trie: use stacktrie for Derivesha operation (#21407)

core/types: use stacktrie for derivesha

trie: add stacktrie file

trie: fix linter

core/types: use stacktrie for derivesha

rebased: adapt stacktrie to the newer version of DeriveSha

Co-authored-by: Martin Holst Swende <martin@swende.se>

More linter fixes

review feedback: no key offset for nodes converted to hashes

trie: use EncodeRLP for full nodes

core/types: insert txs in order in derivesha

trie: tests for derivesha with stacktrie

trie: make stacktrie use pooled hashers

trie: make stacktrie reuse tmp slice space

trie: minor polishes on stacktrie

trie/stacktrie: less rlp dancing

core/types: explain the contorsions in DeriveSha

ci: fix goimport errors

trie: clear mem on subtrie hashing

squashme: linter fix

stracktrie: use pooling, less allocs (#3)

trie: in-place hex prefix, reduce allocs and add rawNode.EncodeRLP

Reintroduce the `[]node` method, add the missing `EncodeRLP` implementation for `rawNode` and calculate the hex prefix in place.

Co-authored-by: Martin Holst Swende <martin@swende.se>

Co-authored-by: Martin Holst Swende <martin@swende.se>
pull/21643/head
Guillaume Ballet 4 years ago committed by GitHub
parent 4ee11b072e
commit 6c8310ebb4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      core/block_validator.go
  2. 18
      core/types/derive_sha.go
  3. 4
      eth/downloader/queue.go
  4. 2
      eth/handler.go
  5. 7
      trie/database.go
  6. 29
      trie/encoding.go
  7. 36
      trie/encoding_test.go
  8. 404
      trie/stacktrie.go
  9. 242
      trie/stacktrie_test.go

@ -62,7 +62,7 @@ func (v *BlockValidator) ValidateBody(block *types.Block) error {
if hash := types.CalcUncleHash(block.Uncles()); hash != header.UncleHash { if hash := types.CalcUncleHash(block.Uncles()); hash != header.UncleHash {
return fmt.Errorf("uncle root hash mismatch: have %x, want %x", hash, header.UncleHash) return fmt.Errorf("uncle root hash mismatch: have %x, want %x", hash, header.UncleHash)
} }
if hash := types.DeriveSha(block.Transactions(), new(trie.Trie)); hash != header.TxHash { if hash := types.DeriveSha(block.Transactions(), trie.NewStackTrie(nil)); hash != header.TxHash {
return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash) return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash)
} }
if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) { if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) {
@ -90,7 +90,7 @@ func (v *BlockValidator) ValidateState(block *types.Block, statedb *state.StateD
return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom, rbloom) return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom, rbloom)
} }
// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, Rn]])) // Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, Rn]]))
receiptSha := types.DeriveSha(receipts, new(trie.Trie)) receiptSha := types.DeriveSha(receipts, trie.NewStackTrie(nil))
if receiptSha != header.ReceiptHash { if receiptSha != header.ReceiptHash {
return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha) return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha)
} }

@ -23,7 +23,6 @@ import (
"github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rlp"
) )
// DerivableList is the interface which can derive the hash.
type DerivableList interface { type DerivableList interface {
Len() int Len() int
GetRlp(i int) []byte GetRlp(i int) []byte
@ -39,7 +38,22 @@ type Hasher interface {
func DeriveSha(list DerivableList, hasher Hasher) common.Hash { func DeriveSha(list DerivableList, hasher Hasher) common.Hash {
hasher.Reset() hasher.Reset()
keybuf := new(bytes.Buffer) keybuf := new(bytes.Buffer)
for i := 0; i < list.Len(); i++ {
// StackTrie requires values to be inserted in increasing
// hash order, which is not the order that `list` provides
// hashes in. This insertion sequence ensures that the
// order is correct.
for i := 1; i < list.Len() && i <= 0x7f; i++ {
keybuf.Reset()
rlp.Encode(keybuf, uint(i))
hasher.Update(keybuf.Bytes(), list.GetRlp(i))
}
if list.Len() > 0 {
keybuf.Reset()
rlp.Encode(keybuf, uint(0))
hasher.Update(keybuf.Bytes(), list.GetRlp(0))
}
for i := 0x80; i < list.Len(); i++ {
keybuf.Reset() keybuf.Reset()
rlp.Encode(keybuf, uint(i)) rlp.Encode(keybuf, uint(i))
hasher.Update(keybuf.Bytes(), list.GetRlp(i)) hasher.Update(keybuf.Bytes(), list.GetRlp(i))

