)
}
func (self *SecureTrie) UpdateString(key, value string) Node {
return self.Update([]byte(key), []byte(value))
// NewSecure creates a trie with an existing root node from db.
//
// If root is the zero hash or the sha3 hash of an empty string, the
// trie is initially empty. Otherwise, New will panics if db is nil
// and returns ErrMissingRoot if the root node cannpt be found.
// Accessing the trie loads nodes from db on demand.
func NewSecure(root common.Hash, db Database) (*SecureTrie, error) {
if db == nil {
panic("NewSecure called with nil database")
}
trie, err := New(root, db)
if err != nil {
return nil, err
}
return &SecureTrie{Trie: trie}, nil
}
func (self *SecureTrie) Get(key []byte) []byte {
return self.Trie.Get(crypto.Sha3(key))
// Get returns the value for key stored in the trie.
// The value bytes must not be modified by the caller.
func (t *SecureTrie) Get(key []byte) []byte {
return t.Trie.Get(t.hashKey(key))
}
func (self *SecureTrie) GetString(key string) []byte {
return self.Get([]byte(key))
// Update associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
func (t *SecureTrie) Update(key, value []byte) {
hk := t.hashKey(key)
t.Trie.Update(hk, value)
t.Trie.db.Put(t.secKey(hk), key)
}
func (self *SecureTrie) Delete(key []byte) Node {
return self.Trie.Delete(crypto.Sha3(key))
// Delete removes any existing value for key from the trie.
func (t *SecureTrie) Delete(key []byte) {
t.Trie.Delete(t.hashKey(key))
}
func (self *SecureTrie) DeleteString(key string) Node {
return self.Delete([]byte(key))
// GetKey returns the sha3 preimage of a hashed key that was
// previously used to store a value.
func (t *SecureTrie) GetKey(shaKey []byte) []byte {
key, _ := t.Trie.db.Get(t.secKey(shaKey))
return key
}
func (self *SecureTrie) Copy() *SecureTrie {
return &SecureTrie{self.Trie.Copy()}
func (t *SecureTrie) secKey(key []byte) []byte {
t.secKeyBuf = append(t.secKeyBuf[:0], secureKeyPrefix...)
t.secKeyBuf = append(t.secKeyBuf, key...)
return t.secKeyBuf
}
func (self *SecureTrie) GetKey(shaKey []byte) []byte {
return self.Trie.cache.Get(append(keyPrefix, shaKey...))
func (t *SecureTrie) hashKey(key []byte) []byte {
if t.hash == nil {
t.hash = sha3.NewKeccak256()
t.hashKeyBuf = make([]byte, 32)
}
t.hash.Reset()
t.hash.Write(key)
t.hashKeyBuf = t.hash.Sum(t.hashKeyBuf[:0])
return t.hashKeyBuf
}

@ -0,0 +1,74 @@
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
)
func newEmptySecure() *SecureTrie {
db, _ := ethdb.NewMemDatabase()
trie, _ := NewSecure(common.Hash{}, db)
return trie
}
func TestSecureDelete(t *testing.T) {
trie := newEmptySecure()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
}
for _, val := range vals {
if val.v != "" {
trie.Update([]byte(val.k), []byte(val.v))
} else {
trie.Delete([]byte(val.k))
}
}
hash := trie.Hash()
exp := common.HexToHash("29b235a58c3c25ab83010c327d5932bcf05324b7d6b1185e650798034783ca9d")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestSecureGetKey(t *testing.T) {
trie := newEmptySecure()
trie.Update([]byte("foo"), []byte("bar"))
key := []byte("foo")
value := []byte("bar")
seckey := crypto.Sha3(key)
if !bytes.Equal(trie.Get(key), value) {
t.Errorf("Get did not return bar")
}
if k := trie.GetKey(seckey); !bytes.Equal(k, key) {
t.Errorf("GetKey returned %q, want %q", k, key)
}
}

@ -1,57 +0,0 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import "github.com/ethereum/go-ethereum/common"
type ShortNode struct {
trie *Trie
key []byte
value Node
dirty bool
}
func NewShortNode(t *Trie, key []byte, value Node) *ShortNode {
return &ShortNode{t, CompactEncode(key), value, false}
}
func (self *ShortNode) Value() Node {
self.value = self.trie.trans(self.value)
return self.value
}
func (self *ShortNode) Dirty() bool { return self.dirty }
func (self *ShortNode) Copy(t *Trie) Node {
node := &ShortNode{t, nil, self.value.Copy(t), self.dirty}
node.key = common.CopyBytes(self.key)
node.dirty = true
return node
}
func (self *ShortNode) RlpData() interface{} {
return []interface{}{self.key, self.value.Hash()}
}
func (self *ShortNode) Hash() interface{} {
return self.trie.store(self)
}
func (self *ShortNode) Key() []byte {
return CompactDecode(self.key)
}
func (self *ShortNode) setDirty(dirty bool) {
self.dirty = dirty
}

@ -1,69 +0,0 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"math"
)
// Helper function for comparing slices
func CompareIntSlice(a, b []int) bool {
if len(a) != len(b) {
return false
}
for i, v := range a {
if v != b[i] {
return false
}
}
return true
}
// Returns the amount of nibbles that match each other from 0 ...
