core, eth: faster snapshot generation (#22504)

* eth/protocols: persist received state segments

* core: initial implementation

* core/state/snapshot: add tests

* core, eth: updates

* eth/protocols/snapshot: count flat state size

* core/state: add metrics

* core/state/snapshot: skip unnecessary deletion

* core/state/snapshot: rename

* core/state/snapshot: use the global batch

* core/state/snapshot: add logs and fix wiping

* core/state/snapshot: fix

* core/state/snapshot: save generation progress even if the batch is empty

* core/state/snapshot: fixes

* core/state/snapshot: fix initial account range length

* core/state/snapshot: fix initial account range

* eth/protocols/snap: store flat states during the healing

* eth/protocols/snap: print logs

* core/state/snapshot: refactor (#4)

* core/state/snapshot: refactor

* core/state/snapshot: tiny fix and polish

Co-authored-by: rjl493456442 <garyrong0905@gmail.com>

* core, eth: fixes

* core, eth: fix healing writer

* core, trie, eth: fix paths

* eth/protocols/snap: fix encoding

* eth, core: add debug log

* core/state/generate: release iterator asap (#5)

core/state/snapshot: less copy

core/state/snapshot: revert split loop

core/state/snapshot: handle storage becoming empty, improve test robustness

core/state: test modified codehash

core/state/snapshot: polish

* core/state/snapshot: optimize stats counter

* core, eth: add metric

* core/state/snapshot: update comments

* core/state/snapshot: improve tests

* core/state/snapshot: replace secure trie with standard trie

* core/state/snapshot: wrap return as the struct

* core/state/snapshot: skip wiping correct states

* core/state/snapshot: updates

* core/state/snapshot: fixes

* core/state/snapshot: fix panic due to reference flaw in closure

* core/state/snapshot: fix errors in state generation logic + fix log output

* core/state/snapshot: remove an error case

* core/state/snapshot: fix condition-check for exhausted snap state

* core/state/snapshot: use stackTrie for small tries

* core/state/snapshot: don't resolve small storage tries in vain

* core/state/snapshot: properly clean up storage of deleted accounts

* core/state/snapshot: avoid RLP-encoding in some cases + minor nitpicks

* core/state/snapshot: fix error (+testcase)

* core/state/snapshot: clean up tests a bit

* core/state/snapshot: work in progress on better tests

* core/state/snapshot: polish code

* core/state/snapshot: fix trie iteration abortion trigger

* core/state/snapshot: fixes flaws

* core/state/snapshot: remove panic

* core/state/snapshot: fix abort

* core/state/snapshot: more tests (plus failing testcase)

* core/state/snapshot: more testcases + fix for failing test

* core/state/snapshot: testcase for malformed data

* core/state/snapshot: some test nitpicks

* core/state/snapshot: improvements to logging

* core/state/snapshot: testcase to demo error in abortion

* core/state/snapshot: fix abortion

* cmd/geth: make verify-state report the root

* trie: fix failing test

* core/state/snapshot: add timer metrics

* core/state/snapshot: fix metrics

* core/state/snapshot: udpate tests

* eth/protocols/snap: write snapshot account even if code or state is needed

* core/state/snapshot: fix diskmore check

* core/state/snapshot: review fixes

* core/state/snapshot: improve error message

* cmd/geth: rename 'error' to 'err' in logs

* core/state/snapshot: fix some review concerns

* core/state/snapshot, eth/protocols/snap: clear snapshot marker when starting/resuming snap sync

* core: add error log

* core/state/snapshot: use proper timers for metrics collection

* core/state/snapshot: address some review concerns

* eth/protocols/snap: improved log message

* eth/protocols/snap: fix heal logs to condense infos

* core/state/snapshot: wait for generator termination before restarting

* core/state/snapshot: revert timers to counters to track total time

Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Péter Szilágyi <peterke@gmail.com>
pull/22666/head
gary rong 4 years ago committed by GitHub
parent a50251e6cb
commit 7088f1e814
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 38
      cmd/geth/snapshot.go
  2. 2
      core/state/snapshot/conversion.go
  3. 679
      core/state/snapshot/generate.go
  4. 649
      core/state/snapshot/generate_test.go
  5. 15
      core/state/snapshot/journal.go
  6. 10
      core/state/snapshot/snapshot.go
  7. 32
      core/state/snapshot/wipe.go
  8. 2
      core/state/statedb.go
  9. 24
      core/state/sync.go
  10. 12
      core/state/sync_test.go
  11. 2
      eth/downloader/statesync.go
  12. 81
      eth/protocols/snap/sync.go
  13. 4
      trie/committer.go
  14. 9
      trie/sync.go
  15. 17
      trie/trie.go
  16. 2
      trie/trie_test.go