@ -774,7 +774,7 @@ func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLi
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
validate := func(index int, header *types.Header) error { validate := func(index int, header *types.Header) error {
if types.DeriveSha(types.Transactions(txLists[index]), new(trie.Trie)) != header.TxHash { if types.DeriveSha(types.Transactions(txLists[index]), trie.NewStackTrie(nil)) != header.TxHash {
return errInvalidBody return errInvalidBody
} }
if types.CalcUncleHash(uncleLists[index]) != header.UncleHash { if types.CalcUncleHash(uncleLists[index]) != header.UncleHash {
@ -799,7 +799,7 @@ func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int,
q.lock.Lock() q.lock.Lock()
defer q.lock.Unlock() defer q.lock.Unlock()
validate := func(index int, header *types.Header) error { validate := func(index int, header *types.Header) error {
if types.DeriveSha(types.Receipts(receiptList[index]), new(trie.Trie)) != header.ReceiptHash { if types.DeriveSha(types.Receipts(receiptList[index]), trie.NewStackTrie(nil)) != header.ReceiptHash {
return errInvalidReceipt return errInvalidReceipt
} }
return nil return nil

@ -715,7 +715,7 @@ func (pm *ProtocolManager) handleMsg(p *peer) error {
log.Warn("Propagated block has invalid uncles", "have", hash, "exp", request.Block.UncleHash()) log.Warn("Propagated block has invalid uncles", "have", hash, "exp", request.Block.UncleHash())
break // TODO(karalabe): return error eventually, but wait a few releases break // TODO(karalabe): return error eventually, but wait a few releases
} }
if hash := types.DeriveSha(request.Block.Transactions(), new(trie.Trie)); hash != request.Block.TxHash() { if hash := types.DeriveSha(request.Block.Transactions(), trie.NewStackTrie(nil)); hash != request.Block.TxHash() {
log.Warn("Propagated block has invalid body", "have", hash, "exp", request.Block.TxHash()) log.Warn("Propagated block has invalid body", "have", hash, "exp", request.Block.TxHash())
break // TODO(karalabe): return error eventually, but wait a few releases break // TODO(karalabe): return error eventually, but wait a few releases
} }

@ -99,6 +99,11 @@ type rawNode []byte
func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") } func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
func (n rawNode) EncodeRLP(w io.Writer) error {
_, err := w.Write([]byte(n))
return err
}
// rawFullNode represents only the useful data content of a full node, with the // rawFullNode represents only the useful data content of a full node, with the
// caches and flags stripped out to minimize its data storage. This type honors // caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent. // the same RLP encoding as the original parent.
@ -199,7 +204,7 @@ func forGatherChildren(n node, onChild func(hash common.Hash)) {
} }
case hashNode: case hashNode:
onChild(common.BytesToHash(n)) onChild(common.BytesToHash(n))
case valueNode, nil: case valueNode, nil, rawNode:
default: default:
panic(fmt.Sprintf("unknown node type: %T", n)) panic(fmt.Sprintf("unknown node type: %T", n))
} }