func MatchingNibbleLength(a, b []byte) int {
var i, length = 0, int(math.Min(float64(len(a)), float64(len(b))))
for i < length {
if a[i] != b[i] {
break
}
i++
}
return i
}
func HasTerm(s []byte) bool {
return s[len(s)-1] == 16
}
func RemTerm(s []byte) []byte {
if HasTerm(s) {
return s[:len(s)-1]
}
return s
}
func BeginsWith(a, b []byte) bool {
if len(b) > len(a) {
return false
}
return bytes.Equal(a[:len(b)], b)
}

@ -19,372 +19,425 @@ package trie
import (
"bytes"
"container/list"
"errors"
"fmt"
"sync"
"hash"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/rlp"
)
func ParanoiaCheck(t1 *Trie, backend Backend) (bool, *Trie) {
t2 := New(nil, backend)
const defaultCacheCapacity = 800
it := t1.Iterator()
for it.Next() {
t2.Update(it.Key, it.Value)
}
return bytes.Equal(t2.Hash(), t1.Hash()), t2
}
type Trie struct {
mu sync.Mutex
root Node
roothash []byte
cache *Cache
revisions *list.List
}
func New(root []byte, backend Backend) *Trie {
trie := &Trie{}
trie.revisions = list.New()
trie.roothash = root
if backend != nil {
trie.cache = NewCache(backend)
}
var (
// The global cache stores decoded trie nodes by hash as they get loaded.
globalCache = newARC(defaultCacheCapacity)
// This is the known root hash of an empty trie.
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
)
if root != nil {
value := common.NewValueFromBytes(trie.cache.Get(root))
trie.root = trie.mknode(value)
}
var ErrMissingRoot = errors.New("missing root node")
return trie
// Database must be implemented by backing stores for the trie.
type Database interface {
DatabaseWriter
// Get returns the value for key from the database.
Get(key []byte) (value []byte, err error)
}
func (self *Trie) Iterator() *Iterator {
return NewIterator(self)
// DatabaseWriter wraps the Put method of a backing store for the trie.
type DatabaseWriter interface {
// Put stores the mapping key->value in the database.
// Implementations must not hold onto the value bytes, the trie
// will reuse the slice across calls to Put.
Put(key, value []byte) error
}
func (self *Trie) Copy() *Trie {
cpy := make([]byte, 32)
copy(cpy, self.roothash) // NOTE: cpy isn't being used anywhere?
trie := New(nil, nil)
trie.cache = self.cache.Copy()
if self.root != nil {
trie.root = self.root.Copy(trie)
}
return trie
// Trie is a Merkle Patricia Trie.
// The zero value is an empty trie with no database.
// Use New to create a trie that sits on top of a database.
//
// Trie is not safe for concurrent use.
type Trie struct {
root node
db Database
*hasher
}
// Legacy support
func (self *Trie) Root() []byte { return self.Hash() }
func (self *Trie) Hash() []byte {
var hash []byte
if self.root != nil {
t := self.root.Hash()
if byts, ok := t.([]byte); ok && len(byts) > 0 {
hash = byts
} else {
hash = crypto.Sha3(common.Encode(self.root.RlpData()))
// New creates a trie with an existing root node from db.
//
// If root is the zero hash or the sha3 hash of an empty string, the
// trie is initially empty and does not require a database. Otherwise,
// New will panics if db is nil or root does not exist in the
// database. Accessing the trie loads nodes from db on demand.
func New(root common.Hash, db Database) (*Trie, error) {
trie := &Trie{db: db}
if (root != common.Hash{}) && root != emptyRoot {
if db == nil {
panic("trie.New: cannot use existing root without a database")
}
} else {
hash = crypto.Sha3(common.Encode(""))
}
if !bytes.Equal(hash, self.roothash) {
self.revisions.PushBack(self.roothash)
self.roothash = hash
if v, _ := trie.db.Get(root[:]); len(v) == 0 {
return nil, ErrMissingRoot
}
trie.root = hashNode(root.Bytes())
}
return hash
return trie, nil
}
func (self *Trie) Commit() {
self.mu.Lock()
defer self.mu.Unlock()
// Hash first
self.Hash()
self.cache.Flush()
// Iterator returns an iterator over all mappings in the trie.
func (t *Trie) Iterator() *Iterator {
return NewIterator(t)
}
// Reset should only be called if the trie has been hashed
func (self *Trie) Reset() {
self.mu.Lock()
defer self.mu.Unlock()
self.cache.Reset()
if self.revisions.Len() > 0 {
revision := self.revisions.Remove(self.revisions.Back()).([]byte)
self.roothash = revision
// Get returns the value for key stored in the trie.