@ -155,7 +155,7 @@ func pruneState(ctx *cli.Context) error {
chaindb := utils.MakeChainDatabase(ctx, stack, false) chaindb := utils.MakeChainDatabase(ctx, stack, false)
pruner, err := pruner.NewPruner(chaindb, stack.ResolvePath(""), stack.ResolvePath(config.Eth.TrieCleanCacheJournal), ctx.GlobalUint64(utils.BloomFilterSizeFlag.Name)) pruner, err := pruner.NewPruner(chaindb, stack.ResolvePath(""), stack.ResolvePath(config.Eth.TrieCleanCacheJournal), ctx.GlobalUint64(utils.BloomFilterSizeFlag.Name))
if err != nil { if err != nil {
log.Error("Failed to open snapshot tree", "error", err) log.Error("Failed to open snapshot tree", "err", err)
return err return err
} }
if ctx.NArg() > 1 { if ctx.NArg() > 1 {
@ -166,12 +166,12 @@ func pruneState(ctx *cli.Context) error {
if ctx.NArg() == 1 { if ctx.NArg() == 1 {
targetRoot, err = parseRoot(ctx.Args()[0]) targetRoot, err = parseRoot(ctx.Args()[0])
if err != nil { if err != nil {
log.Error("Failed to resolve state root", "error", err) log.Error("Failed to resolve state root", "err", err)
return err return err
} }
} }
if err = pruner.Prune(targetRoot); err != nil { if err = pruner.Prune(targetRoot); err != nil {
log.Error("Failed to prune state", "error", err) log.Error("Failed to prune state", "err", err)
return err return err
} }
return nil return nil
@ -189,7 +189,7 @@ func verifyState(ctx *cli.Context) error {
} }
snaptree, err := snapshot.New(chaindb, trie.NewDatabase(chaindb), 256, headBlock.Root(), false, false, false) snaptree, err := snapshot.New(chaindb, trie.NewDatabase(chaindb), 256, headBlock.Root(), false, false, false)
if err != nil { if err != nil {
log.Error("Failed to open snapshot tree", "error", err) log.Error("Failed to open snapshot tree", "err", err)
return err return err
} }
if ctx.NArg() > 1 { if ctx.NArg() > 1 {
@ -200,15 +200,15 @@ func verifyState(ctx *cli.Context) error {
if ctx.NArg() == 1 { if ctx.NArg() == 1 {
root, err = parseRoot(ctx.Args()[0]) root, err = parseRoot(ctx.Args()[0])
if err != nil { if err != nil {
log.Error("Failed to resolve state root", "error", err) log.Error("Failed to resolve state root", "err", err)
return err return err
} }
} }
if err := snaptree.Verify(root); err != nil { if err := snaptree.Verify(root); err != nil {
log.Error("Failed to verfiy state", "error", err) log.Error("Failed to verfiy state", "root", root, "err", err)
return err return err
} }
log.Info("Verified the state") log.Info("Verified the state", "root", root)
return nil return nil
} }
@ -236,7 +236,7 @@ func traverseState(ctx *cli.Context) error {
if ctx.NArg() == 1 { if ctx.NArg() == 1 {
root, err = parseRoot(ctx.Args()[0]) root, err = parseRoot(ctx.Args()[0])
if err != nil { if err != nil {
log.Error("Failed to resolve state root", "error", err) log.Error("Failed to resolve state root", "err", err)
return err return err
} }
log.Info("Start traversing the state", "root", root) log.Info("Start traversing the state", "root", root)
@ -247,7 +247,7 @@ func traverseState(ctx *cli.Context) error {
triedb := trie.NewDatabase(chaindb) triedb := trie.NewDatabase(chaindb)
t, err := trie.NewSecure(root, triedb) t, err := trie.NewSecure(root, triedb)
if err != nil { if err != nil {
log.Error("Failed to open trie", "root", root, "error", err) log.Error("Failed to open trie", "root", root, "err", err)
return err return err
} }
var ( var (
@ -262,13 +262,13 @@ func traverseState(ctx *cli.Context) error {
accounts += 1 accounts += 1
var acc state.Account var acc state.Account
if err := rlp.DecodeBytes(accIter.Value, &acc); err != nil { if err := rlp.DecodeBytes(accIter.Value, &acc); err != nil {
log.Error("Invalid account encountered during traversal", "error", err) log.Error("Invalid account encountered during traversal", "err", err)
return err return err
} }
if acc.Root != emptyRoot { if acc.Root != emptyRoot {
storageTrie, err := trie.NewSecure(acc.Root, triedb) storageTrie, err := trie.NewSecure(acc.Root, triedb)
if err != nil { if err != nil {
log.Error("Failed to open storage trie", "root", acc.Root, "error", err) log.Error("Failed to open storage trie", "root", acc.Root, "err", err)