@ -51,6 +51,35 @@ func hexToCompact(hex []byte) []byte {
return buf return buf
} }
// hexToCompactInPlace places the compact key in input buffer, returning the length
// needed for the representation
func hexToCompactInPlace(hex []byte) int {
var (
hexLen = len(hex) // length of the hex input
firstByte = byte(0)
)
// Check if we have a terminator there
if hexLen > 0 && hex[hexLen-1] == 16 {
firstByte = 1 << 5
hexLen-- // last part was the terminator, ignore that
}
var (
binLen = hexLen/2 + 1
ni = 0 // index in hex
bi = 1 // index in bin (compact)
)
if hexLen&1 == 1 {
firstByte |= 1 << 4 // odd flag
firstByte |= hex[0] // first nibble is contained in the first byte
ni++
}
for ; ni < hexLen; bi, ni = bi+1, ni+2 {
hex[bi] = hex[ni]<<4 | hex[ni+1]
}
hex[0] = firstByte
return binLen
}
func compactToHex(compact []byte) []byte { func compactToHex(compact []byte) []byte {
if len(compact) == 0 { if len(compact) == 0 {
return compact return compact

@ -18,6 +18,8 @@ package trie
import ( import (
"bytes" "bytes"
"encoding/hex"
"math/rand"
"testing" "testing"
) )
@ -75,6 +77,40 @@ func TestHexKeybytes(t *testing.T) {
} }
} }
func TestHexToCompactInPlace(t *testing.T) {
for i, keyS := range []string{
"00",
"060a040c0f000a090b040803010801010900080d090a0a0d0903000b10",
"10",
} {
hexBytes, _ := hex.DecodeString(keyS)
exp := hexToCompact(hexBytes)
sz := hexToCompactInPlace(hexBytes)
got := hexBytes[:sz]
if !bytes.Equal(exp, got) {
t.Fatalf("test %d: encoding err\ninp %v\ngot %x\nexp %x\n", i, keyS, got, exp)
}
}
}
func TestHexToCompactInPlaceRandom(t *testing.T) {
for i := 0; i < 10000; i++ {
l := rand.Intn(128)
key := make([]byte, l)
rand.Read(key)
hexBytes := keybytesToHex(key)
hexOrig := []byte(string(hexBytes))
exp := hexToCompact(hexBytes)
sz := hexToCompactInPlace(hexBytes)
got := hexBytes[:sz]
if !bytes.Equal(exp, got) {
t.Fatalf("encoding err \ncpt %x\nhex %x\ngot %x\nexp %x\n",
key, hexOrig, got, exp)
}
}
}
func BenchmarkHexToCompact(b *testing.B) { func BenchmarkHexToCompact(b *testing.B) {
testBytes := []byte{0, 15, 1, 12, 11, 8, 16 /*term*/} testBytes := []byte{0, 15, 1, 12, 11, 8, 16 /*term*/}
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {

@ -0,0 +1,404 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
)
var stPool = sync.Pool{
New: func() interface{} {
return NewStackTrie(nil)
},
}
func stackTrieFromPool(db ethdb.KeyValueStore) *StackTrie {
st := stPool.Get().(*StackTrie)
st.db = db
return st
}
func returnToPool(st *StackTrie) {
st.Reset()
stPool.Put(st)
}
// StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses.
type StackTrie struct {
nodeType uint8 // node type (as in branch, ext, leaf)
val []byte // value contained by this node if it's a leaf
key []byte // key chunk covered by this (full|ext) node
keyOffset int // offset of the key chunk inside a full key
children [16]*StackTrie // list of children (for fullnodes and exts)
db ethdb.KeyValueStore // Pointer to the commit db, can be nil
}
// NewStackTrie allocates and initializes an empty trie.
func NewStackTrie(db ethdb.KeyValueStore) *StackTrie {
return &StackTrie{
nodeType: emptyNode,
db: db,
}
}
func newLeaf(ko int, key, val []byte, db ethdb.KeyValueStore) *StackTrie {
st := stackTrieFromPool(db)
st.nodeType = leafNode
st.keyOffset = ko
st.key = append(st.key, key[ko:]...)
st.val = val
return st
}
func newExt(ko int, key []byte, child *StackTrie, db ethdb.KeyValueStore) *StackTrie {
st := stackTrieFromPool(db)
st.nodeType = extNode
st.keyOffset = ko
st.key = append(st.key, key[ko:]...)
st.children[0] = child
return st
}
// List all values that StackTrie#nodeType can hold
const (
emptyNode = iota
branchNode
extNode
leafNode
hashedNode
)
// TryUpdate inserts a (key, value) pair into the stack trie
func (st *StackTrie) TryUpdate(key, value []byte) error {
k := keybytesToHex(key)
if len(value) == 0 {
panic("deletion not supported")
}
st.insert(k[:len(k)-1], value)
return nil
}
func (st *StackTrie) Update(key, value []byte) {
if err := st.TryUpdate(key, value); err != nil {
log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
}
}
func (st *StackTrie) Reset() {
st.db = nil
st.key = st.key[:0]
st.val = st.val[:0]
for i := range st.children {
st.children[i] = nil
}
st.nodeType = emptyNode
st.keyOffset = 0
}
// Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key.
func (st *StackTrie) getDiffIndex(key []byte) int {
diffindex := 0
for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ {
}
return diffindex
}
// Helper function to that inserts a (key, value) pair into
// the trie.
func (st *StackTrie) insert(key, value []byte) {
switch st.nodeType {
case branchNode: /* Branch */
idx := int(key[st.keyOffset])
// Unresolve elder siblings
for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil {
if st.children[i].nodeType != hashedNode {
st.children[i].hash()
}
break
}
}
// Add new child
if st.children[idx] == nil {
st.children[idx] = stackTrieFromPool(st.db)
st.children[idx].keyOffset = st.keyOffset + 1
}
st.children[idx].insert(key, value)
case extNode: /* Ext */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Check if chunks are identical. If so, recurse into
// the child node. Otherwise, the key has to be split
// into 1) an optional common prefix, 2) the fullnode
// representing the two differing path, and 3) a leaf
// for each of the differentiated subtrees.
if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into
// the child node.
st.children[0].insert(key, value)
return
}
// Save the original part. Depending if the break is
// at the extension's last byte or not, create an
// intermediate extension or use the extension's child
// node directly.
var n *StackTrie
if diffidx < len(st.key)-1 {
n = newExt(diffidx+1, st.key, st.children[0], st.db)
} else {
// Break on the last byte, no need to insert
// an extension node: reuse the current node
n = st.children[0]
}
// Convert to hash
n.hash()
var p *StackTrie
if diffidx == 0 {
// the break is on the first byte, so
// the current node is converted into
// a branch node.
st.children[0] = nil
p = st
st.nodeType = branchNode
} else {
// the common prefix is at least one byte
// long, insert a new intermediate branch
// node.
st.children[0] = stackTrieFromPool(st.db)
st.children[0].nodeType = branchNode
st.children[0].keyOffset = st.keyOffset + diffidx
p = st.children[0]
}
// Create a leaf for the inserted part
o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db)
// Insert both child leaves where they belong:
origIdx := st.key[diffidx]
newIdx := key[diffidx+st.keyOffset]
p.children[origIdx] = n
p.children[newIdx] = o
st.key = st.key[:diffidx]
case leafNode: /* Leaf */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Overwriting a key isn't supported, which means that
// the current leaf is expected to be split into 1) an
// optional extension for the common prefix of these 2