// The value bytes must not be modified by the caller.
func (t *Trie) Get(key []byte) []byte {
key = compactHexDecode(key)
tn := t.root
for len(key) > 0 {
switch n := tn.(type) {
case shortNode:
if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
return nil
}
tn = n.Val
key = key[len(n.Key):]
case fullNode:
tn = n[key[0]]
key = key[1:]
case nil:
return nil
case hashNode:
tn = t.resolveHash(n)
default:
panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
}
}
value := common.NewValueFromBytes(self.cache.Get(self.roothash))
self.root = self.mknode(value)
return tn.(valueNode)
}
func (self *Trie) UpdateString(key, value string) Node { return self.Update([]byte(key), []byte(value)) }
func (self *Trie) Update(key, value []byte) Node {
self.mu.Lock()
defer self.mu.Unlock()
k := CompactHexDecode(key)
// Update associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
func (t *Trie) Update(key, value []byte) {
k := compactHexDecode(key)
if len(value) != 0 {
node := NewValueNode(self, value)
node.dirty = true
self.root = self.insert(self.root, k, node)
t.root = t.insert(t.root, k, valueNode(value))
} else {
self.root = self.delete(self.root, k)
t.root = t.delete(t.root, k)
}
return self.root
}
func (self *Trie) GetString(key string) []byte { return self.Get([]byte(key)) }
func (self *Trie) Get(key []byte) []byte {
self.mu.Lock()
defer self.mu.Unlock()
k := CompactHexDecode(key)
n := self.get(self.root, k)
if n != nil {
return n.(*ValueNode).Val()
}
return nil
}
func (self *Trie) DeleteString(key string) Node { return self.Delete([]byte(key)) }
func (self *Trie) Delete(key []byte) Node {
self.mu.Lock()
defer self.mu.Unlock()
k := CompactHexDecode(key)
self.root = self.delete(self.root, k)
return self.root
}
func (self *Trie) insert(node Node, key []byte, value Node) Node {
func (t *Trie) insert(n node, key []byte, value node) node {
if len(key) == 0 {
return value
}
if node == nil {
node := NewShortNode(self, key, value)
node.dirty = true
return node
}
switch node := node.(type) {
case *ShortNode:
k := node.Key()
cnode := node.Value()
if bytes.Equal(k, key) {
node := NewShortNode(self, key, value)
node.dirty = true
return node
switch n := n.(type) {
case shortNode:
matchlen := prefixLen(key, n.Key)
// If the whole key matches, keep this short node as is
// and only update the value.
if matchlen == len(n.Key) {
return shortNode{n.Key, t.insert(n.Val, key[matchlen:], value)}
}
var n Node
matchlength := MatchingNibbleLength(key, k)
if matchlength == len(k) {
n = self.insert(cnode, key[matchlength:], value)
} else {
pnode := self.insert(nil, k[matchlength+1:], cnode)
nnode := self.insert(nil, key[matchlength+1:], value)
fulln := NewFullNode(self)
fulln.dirty = true
fulln.set(k[matchlength], pnode)
fulln.set(key[matchlength], nnode)
n = fulln
}
if matchlength == 0 {
return n
// Otherwise branch out at the index where they differ.
var branch fullNode
branch[n.Key[matchlen]] = t.insert(nil, n.Key[matchlen+1:], n.Val)
branch[key[matchlen]] = t.insert(nil, key[matchlen+1:], value)
// Replace this shortNode with the branch if it occurs at index 0.
if matchlen == 0 {
return branch
}
// Otherwise, replace it with a short node leading up to the branch.
return shortNode{key[:matchlen], branch}
snode := NewShortNode(self, key[:matchlength], n)
snode.dirty = true
return snode
case fullNode:
n[key[0]] = t.insert(n[key[0]], key[1:], value)
return n
case *FullNode:
cpy := node.Copy(self).(*FullNode)
cpy.set(key[0], self.insert(node.branch(key[0]), key[1:], value))
cpy.dirty = true
case nil:
return shortNode{key, value}
return cpy
case hashNode:
// We've hit a part of the trie that isn't loaded yet. Load
// the node and insert into it. This leaves all child nodes on
// the path to the value in the trie.