return err return err
} }
storageIter := trie.NewIterator(storageTrie.NodeIterator(nil)) storageIter := trie.NewIterator(storageTrie.NodeIterator(nil))
@ -276,7 +276,7 @@ func traverseState(ctx *cli.Context) error {
slots += 1 slots += 1
} }
if storageIter.Err != nil { if storageIter.Err != nil {
log.Error("Failed to traverse storage trie", "root", acc.Root, "error", storageIter.Err) log.Error("Failed to traverse storage trie", "root", acc.Root, "err", storageIter.Err)
return storageIter.Err return storageIter.Err
} }
} }
@ -294,7 +294,7 @@ func traverseState(ctx *cli.Context) error {
} }
} }
if accIter.Err != nil { if accIter.Err != nil {
log.Error("Failed to traverse state trie", "root", root, "error", accIter.Err) log.Error("Failed to traverse state trie", "root", root, "err", accIter.Err)
return accIter.Err return accIter.Err
} }
log.Info("State is complete", "accounts", accounts, "slots", slots, "codes", codes, "elapsed", common.PrettyDuration(time.Since(start))) log.Info("State is complete", "accounts", accounts, "slots", slots, "codes", codes, "elapsed", common.PrettyDuration(time.Since(start)))
@ -326,7 +326,7 @@ func traverseRawState(ctx *cli.Context) error {
if ctx.NArg() == 1 { if ctx.NArg() == 1 {
root, err = parseRoot(ctx.Args()[0]) root, err = parseRoot(ctx.Args()[0])
if err != nil { if err != nil {
log.Error("Failed to resolve state root", "error", err) log.Error("Failed to resolve state root", "err", err)
return err return err
} }
log.Info("Start traversing the state", "root", root) log.Info("Start traversing the state", "root", root)
@ -337,7 +337,7 @@ func traverseRawState(ctx *cli.Context) error {
triedb := trie.NewDatabase(chaindb) triedb := trie.NewDatabase(chaindb)
t, err := trie.NewSecure(root, triedb) t, err := trie.NewSecure(root, triedb)
if err != nil { if err != nil {
log.Error("Failed to open trie", "root", root, "error", err) log.Error("Failed to open trie", "root", root, "err", err)
return err return err
} }
var ( var (
@ -368,13 +368,13 @@ func traverseRawState(ctx *cli.Context) error {
accounts += 1 accounts += 1
var acc state.Account var acc state.Account
if err := rlp.DecodeBytes(accIter.LeafBlob(), &acc); err != nil { if err := rlp.DecodeBytes(accIter.LeafBlob(), &acc); err != nil {
log.Error("Invalid account encountered during traversal", "error", err) log.Error("Invalid account encountered during traversal", "err", err)
return errors.New("invalid account") return errors.New("invalid account")
} }
if acc.Root != emptyRoot { if acc.Root != emptyRoot {
storageTrie, err := trie.NewSecure(acc.Root, triedb) storageTrie, err := trie.NewSecure(acc.Root, triedb)
if err != nil { if err != nil {
log.Error("Failed to open storage trie", "root", acc.Root, "error", err) log.Error("Failed to open storage trie", "root", acc.Root, "err", err)
return errors.New("missing storage trie") return errors.New("missing storage trie")
} }
storageIter := storageTrie.NodeIterator(nil) storageIter := storageTrie.NodeIterator(nil)
@ -397,7 +397,7 @@ func traverseRawState(ctx *cli.Context) error {
} }
} }
if storageIter.Error() != nil { if storageIter.Error() != nil {
log.Error("Failed to traverse storage trie", "root", acc.Root, "error", storageIter.Error()) log.Error("Failed to traverse storage trie", "root", acc.Root, "err", storageIter.Error())
return storageIter.Error() return storageIter.Error()
} }
} }
@ -416,7 +416,7 @@ func traverseRawState(ctx *cli.Context) error {
} }
} }
if accIter.Error() != nil { if accIter.Error() != nil {
log.Error("Failed to traverse state trie", "root", root, "error", accIter.Error()) log.Error("Failed to traverse state trie", "root", root, "err", accIter.Error())
return accIter.Error() return accIter.Error()
} }
log.Info("State is complete", "nodes", nodes, "accounts", accounts, "slots", slots, "codes", codes, "elapsed", common.PrettyDuration(time.Since(start))) log.Info("State is complete", "nodes", nodes, "accounts", accounts, "slots", slots, "codes", codes, "elapsed", common.PrettyDuration(time.Since(start)))