// keys, 2) a fullnode selecting the path on which the
// keys differ, and 3) one leaf for the differentiated
// component of each key.
if diffidx >= len(st.key) {
panic("Trying to insert into existing key")
}
// Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that
var p *StackTrie
if diffidx == 0 {
// Convert current leaf into a branch
st.nodeType = branchNode
p = st
st.children[0] = nil
} else {
// Convert current node into an ext,
// and insert a child branch node.
st.nodeType = extNode
st.children[0] = NewStackTrie(st.db)
st.children[0].nodeType = branchNode
st.children[0].keyOffset = st.keyOffset + diffidx
p = st.children[0]
}
// Create the two child leaves: the one containing the
// original value and the one containing the new value
// The child leave will be hashed directly in order to
// free up some memory.
origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db)
p.children[origIdx].hash()
newIdx := key[diffidx+st.keyOffset]
p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db)
// Finally, cut off the key part that has been passed
// over to the children.
st.key = st.key[:diffidx]
st.val = nil
case emptyNode: /* Empty */
st.nodeType = leafNode
st.key = key[st.keyOffset:]
st.val = value
case hashedNode:
panic("trying to insert into hash")
default:
panic("invalid type")
}
}
// hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
// Possible outcomes:
// 1. The rlp-encoded value was >= 32 bytes:
// - Then the 32-byte `hash` will be accessible in `st.val`.
// - And the 'st.type' will be 'hashedNode'
// 2. The rlp-encoded value was < 32 bytes
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
// - And the 'st.type' will be 'hashedNode' AGAIN
//
// This method will also:
// set 'st.type' to hashedNode
// clear 'st.key'
func (st *StackTrie) hash() {
/* Shortcut if node is already hashed */
if st.nodeType == hashedNode {
return
}
// The 'hasher' is taken from a pool, but we don't actually
// claim an instance until all children are done with their hashing,
// and we actually need one
var h *hasher
switch st.nodeType {
case branchNode:
var nodes [17]node
for i, child := range st.children {
if child == nil {
nodes[i] = nilValueNode
continue
}
child.hash()
if len(child.val) < 32 {
nodes[i] = rawNode(child.val)
} else {
nodes[i] = hashNode(child.val)
}
st.children[i] = nil // Reclaim mem from subtree
returnToPool(child)
}
nodes[16] = nilValueNode
h = newHasher(false)
defer returnHasherToPool(h)
h.tmp.Reset()
if err := rlp.Encode(&h.tmp, nodes); err != nil {
panic(err)
}
case extNode:
h = newHasher(false)
defer returnHasherToPool(h)
h.tmp.Reset()
st.children[0].hash()
// This is also possible:
//sz := hexToCompactInPlace(st.key)
//n := [][]byte{
// st.key[:sz],
// st.children[0].val,
//}
n := [][]byte{
hexToCompact(st.key),
st.children[0].val,
}
if err := rlp.Encode(&h.tmp, n); err != nil {
panic(err)
}
returnToPool(st.children[0])
st.children[0] = nil // Reclaim mem from subtree
case leafNode:
h = newHasher(false)
defer returnHasherToPool(h)
h.tmp.Reset()
st.key = append(st.key, byte(16))
sz := hexToCompactInPlace(st.key)
n := [][]byte{st.key[:sz], st.val}
if err := rlp.Encode(&h.tmp, n); err != nil {
panic(err)
}
case emptyNode:
st.val = st.val[:0]
st.val = append(st.val, emptyRoot[:]...)
st.key = st.key[:0]
st.nodeType = hashedNode
return
default:
panic("Invalid node type")
}
st.key = st.key[:0]
st.nodeType = hashedNode
if len(h.tmp) < 32 {
st.val = st.val[:0]
st.val = append(st.val, h.tmp...)
return
}
// Going to write the hash to the 'val'. Need to ensure it's properly sized first
// Typically, 'branchNode's will have no 'val', and require this allocation
if required := 32 - len(st.val); required > 0 {
buf := make([]byte, required)
st.val = append(st.val, buf...)
}
st.val = st.val[:32]
h.sha.Reset()
h.sha.Write(h.tmp)
h.sha.Read(st.val)
if st.db != nil {
// TODO! Is it safe to Put the slice here?
// Do all db implementations copy the value provided?
st.db.Put(st.val, h.tmp)
}
}
// Hash returns the hash of the current node
func (st *StackTrie) Hash() (h common.Hash) {
st.hash()
if len(st.val) != 32 {
// If the node's RLP isn't 32 bytes long, the node will not
// be hashed, and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing.
ret := make([]byte, 32)
h := newHasher(false)
defer returnHasherToPool(h)
h.sha.Reset()
h.sha.Write(st.val)
h.sha.Read(ret)
return common.BytesToHash(ret)
}
return common.BytesToHash(st.val)
}
// Commit will commit the current node to database db
func (st *StackTrie) Commit(db ethdb.KeyValueStore) common.Hash {
oldDb := st.db
st.db = db
defer func() {
st.db = oldDb
}()
st.hash()
h := common.BytesToHash(st.val)
return h
}