//
// TODO: track whether insertion changed the value and keep
// n as a hash node if it didn't.
return t.insert(t.resolveHash(n), key, value)
default:
panic(fmt.Sprintf("%T: invalid node: %v", node, node))
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
}
}
func (self *Trie) get(node Node, key []byte) Node {
if len(key) == 0 {
return node
}
if node == nil {
return nil
}
switch node := node.(type) {
case *ShortNode:
k := node.Key()
cnode := node.Value()
if len(key) >= len(k) && bytes.Equal(k, key[:len(k)]) {
return self.get(cnode, key[len(k):])
}
return nil
case *FullNode:
return self.get(node.branch(key[0]), key[1:])
default:
panic(fmt.Sprintf("%T: invalid node: %v", node, node))
}
// Delete removes any existing value for key from the trie.
func (t *Trie) Delete(key []byte) {
k := compactHexDecode(key)
t.root = t.delete(t.root, k)
}
func (self *Trie) delete(node Node, key []byte) Node {
if len(key) == 0 && node == nil {
return nil
}
switch node := node.(type) {
case *ShortNode:
k := node.Key()
cnode := node.Value()
if bytes.Equal(key, k) {
return nil
} else if bytes.Equal(key[:len(k)], k) {
child := self.delete(cnode, key[len(k):])
var n Node
switch child := child.(type) {
case *ShortNode:
nkey := append(k, child.Key()...)
n = NewShortNode(self, nkey, child.Value())
n.(*ShortNode).dirty = true
case *FullNode:
sn := NewShortNode(self, node.Key(), child)
sn.dirty = true
sn.key = node.key
n = sn
}
return n
} else {
return node
// delete returns the new root of the trie with key deleted.
// It reduces the trie to minimal form by simplifying
// nodes on the way up after deleting recursively.
func (t *Trie) delete(n node, key []byte) node {
switch n := n.(type) {
case shortNode:
matchlen := prefixLen(key, n.Key)
if matchlen < len(n.Key) {
return n // don't replace n on mismatch
}
if matchlen == len(key) {
return nil // remove n entirely for whole matches
}
// The key is longer than n.Key. Remove the remaining suffix
// from the subtrie. Child can never be nil here since the
// subtrie must contain at least two other values with keys
// longer than n.Key.
child := t.delete(n.Val, key[len(n.Key):])
switch child := child.(type) {
case shortNode:
// Deleting from the subtrie reduced it to another
// short node. Merge the nodes to avoid creating a
// shortNode{..., shortNode{...}}. Use concat (which
// always creates a new slice) instead of append to
// avoid modifying n.Key since it might be shared with
// other nodes.
return shortNode{concat(n.Key, child.Key...), child.Val}
default:
return shortNode{n.Key, child}
}
case *FullNode:
n := node.Copy(self).(*FullNode)
n.set(key[0], self.delete(n.branch(key[0]), key[1:]))
n.dirty = true
case fullNode:
n[key[0]] = t.delete(n[key[0]], key[1:])
// Check how many non-nil entries are left after deleting and
// reduce the full node to a short node if only one entry is
// left. Since n must've contained at least two children
// before deletion (otherwise it would not be a full node) n
// can never be reduced to nil.
//
// When the loop is done, pos contains the index of the single
// value that is left in n or -2 if n contains at least two
// values.
pos := -1
for i := 0; i < 17; i++ {
if n.branch(byte(i)) != nil {
for i, cld := range n {
if cld != nil {
if pos == -1 {
pos = i
} else {
pos = -2
break
}
}
}
var nnode Node
if pos == 16 {
nnode = NewShortNode(self, []byte{16}, n.branch(byte(pos)))
nnode.(*ShortNode).dirty = true
} else if pos >= 0 {
cnode := n.branch(byte(pos))
switch cnode := cnode.(type) {
case *ShortNode:
// Stitch keys
k := append([]byte{byte(pos)}, cnode.Key()...)
nnode = NewShortNode(self, k, cnode.Value())
nnode.(*ShortNode).dirty = true
case *FullNode:
nnode = NewShortNode(self, []byte{byte(pos)}, n.branch(byte(pos)))
nnode.(*ShortNode).dirty = true
if pos >= 0 {
if pos != 16 {
// If the remaining entry is a short node, it replaces
// n and its key gets the missing nibble tacked to the
// front. This avoids creating an invalid
// shortNode{..., shortNode{...}}. Since the entry
// might not be loaded yet, resolve it just for this
// check.
cnode := t.resolve(n[pos])
if cnode, ok := cnode.(shortNode); ok {
k := append([]byte{byte(pos)}, cnode.Key...)
return shortNode{k, cnode.Val}
}
}
} else {
nnode = n
// Otherwise, n is replaced by a one-nibble short node
// containing the child.
return shortNode{[]byte{byte(pos)}, n[pos]}
}
// n still contains at least two values and cannot be reduced.
return n
return nnode
case nil:
return nil
case hashNode:
// We've hit a part of the trie that isn't loaded yet. Load
// the node and delete from it. This leaves all child nodes on
// the path to the value in the trie.