@ -322,7 +322,7 @@ func generateTrieRoot(db ethdb.KeyValueWriter, it Iterator, account common.Hash,
return return
} }
if !bytes.Equal(account.Root, subroot.Bytes()) { if !bytes.Equal(account.Root, subroot.Bytes()) {
results <- fmt.Errorf("invalid subroot(%x), want %x, got %x", it.Hash(), account.Root, subroot) results <- fmt.Errorf("invalid subroot(path %x), want %x, have %x", hash, account.Root, subroot)
return return
} }
results <- nil results <- nil

@ -19,17 +19,20 @@ package snapshot
import ( import (
"bytes" "bytes"
"encoding/binary" "encoding/binary"
"errors"
"fmt" "fmt"
"math/big" "math/big"
"time" "time"
"github.com/VictoriaMetrics/fastcache" "github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/trie"
) )
@ -40,17 +43,63 @@ var (
// emptyCode is the known hash of the empty EVM bytecode. // emptyCode is the known hash of the empty EVM bytecode.
emptyCode = crypto.Keccak256Hash(nil) emptyCode = crypto.Keccak256Hash(nil)
// accountCheckRange is the upper limit of the number of accounts involved in
// each range check. This is a value estimated based on experience. If this
// value is too large, the failure rate of range prove will increase. Otherwise
// the the value is too small, the efficiency of the state recovery will decrease.
accountCheckRange = 128
// storageCheckRange is the upper limit of the number of storage slots involved
// in each range check. This is a value estimated based on experience. If this
// value is too large, the failure rate of range prove will increase. Otherwise
// the the value is too small, the efficiency of the state recovery will decrease.
storageCheckRange = 1024
// errMissingTrie is returned if the target trie is missing while the generation
// is running. In this case the generation is aborted and wait the new signal.
errMissingTrie = errors.New("missing trie")
)
// Metrics in generation
var (
snapGeneratedAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/generated", nil)
snapRecoveredAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/recovered", nil)
snapWipedAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/wiped", nil)
snapMissallAccountMeter = metrics.NewRegisteredMeter("state/snapshot/generation/account/missall", nil)
snapGeneratedStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/generated", nil)
snapRecoveredStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/recovered", nil)
snapWipedStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/wiped", nil)
snapMissallStorageMeter = metrics.NewRegisteredMeter("state/snapshot/generation/storage/missall", nil)
snapSuccessfulRangeProofMeter = metrics.NewRegisteredMeter("state/snapshot/generation/proof/success", nil)
snapFailedRangeProofMeter = metrics.NewRegisteredMeter("state/snapshot/generation/proof/failure", nil)
// snapAccountProveCounter measures time spent on the account proving
snapAccountProveCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/prove", nil)
// snapAccountTrieReadCounter measures time spent on the account trie iteration
snapAccountTrieReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/trieread", nil)
// snapAccountSnapReadCounter measues time spent on the snapshot account iteration
snapAccountSnapReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/snapread", nil)
// snapAccountWriteCounter measures time spent on writing/updating/deleting accounts
snapAccountWriteCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/account/write", nil)
// snapStorageProveCounter measures time spent on storage proving
snapStorageProveCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/prove", nil)
// snapStorageTrieReadCounter measures time spent on the storage trie iteration
snapStorageTrieReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/trieread", nil)
// snapStorageSnapReadCounter measures time spent on the snapshot storage iteration
snapStorageSnapReadCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/snapread", nil)
// snapStorageWriteCounter measures time spent on writing/updating/deleting storages
snapStorageWriteCounter = metrics.NewRegisteredCounter("state/snapshot/generation/duration/storage/write", nil)
) )
// generatorStats is a collection of statistics gathered by the snapshot generator // generatorStats is a collection of statistics gathered by the snapshot generator
// for logging purposes. // for logging purposes.
type generatorStats struct { type generatorStats struct {