@ -0,0 +1,242 @@
package trie
import (
"bytes"
"fmt"
"math/big"
mrand "math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
func TestSizeBug(t *testing.T) {
st := NewStackTrie(nil)
nt, _ := New(common.Hash{}, NewDatabase(memorydb.New()))
leaf := common.FromHex("290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563")
value := common.FromHex("94cf40d0d2b44f2b66e07cace1372ca42b73cf21a3")
nt.TryUpdate(leaf, value)
st.TryUpdate(leaf, value)
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
func TestEmptyBug(t *testing.T) {
st := NewStackTrie(nil)
nt, _ := New(common.Hash{}, NewDatabase(memorydb.New()))
//leaf := common.FromHex("290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563")
//value := common.FromHex("94cf40d0d2b44f2b66e07cace1372ca42b73cf21a3")
kvs := []struct {
K string
V string
}{
{K: "405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace", V: "9496f4ec2bf9dab484cac6be589e8417d84781be08"},
{K: "40edb63a35fcf86c08022722aa3287cdd36440d671b4918131b2514795fefa9c", V: "01"},
{K: "b10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6", V: "947a30f7736e48d6599356464ba4c150d8da0302ff"},
{K: "c2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b", V: "02"},
}
for _, kv := range kvs {
nt.TryUpdate(common.FromHex(kv.K), common.FromHex(kv.V))
st.TryUpdate(common.FromHex(kv.K), common.FromHex(kv.V))
}
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
func TestValLength56(t *testing.T) {
st := NewStackTrie(nil)
nt, _ := New(common.Hash{}, NewDatabase(memorydb.New()))
//leaf := common.FromHex("290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563")
//value := common.FromHex("94cf40d0d2b44f2b66e07cace1372ca42b73cf21a3")
kvs := []struct {
K string
V string
}{
{K: "405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace", V: "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111"},
}
for _, kv := range kvs {
nt.TryUpdate(common.FromHex(kv.K), common.FromHex(kv.V))
st.TryUpdate(common.FromHex(kv.K), common.FromHex(kv.V))
}
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
func genTxs(num uint64) (types.Transactions, error) {
key, err := crypto.HexToECDSA("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")
if err != nil {
return nil, err
}
var addr = crypto.PubkeyToAddress(key.PublicKey)
newTx := func(i uint64) (*types.Transaction, error) {
signer := types.NewEIP155Signer(big.NewInt(18))
tx, err := types.SignTx(types.NewTransaction(i, addr, new(big.Int), 0, new(big.Int).SetUint64(10000000), nil), signer, key)
return tx, err
}
var txs types.Transactions
for i := uint64(0); i < num; i++ {
tx, err := newTx(i)
if err != nil {
return nil, err
}
txs = append(txs, tx)
}
return txs, nil
}
func TestDeriveSha(t *testing.T) {
txs, err := genTxs(0)
if err != nil {
t.Fatal(err)
}
for len(txs) < 1000 {
exp := types.DeriveSha(txs, newEmpty())
got := types.DeriveSha(txs, NewStackTrie(nil))
if !bytes.Equal(got[:], exp[:]) {
t.Fatalf("%d txs: got %x exp %x", len(txs), got, exp)
}
newTxs, err := genTxs(uint64(len(txs) + 1))