//
// TODO: track whether deletion actually hit a key and keep
// n as a hash node if it didn't.
return t.delete(t.resolveHash(n), key)
default:
panic(fmt.Sprintf("%T: invalid node: %v (%v)", node, node, key))
panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
}
}
// casting functions and cache storing
func (self *Trie) mknode(value *common.Value) Node {
l := value.Len()
switch l {
case 0:
return nil
case 2:
// A value node may consists of 2 bytes.
if value.Get(0).Len() != 0 {
key := CompactDecode(value.Get(0).Bytes())
if key[len(key)-1] == 16 {
return NewShortNode(self, key, NewValueNode(self, value.Get(1).Bytes()))
} else {
return NewShortNode(self, key, self.mknode(value.Get(1)))
}
}
case 17:
if len(value.Bytes()) != 17 {
fnode := NewFullNode(self)
for i := 0; i < 16; i++ {
fnode.set(byte(i), self.mknode(value.Get(i)))
}
return fnode
func concat(s1 []byte, s2 ...byte) []byte {
r := make([]byte, len(s1)+len(s2))
copy(r, s1)
copy(r[len(s1):], s2)
return r
}
func (t *Trie) resolve(n node) node {
if n, ok := n.(hashNode); ok {
return t.resolveHash(n)
}
return n
}
func (t *Trie) resolveHash(n hashNode) node {
if v, ok := globalCache.Get(n); ok {
return v
}
enc, err := t.db.Get(n)
if err != nil || enc == nil {
// TODO: This needs to be improved to properly distinguish errors.
// Disk I/O errors shouldn't produce nil (and cause a
// consensus failure or weird crash), but it is unclear how
// they could be handled because the entire stack above the trie isn't
// prepared to cope with missing state nodes.
if glog.V(logger.Error) {
glog.Errorf("Dangling hash node ref %x: %v", n, err)
}
case 32:
return NewHash(value.Bytes(), self)
return nil
}
dec := mustDecodeNode(n, enc)
if dec != nil {
globalCache.Put(n, dec)
}
return dec
}
// Root returns the root hash of the trie.
// Deprecated: use Hash instead.
func (t *Trie) Root() []byte { return t.Hash().Bytes() }
return NewValueNode(self, value.Bytes())
// Hash returns the root hash of the trie. It does not write to the
// database and can be used even if the trie doesn't have one.
func (t *Trie) Hash() common.Hash {
root, _ := t.hashRoot(nil)
return common.BytesToHash(root.(hashNode))
}
func (self *Trie) trans(node Node) Node {
switch node := node.(type) {
case *HashNode:
value := common.NewValueFromBytes(self.cache.Get(node.key))
return self.mknode(value)
default:
return node
// Commit writes all nodes to the trie's database.
// Nodes are stored with their sha3 hash as the key.
//
// Committing flushes nodes from memory.
// Subsequent Get calls will load nodes from the database.
func (t *Trie) Commit() (root common.Hash, err error) {
if t.db == nil {
panic("Commit called on trie with nil database")
}
return t.CommitTo(t.db)
}
func (self *Trie) store(node Node) interface{} {
data := common.Encode(node)
if len(data) >= 32 {
key := crypto.Sha3(data)
if node.Dirty() {
//fmt.Println("save", node)
//fmt.Println()
self.cache.Put(key, data)
}
// CommitTo writes all nodes to the given database.
// Nodes are stored with their sha3 hash as the key.
//
// Committing flushes nodes from memory. Subsequent Get calls will
// load nodes from the trie's database. Calling code must ensure that
// the changes made to db are written back to the trie's attached
// database before using the trie.
func (t *Trie) CommitTo(db DatabaseWriter) (root common.Hash, err error) {
n, err := t.hashRoot(db)
if err != nil {
return (common.Hash{}), err
}
t.root = n
return common.BytesToHash(n.(hashNode)), nil
}
return key
func (t *Trie) hashRoot(db DatabaseWriter) (node, error) {
if t.root == nil {
return hashNode(emptyRoot.Bytes()), nil
}
if t.hasher == nil {
t.hasher = newHasher()
}
return t.hasher.hash(t.root, db, true)
}
return node.RlpData()
type hasher struct {
tmp *bytes.Buffer
sha hash.Hash
}
func (self *Trie) PrintRoot() {
fmt.Println(self.root)
fmt.Printf("root=%x\n", self.Root())
func newHasher() *hasher {
return &hasher{tmp: new(bytes.Buffer), sha: sha3.NewKeccak256()}
}
func (h *hasher) hash(n node, db DatabaseWriter, force bool) (node, error) {
hashed, err := h.replaceChildren(n, db)
if err != nil {
return hashNode{}, err
}
if n, err = h.store(hashed, db, force); err != nil {
return hashNode{}, err
}
return n, nil
}
// hashChildren replaces child nodes of n with their hashes if the encoded
// size of the child is larger than a hash.