wiping chan struct{} // Notification channel if wiping is in progress
origin uint64 // Origin prefix where generation started origin uint64 // Origin prefix where generation started
start time.Time // Timestamp when generation started start time.Time // Timestamp when generation started
accounts uint64 // Number of accounts indexed accounts uint64 // Number of accounts indexed(generated or recovered)
slots uint64 // Number of storage slots indexed slots uint64 // Number of storage slots indexed(generated or recovered)
storage common.StorageSize // Account and storage slot size storage common.StorageSize // Total account and storage slot size(generation or recovery)
} }
// Log creates an contextual log with the given message and the context pulled // Log creates an contextual log with the given message and the context pulled
@ -91,25 +140,30 @@ func (gs *generatorStats) Log(msg string, root common.Hash, marker []byte) {
log.Info(msg, ctx...) log.Info(msg, ctx...)
} }
// ClearSnapshotMarker sets the snapshot marker to zero, meaning that snapshots
// are not usable.
func ClearSnapshotMarker(diskdb ethdb.KeyValueStore) {
batch := diskdb.NewBatch()
journalProgress(batch, []byte{}, nil)
if err := batch.Write(); err != nil {
log.Crit("Failed to write initialized state marker", "err", err)
}
}
// generateSnapshot regenerates a brand new snapshot based on an existing state // generateSnapshot regenerates a brand new snapshot based on an existing state
// database and head block asynchronously. The snapshot is returned immediately // database and head block asynchronously. The snapshot is returned immediately
// and generation is continued in the background until done. // and generation is continued in the background until done.
func generateSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash, wiper chan struct{}) *diskLayer { func generateSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int, root common.Hash) *diskLayer {
// Wipe any previously existing snapshot from the database if no wiper is
// currently in progress.
if wiper == nil {
wiper = wipeSnapshot(diskdb, true)
}
// Create a new disk layer with an initialized state marker at zero // Create a new disk layer with an initialized state marker at zero
var ( var (
stats = &generatorStats{wiping: wiper, start: time.Now()} stats = &generatorStats{start: time.Now()}
batch = diskdb.NewBatch() batch = diskdb.NewBatch()
genMarker = []byte{} // Initialized but empty! genMarker = []byte{} // Initialized but empty!
) )
rawdb.WriteSnapshotRoot(batch, root) rawdb.WriteSnapshotRoot(batch, root)
journalProgress(batch, genMarker, stats) journalProgress(batch, genMarker, stats)
if err := batch.Write(); err != nil { if err := batch.Write(); err != nil {
log.Crit("Failed to write initialized state marker", "error", err) log.Crit("Failed to write initialized state marker", "err", err)
} }
base := &diskLayer{ base := &diskLayer{
diskdb: diskdb, diskdb: diskdb,
@ -135,7 +189,6 @@ func journalProgress(db ethdb.KeyValueWriter, marker []byte, stats *generatorSta
Marker: marker, Marker: marker,
} }
if stats != nil { if stats != nil {
entry.Wiping = (stats.wiping != nil)
entry.Accounts = stats.accounts entry.Accounts = stats.accounts
entry.Slots = stats.slots entry.Slots = stats.slots
entry.Storage = uint64(stats.storage) entry.Storage = uint64(stats.storage)
@ -159,169 +212,521 @@ func journalProgress(db ethdb.KeyValueWriter, marker []byte, stats *generatorSta
rawdb.WriteSnapshotGenerator(db, blob) rawdb.WriteSnapshotGenerator(db, blob)
} }
// generate is a background thread that iterates over the state and storage tries, // proofResult contains the output of range proving which can be used
// constructing the state snapshot. All the arguments are purely for statistics // for further processing regardless if it is successful or not.
// gathering and logging, since the method surfs the blocks as they arrive, often type proofResult struct {
// being restarted. keys [][]byte // The key set of all elements being iterated, even proving is failed
func (dl *diskLayer) generate(stats *generatorStats) { vals [][]byte // The val set of all elements being iterated, even proving is failed
// If a database wipe is in operation, wait until it's done diskMore bool // Set when the database has extra snapshot states since last iteration