if err != nil {
t.Fatal(err)
}
txs = append(txs, newTxs...)
}
}
func BenchmarkDeriveSha200(b *testing.B) {
txs, err := genTxs(200)
if err != nil {
b.Fatal(err)
}
var exp common.Hash
var got common.Hash
b.Run("std_trie", func(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
exp = types.DeriveSha(txs, newEmpty())
}
})
b.Run("stack_trie", func(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
got = types.DeriveSha(txs, NewStackTrie(nil))
}
})
if got != exp {
b.Errorf("got %x exp %x", got, exp)
}
}
type dummyDerivableList struct {
len int
seed int
}
func newDummy(seed int) *dummyDerivableList {
d := &dummyDerivableList{}
src := mrand.NewSource(int64(seed))
// don't use lists longer than 4K items
d.len = int(src.Int63() & 0x0FFF)
d.seed = seed
return d
}
func (d *dummyDerivableList) Len() int {
return d.len
}
func (d *dummyDerivableList) GetRlp(i int) []byte {
src := mrand.NewSource(int64(d.seed + i))
// max item size 256, at least 1 byte per item
size := 1 + src.Int63()&0x00FF
data := make([]byte, size)
_, err := mrand.New(src).Read(data)
if err != nil {
panic(err)
}
return data
}
func printList(l types.DerivableList) {
fmt.Printf("list length: %d\n", l.Len())
fmt.Printf("{\n")
for i := 0; i < l.Len(); i++ {
v := l.GetRlp(i)
fmt.Printf("\"0x%x\",\n", v)
}
fmt.Printf("},\n")
}
func TestFuzzDeriveSha(t *testing.T) {
// increase this for longer runs -- it's set to quite low for travis
rndSeed := mrand.Int()
for i := 0; i < 10; i++ {
seed := rndSeed + i
exp := types.DeriveSha(newDummy(i), newEmpty())
got := types.DeriveSha(newDummy(i), NewStackTrie(nil))
if !bytes.Equal(got[:], exp[:]) {
printList(newDummy(seed))
t.Fatalf("seed %d: got %x exp %x", seed, got, exp)
}
}
}
type flatList struct {
rlpvals []string
}
func newFlatList(rlpvals []string) *flatList {
return &flatList{rlpvals}
}
func (f *flatList) Len() int {
return len(f.rlpvals)
}
func (f *flatList) GetRlp(i int) []byte {
return hexutil.MustDecode(f.rlpvals[i])
}
// TestDerivableList contains testcases found via fuzzing
func TestDerivableList(t *testing.T) {
type tcase []string
tcs := []tcase{
{
"0xc041",
},
{
"0xf04cf757812428b0763112efb33b6f4fad7deb445e",
"0xf04cf757812428b0763112efb33b6f4fad7deb445e",
},
{
"0xca410605310cdc3bb8d4977ae4f0143df54a724ed873457e2272f39d66e0460e971d9d",
"0x6cd850eca0a7ac46bb1748d7b9cb88aa3bd21c57d852c28198ad8fa422c4595032e88a4494b4778b36b944fe47a52b8c5cd312910139dfcb4147ab8e972cc456bcb063f25dd78f54c4d34679e03142c42c662af52947d45bdb6e555751334ace76a5080ab5a0256a1d259855dfc5c0b8023b25befbb13fd3684f9f755cbd3d63544c78ee2001452dd54633a7593ade0b183891a0a4e9c7844e1254005fbe592b1b89149a502c24b6e1dca44c158aebedf01beae9c30cabe16a",
"0x14abd5c47c0be87b0454596baad2",
"0xca410605310cdc3bb8d4977ae4f0143df54a724ed873457e2272f39d66e0460e971d9d",
},
}
for i, tc := range tcs[1:] {
exp := types.DeriveSha(newFlatList(tc), newEmpty())
got := types.DeriveSha(newFlatList(tc), NewStackTrie(nil))
if !bytes.Equal(got[:], exp[:]) {
t.Fatalf("case %d: got %x exp %x", i, got, exp)
}
}
}
Loading…
Cancel
Save