func (h *hasher) replaceChildren(n node, db DatabaseWriter) (node, error) {
var err error
switch n := n.(type) {
case shortNode:
n.Key = compactEncode(n.Key)
if _, ok := n.Val.(valueNode); !ok {
if n.Val, err = h.hash(n.Val, db, false); err != nil {
return n, err
}
}
if n.Val == nil {
// Ensure that nil children are encoded as empty strings.
n.Val = valueNode(nil)
}
return n, nil
case fullNode:
for i := 0; i < 16; i++ {
if n[i] != nil {
if n[i], err = h.hash(n[i], db, false); err != nil {
return n, err
}
} else {
// Ensure that nil children are encoded as empty strings.
n[i] = valueNode(nil)
}
}
if n[16] == nil {
n[16] = valueNode(nil)
}
return n, nil
default:
return n, nil
}
}
func (h *hasher) store(n node, db DatabaseWriter, force bool) (node, error) {
// Don't store hashes or empty nodes.
if _, isHash := n.(hashNode); n == nil || isHash {
return n, nil
}
h.tmp.Reset()
if err := rlp.Encode(h.tmp, n); err != nil {
panic("encode error: " + err.Error())
}
if h.tmp.Len() < 32 && !force {
// Nodes smaller than 32 bytes are stored inside their parent.
return n, nil
}
// Larger nodes are replaced by their hash and stored in the database.
h.sha.Reset()
h.sha.Write(h.tmp.Bytes())
key := hashNode(h.sha.Sum(nil))
if db != nil {
err := db.Put(key, h.tmp.Bytes())
return key, err
}
return key, nil
}

@ -24,86 +24,103 @@ import (
"os"
"testing"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
)
type Db map[string][]byte
func (self Db) Get(k []byte) ([]byte, error) { return self[string(k)], nil }
func (self Db) Put(k, v []byte) error { self[string(k)] = v; return nil }
// Used for testing
func NewEmpty() *Trie {
return New(nil, make(Db))
func init() {
spew.Config.Indent = " "
spew.Config.DisableMethods = true
}
func NewEmptySecure() *SecureTrie {
return NewSecure(nil, make(Db))
// Used for testing
func newEmpty() *Trie {
db, _ := ethdb.NewMemDatabase()
trie, _ := New(common.Hash{}, db)
return trie
}
func TestEmptyTrie(t *testing.T) {
trie := NewEmpty()
var trie Trie
res := trie.Hash()
exp := crypto.Sha3(common.Encode(""))
if !bytes.Equal(res, exp) {
exp := emptyRoot
if res != common.Hash(exp) {
t.Errorf("expected %x got %x", exp, res)
}
}
func TestNull(t *testing.T) {
trie := NewEmpty()
var trie Trie
key := make([]byte, 32)
value := common.FromHex("0x823140710bf13990e4500136726d8b55")
trie.Update(key, value)
value = trie.Get(key)
}
func TestMissingRoot(t *testing.T) {
db, _ := ethdb.NewMemDatabase()
trie, err := New(common.HexToHash("0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33"), db)
if trie != nil {
t.Error("New returned non-nil trie for invalid root")
}
if err != ErrMissingRoot {
t.Error("New returned wrong error: %v", err)
}
}
func TestInsert(t *testing.T) {
trie := NewEmpty()
trie := newEmpty()
trie.UpdateString("doe", "reindeer")
trie.UpdateString("dog", "puppy")
trie.UpdateString("dogglesworth", "cat")
updateString(trie, "doe", "reindeer")
updateString(trie, "dog", "puppy")
updateString(trie, "dogglesworth", "cat")
exp := common.Hex2Bytes("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3")
exp := common.HexToHash("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3")
root := trie.Hash()
if !bytes.Equal(root, exp) {
if root != exp {
t.Errorf("exp %x got %x", exp, root)
}
trie = NewEmpty()
trie.UpdateString("A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
trie = newEmpty()
updateString(trie, "A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
exp = common.Hex2Bytes("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab")
root = trie.Hash()
if !bytes.Equal(root, exp) {
exp = common.HexToHash("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab")
root, err := trie.Commit()
if err != nil {
t.Fatalf("commit error: %v", err)
}
if root != exp {
t.Errorf("exp %x got %x", exp, root)
}
}
func TestGet(t *testing.T) {
trie := NewEmpty()
trie.UpdateString("doe", "reindeer")
trie.UpdateString("dog", "puppy")
trie.UpdateString("dogglesworth", "cat")
trie := newEmpty()
updateString(trie, "doe", "reindeer")
updateString(trie, "dog", "puppy")
updateString(trie, "dogglesworth", "cat")
for i := 0; i < 2; i++ {
res := getString(trie, "dog")