if stats.wiping != nil { trieMore bool // Set when the trie has extra snapshot states(only meaningful for successful proving)
stats.Log("Wiper running, state snapshotting paused", common.Hash{}, dl.genMarker) proofErr error // Indicator whether the given state range is valid or not
select { tr *trie.Trie // The trie, in case the trie was resolved by the prover (may be nil)
// If wiper is done, resume normal mode of operation }
case <-stats.wiping:
stats.wiping = nil
stats.start = time.Now()
// If generator was aborted during wipe, return // valid returns the indicator that range proof is successful or not.
case abort := <-dl.genAbort: func (result *proofResult) valid() bool {
abort <- stats return result.proofErr == nil
return }
// last returns the last verified element key regardless of whether the range proof is
// successful or not. Nil is returned if nothing involved in the proving.
func (result *proofResult) last() []byte {
var last []byte
if len(result.keys) > 0 {
last = result.keys[len(result.keys)-1]
}
return last
}
// forEach iterates all the visited elements and applies the given callback on them.
// The iteration is aborted if the callback returns non-nil error.
func (result *proofResult) forEach(callback func(key []byte, val []byte) error) error {
for i := 0; i < len(result.keys); i++ {
key, val := result.keys[i], result.vals[i]
if err := callback(key, val); err != nil {
return err
}
}
return nil
}
// proveRange proves the snapshot segment with particular prefix is "valid".
// The iteration start point will be assigned if the iterator is restored from
// the last interruption. Max will be assigned in order to limit the maximum
// amount of data involved in each iteration.
//
// The proof result will be returned if the range proving is finished, otherwise
// the error will be returned to abort the entire procedure.
func (dl *diskLayer) proveRange(stats *generatorStats, root common.Hash, prefix []byte, kind string, origin []byte, max int, valueConvertFn func([]byte) ([]byte, error)) (*proofResult, error) {
var (
keys [][]byte
vals [][]byte
proof = rawdb.NewMemoryDatabase()
diskMore = false
)
iter := dl.diskdb.NewIterator(prefix, origin)
defer iter.Release()
var start = time.Now()
for iter.Next() {
key := iter.Key()
if len(key) != len(prefix)+common.HashLength {
continue
}
if len(keys) == max {
// Break if we've reached the max size, and signal that we're not
// done yet.
diskMore = true
break
}
keys = append(keys, common.CopyBytes(key[len(prefix):]))
if valueConvertFn == nil {
vals = append(vals, common.CopyBytes(iter.Value()))
} else {
val, err := valueConvertFn(iter.Value())
if err != nil {
// Special case, the state data is corrupted (invalid slim-format account),
// don't abort the entire procedure directly. Instead, let the fallback
// generation to heal the invalid data.
//
// Here append the original value to ensure that the number of key and
// value are the same.
vals = append(vals, common.CopyBytes(iter.Value()))
log.Error("Failed to convert account state data", "err", err)
} else {
vals = append(vals, val)
}
}
}
// Update metrics for database iteration and merkle proving
if kind == "storage" {
snapStorageSnapReadCounter.Inc(time.Since(start).Nanoseconds())
} else {
snapAccountSnapReadCounter.Inc(time.Since(start).Nanoseconds())
}
defer func(start time.Time) {
if kind == "storage" {
snapStorageProveCounter.Inc(time.Since(start).Nanoseconds())
} else {
snapAccountProveCounter.Inc(time.Since(start).Nanoseconds())
}
}(time.Now())
// The snap state is exhausted, pass the entire key/val set for verification
if origin == nil && !diskMore {
stackTr := trie.NewStackTrie(nil)
for i, key := range keys {
stackTr.TryUpdate(key, common.CopyBytes(vals[i]))
}
if gotRoot := stackTr.Hash(); gotRoot != root {
return &proofResult{
keys: keys,
vals: vals,
proofErr: fmt.Errorf("wrong root: have %#x want %#x", gotRoot, root),
}, nil
} }
return &proofResult{keys: keys, vals: vals}, nil
} }
// Create an account and state iterator pointing to the current generator marker // Snap state is chunked, generate edge proofs for verification.
accTrie, err := trie.NewSecure(dl.root, dl.triedb) tr, err := trie.New(root, dl.triedb)
if err != nil { if err != nil {
// The account trie is missing (GC), surf the chain until one becomes available
stats.Log("Trie missing, state snapshotting paused", dl.root, dl.genMarker) stats.Log("Trie missing, state snapshotting paused", dl.root, dl.genMarker)
return nil, errMissingTrie
}
// Firstly find out the key of last iterated element.
var last []byte
if len(keys) > 0 {
last = keys[len(keys)-1]
}
// Generate the Merkle proofs for the first and last element
if origin == nil {
origin = common.Hash{}.Bytes()
}
if err := tr.Prove(origin, 0, proof); err != nil {
log.Debug("Failed to prove range", "kind", kind, "origin", origin, "err", err)
return &proofResult{
keys: keys,
vals: vals,
diskMore: diskMore,
proofErr: err,
tr: tr,
}, nil
}
if last != nil {
if err := tr.Prove(last, 0, proof); err != nil {
log.Debug("Failed to prove range", "kind", kind, "last", last, "err", err)
return &proofResult{
keys: keys,
vals: vals,
diskMore: diskMore,
proofErr: err,
tr: tr,
}, nil
}
}
// Verify the snapshot segment with range prover, ensure that all flat states
// in this range correspond to merkle trie.
_, _, _, cont, err := trie.VerifyRangeProof(root, origin, last, keys, vals, proof)
return &proofResult{
keys: keys,
vals: vals,
diskMore: diskMore,
trieMore: cont,
proofErr: err,
tr: tr},
nil
}
abort := <-dl.genAbort // onStateCallback is a function that is called by generateRange, when processing a range of
abort <- stats // accounts or storage slots. For each element, the callback is invoked.
return // If 'delete' is true, then this element (and potential slots) needs to be deleted from the snapshot.
// If 'write' is true, then this element needs to be updated with the 'val'.
// If 'write' is false, then this element is already correct, and needs no update. However,
// for accounts, the storage trie of the account needs to be checked.
// The 'val' is the canonical encoding of the value (not the slim format for accounts)
type onStateCallback func(key []byte, val []byte, write bool, delete bool) error
// generateRange generates the state segment with particular prefix. Generation can
// either verify the correctness of existing state through rangeproof and skip
// generation, or iterate trie to regenerate state on demand.
func (dl *diskLayer) generateRange(root common.Hash, prefix []byte, kind string, origin []byte, max int, stats *generatorStats, onState onStateCallback, valueConvertFn func([]byte) ([]byte, error)) (bool, []byte, error) {
// Use range prover to check the validity of the flat state in the range
result, err := dl.proveRange(stats, root, prefix, kind, origin, max, valueConvertFn)
if err != nil {
return false, nil, err
} }
stats.Log("Resuming state snapshot generation", dl.root, dl.genMarker) last := result.last()
// Construct contextual logger
logCtx := []interface{}{"kind", kind, "prefix", hexutil.Encode(prefix)}
if len(origin) > 0 {
logCtx = append(logCtx, "origin", hexutil.Encode(origin))
}
logger := log.New(logCtx...)
// The range prover says the range is correct, skip trie iteration
if result.valid() {
snapSuccessfulRangeProofMeter.Mark(1)
logger.Trace("Proved state range", "last", hexutil.Encode(last))
var accMarker []byte // The verification is passed, process each state with the given
// callback function. If this state represents a contract, the
// corresponding storage check will be performed in the callback
if err := result.forEach(func(key []byte, val []byte) error { return onState(key, val, false, false) }); err != nil {
return false, nil, err
}
// Only abort the iteration when both database and trie are exhausted
return !result.diskMore && !result.trieMore, last, nil
}
logger.Trace("Detected outdated state range", "last", hexutil.Encode(last), "err", result.proofErr)
snapFailedRangeProofMeter.Mark(1)
// Special case, the entire trie is missing. In the original trie scheme,
// all the duplicated subtries will be filter out(only one copy of data
// will be stored). While in the snapshot model, all the storage tries
// belong to different contracts will be kept even they are duplicated.
// Track it to a certain extent remove the noise data used for statistics.
if origin == nil && last == nil {
meter := snapMissallAccountMeter
if kind == "storage" {
meter = snapMissallStorageMeter
}
meter.Mark(1)
}
tr := result.tr
if tr == nil {
tr, err = trie.New(root, dl.triedb)
if err != nil {
stats.Log("Trie missing, state snapshotting paused", dl.root, dl.genMarker)
return false, nil, errMissingTrie
}
}
var (
trieMore bool
iter = trie.NewIterator(tr.NodeIterator(origin))
kvkeys, kvvals = result.keys, result.vals
// counters
count = 0 // number of states delivered by iterator