if !bytes.Equal(res, []byte("puppy")) {
t.Errorf("expected puppy got %x", res)
}
res := trie.GetString("dog")
if !bytes.Equal(res, []byte("puppy")) {
t.Errorf("expected puppy got %x", res)
}
unknown := getString(trie, "unknown")
if unknown != nil {
t.Errorf("expected nil got %x", unknown)
}
unknown := trie.GetString("unknown")
if unknown != nil {
t.Errorf("expected nil got %x", unknown)
if i == 1 {
return
}
trie.Commit()
}
}
func TestDelete(t *testing.T) {
trie := NewEmpty()
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
@ -116,21 +133,21 @@ func TestDelete(t *testing.T) {
}
for _, val := range vals {
if val.v != "" {
trie.UpdateString(val.k, val.v)
updateString(trie, val.k, val.v)
} else {
trie.DeleteString(val.k)
deleteString(trie, val.k)
}
}
hash := trie.Hash()
exp := common.Hex2Bytes("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if !bytes.Equal(hash, exp) {
exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestEmptyValues(t *testing.T) {
trie := NewEmpty()
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
@ -143,78 +160,85 @@ func TestEmptyValues(t *testing.T) {
{"shaman", ""},
}
for _, val := range vals {
trie.UpdateString(val.k, val.v)
updateString(trie, val.k, val.v)
}
hash := trie.Hash()
exp := common.Hex2Bytes("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if !bytes.Equal(hash, exp) {
exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestReplication(t *testing.T) {
trie := NewEmpty()
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
{"somethingveryoddindeedthis is", "myothernodedata"},
}
for _, val := range vals {
trie.UpdateString(val.k, val.v)
updateString(trie, val.k, val.v)
}
trie.Commit()
trie2 := New(trie.Root(), trie.cache.backend)
if string(trie2.GetString("horse")) != "stallion" {
t.Error("expected to have horse => stallion")
exp, err := trie.Commit()
if err != nil {
t.Fatalf("commit error: %v", err)
}
hash := trie2.Hash()
exp := trie.Hash()
if !bytes.Equal(hash, exp) {
// create a new trie on top of the database and check that lookups work.
trie2, err := New(exp, trie.db)
if err != nil {
t.Fatalf("can't recreate trie at %x: %v", exp, err)
}
for _, kv := range vals {
if string(getString(trie2, kv.k)) != kv.v {
t.Errorf("trie2 doesn't have %q => %q", kv.k, kv.v)
}
}
hash, err := trie2.Commit()
if err != nil {
t.Fatalf("commit error: %v", err)
}
if hash != exp {
t.Errorf("root failure. expected %x got %x", exp, hash)
}
}
func TestReset(t *testing.T) {
trie := NewEmpty()
vals := []struct{ k, v string }{
// perform some insertions on the new trie.
vals2 := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
// {"shaman", "horse"},
// {"doge", "coin"},
// {"ether", ""},
// {"dog", "puppy"},
// {"somethingveryoddindeedthis is", "myothernodedata"},
// {"shaman", ""},
}
for _, val := range vals {
trie.UpdateString(val.k, val.v)
for _, val := range vals2 {
updateString(trie2, val.k, val.v)
}
trie.Commit()
before := common.CopyBytes(trie.roothash)
trie.UpdateString("should", "revert")
trie.Hash()
// Should have no effect
trie.Hash()
trie.Hash()
// ###
trie.Reset()
after := common.CopyBytes(trie.roothash)
if trie2.Hash() != exp {
t.Errorf("root failure. expected %x got %x", exp, hash)
}
}
if !bytes.Equal(before, after) {
t.Errorf("expected roots to be equal. %x - %x", before, after)
func paranoiaCheck(t1 *Trie) (bool, *Trie) {
t2 := new(Trie)
it := NewIterator(t1)
for it.Next() {
t2.Update(it.Key, it.Value)
}
return t2.Hash() == t1.Hash(), t2
}
func TestParanoia(t *testing.T) {
t.Skip()
trie := NewEmpty()
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
@ -228,13 +252,13 @@ func TestParanoia(t *testing.T) {
{"somethingveryoddindeedthis is", "myothernodedata"},
}
for _, val := range vals {
trie.UpdateString(val.k, val.v)
updateString(trie, val.k, val.v)
}
trie.Commit()
ok, t2 := ParanoiaCheck(trie, trie.cache.backend)
ok, t2 := paranoiaCheck(trie)
if !ok {
t.Errorf("trie paranoia check failed %x %x", trie.roothash, t2.roothash)
t.Errorf("trie paranoia check failed %x %x", trie.Hash(), t2.Hash())
}
}
@ -243,27 +267,35 @@ func TestOutput(t *testing.T) {
t.Skip()
base := "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
trie := NewEmpty()
trie := newEmpty()
for i := 0; i < 50; i++ {
trie.UpdateString(fmt.Sprintf("%s%d", base, i), "valueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee")
updateString(trie, fmt.Sprintf("%s%d", base, i), "valueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee")
}
fmt.Println("############################## FULL ################################")
fmt.Println(trie.root)
trie.Commit()
fmt.Println("############################## SMALL ################################")
trie2 := New(trie.roothash, trie.cache.backend)
trie2.GetString(base + "20")
trie2, _ := New(trie.Hash(), trie.db)
getString(trie2, base+"20")
fmt.Println(trie2.root)
}
func TestLargeValue(t *testing.T) {
trie := newEmpty()
trie.Update([]byte("key1"), []byte{99, 99, 99, 99})
trie.Update([]byte("key2"), bytes.Repeat([]byte{1}, 32))
trie.Hash()
}
type kv struct {
k, v []byte
t bool
}
func TestLargeData(t *testing.T) {
trie := NewEmpty()
trie := newEmpty()
vals := make(map[string]*kv)
for i := byte(0); i < 255; i++ {
@ -275,7 +307,7 @@ func TestLargeData(t *testing.T) {
vals[string(value2.k)] = value2
}
it := trie.Iterator()
it := NewIterator(trie)
for it.Next() {
vals[string(it.Key)].t = true
}
@ -295,34 +327,6 @@ func TestLargeData(t *testing.T) {
}
}
func TestSecureDelete(t *testing.T) {
trie := NewEmptySecure()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
}
for _, val := range vals {
if val.v != "" {
trie.UpdateString(val.k, val.v)
} else {
trie.DeleteString(val.k)
}
}
hash := trie.Hash()
exp := common.Hex2Bytes("29b235a58c3c25ab83010c327d5932bcf05324b7d6b1185e650798034783ca9d")
if !bytes.Equal(hash, exp) {
t.Errorf("expected %x got %x", exp, hash)
}
}
func BenchmarkGet(b *testing.B) { benchGet(b, false) }
func BenchmarkGetDB(b *testing.B) { benchGet(b, true) }
func BenchmarkUpdateBE(b *testing.B) { benchUpdate(b, binary.BigEndian) }
@ -333,11 +337,11 @@ func BenchmarkHashLE(b *testing.B) { benchHash(b, binary.LittleEndian) }
const benchElemCount = 20000
func benchGet(b *testing.B, commit bool) {
trie := New(nil, nil)
trie := new(Trie)
if commit {
dir, tmpdb := tempDB()
defer os.RemoveAll(dir)
trie = New(nil, tmpdb)
trie, _ = New(common.Hash{}, tmpdb)
}
k := make([]byte, 32)
for i := 0; i < benchElemCount; i++ {
@ -356,7 +360,7 @@ func benchGet(b *testing.B, commit bool) {
}
func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie {
trie := NewEmpty()
trie := newEmpty()
k := make([]byte, 32)
for i := 0; i < b.N; i++ {
e.PutUint64(k, uint64(i))
@ -366,7 +370,7 @@ func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie {
}
func benchHash(b *testing.B, e binary.ByteOrder) {
trie := NewEmpty()
trie := newEmpty()
k := make([]byte, 32)
for i := 0; i < benchElemCount; i++ {
e.PutUint64(k, uint64(i))
@ -379,7 +383,7 @@ func benchHash(b *testing.B, e binary.ByteOrder) {
}
}
func tempDB() (string, Backend) {
func tempDB() (string, Database) {
dir, err := ioutil.TempDir("", "trie-bench")
if err != nil {
panic(fmt.Sprintf("can't create temporary directory: %v", err))
@ -390,3 +394,15 @@ func tempDB() (string, Backend) {
}
return dir, db
}
func getString(trie *Trie, k string) []byte {
return trie.Get([]byte(k))
}
func updateString(trie *Trie, k, v string) {
trie.Update([]byte(k), []byte(v))
}
func deleteString(trie *Trie, k string) {
trie.Delete([]byte(k))
}

@ -1,42 +0,0 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import "github.com/ethereum/go-ethereum/common"
type ValueNode struct {
trie *Trie
data []byte
dirty bool
}
func NewValueNode(trie *Trie, data []byte) *ValueNode {
return &ValueNode{trie, data, false}
}
func (self *ValueNode) Value() Node { return self } // Best not to call :-)
func (self *ValueNode) Val() []byte { return self.data }
func (self *ValueNode) Dirty() bool { return self.dirty }
func (self *ValueNode) Copy(t *Trie) Node {
return &ValueNode{t, common.CopyBytes(self.data), self.dirty}
}
func (self *ValueNode) RlpData() interface{} { return self.data }
func (self *ValueNode) Hash() interface{} { return self.data }
func (self *ValueNode) setDirty(dirty bool) {
self.dirty = dirty
}
Loading…
Cancel
Save