created = 0 // states created from the trie
updated = 0 // states updated from the trie
deleted = 0 // states not in trie, but were in snapshot
untouched = 0 // states already correct
// timers
start = time.Now()
internal time.Duration
)
for iter.Next() {
if last != nil && bytes.Compare(iter.Key, last) > 0 {
trieMore = true
break
}
count++
write := true
created++
for len(kvkeys) > 0 {
if cmp := bytes.Compare(kvkeys[0], iter.Key); cmp < 0 {
// delete the key
istart := time.Now()
if err := onState(kvkeys[0], nil, false, true); err != nil {
return false, nil, err
}
kvkeys = kvkeys[1:]
kvvals = kvvals[1:]
deleted++
internal += time.Since(istart)
continue
} else if cmp == 0 {
// the snapshot key can be overwritten
created--
if write = !bytes.Equal(kvvals[0], iter.Value); write {
updated++
} else {
untouched++
}
kvkeys = kvkeys[1:]
kvvals = kvvals[1:]
}
break
}
istart := time.Now()
if err := onState(iter.Key, iter.Value, write, false); err != nil {
return false, nil, err
}
internal += time.Since(istart)
}
if iter.Err != nil {
return false, nil, iter.Err
}
// Delete all stale snapshot states remaining
istart := time.Now()
for _, key := range kvkeys {
if err := onState(key, nil, false, true); err != nil {
return false, nil, err
}
deleted += 1
}
internal += time.Since(istart)
// Update metrics for counting trie iteration
if kind == "storage" {
snapStorageTrieReadCounter.Inc((time.Since(start) - internal).Nanoseconds())
} else {
snapAccountTrieReadCounter.Inc((time.Since(start) - internal).Nanoseconds())
}
logger.Debug("Regenerated state range", "root", root, "last", hexutil.Encode(last),
"count", count, "created", created, "updated", updated, "untouched", untouched, "deleted", deleted)
// If there are either more trie items, or there are more snap items
// (in the next segment), then we need to keep working
return !trieMore && !result.diskMore, last, nil
}
// generate is a background thread that iterates over the state and storage tries,
// constructing the state snapshot. All the arguments are purely for statistics
// gathering and logging, since the method surfs the blocks as they arrive, often
// being restarted.
func (dl *diskLayer) generate(stats *generatorStats) {
var (
accMarker []byte
accountRange = accountCheckRange
)
if len(dl.genMarker) > 0 { // []byte{} is the start, use nil for that if len(dl.genMarker) > 0 { // []byte{} is the start, use nil for that
accMarker = dl.genMarker[:common.HashLength] // Always reset the initial account range as 1
// whenever recover from the interruption.
accMarker, accountRange = dl.genMarker[:common.HashLength], 1
} }
accIt := trie.NewIterator(accTrie.NodeIterator(accMarker)) var (
batch := dl.diskdb.NewBatch() batch = dl.diskdb.NewBatch()
logged = time.Now()
accOrigin = common.CopyBytes(accMarker)
abort chan *generatorStats
)
stats.Log("Resuming state snapshot generation", dl.root, dl.genMarker)
// Iterate from the previous marker and continue generating the state snapshot checkAndFlush := func(currentLocation []byte) error {
logged := time.Now() select {
for accIt.Next() { case abort = <-dl.genAbort:
// Retrieve the current account and flatten it into the internal format default:
accountHash := common.BytesToHash(accIt.Key) }
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Flush out the batch anyway no matter it's empty or not.
// It's possible that all the states are recovered and the
// generation indeed makes progress.
journalProgress(batch, currentLocation, stats)
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
dl.lock.Lock()
dl.genMarker = currentLocation
dl.lock.Unlock()
if abort != nil {
stats.Log("Aborting state snapshot generation", dl.root, currentLocation)
return errors.New("aborted")
}
}
if time.Since(logged) > 8*time.Second {
stats.Log("Generating state snapshot", dl.root, currentLocation)
logged = time.Now()
}
return nil
}
onAccount := func(key []byte, val []byte, write bool, delete bool) error {
var (
start = time.Now()
accountHash = common.BytesToHash(key)
)
if delete {
rawdb.DeleteAccountSnapshot(batch, accountHash)
snapWipedAccountMeter.Mark(1)
// Ensure that any previous snapshot storage values are cleared
prefix := append(rawdb.SnapshotStoragePrefix, accountHash.Bytes()...)
keyLen := len(rawdb.SnapshotStoragePrefix) + 2*common.HashLength
if err := wipeKeyRange(dl.diskdb, "storage", prefix, nil, nil, keyLen, snapWipedStorageMeter, false); err != nil {
return err
}
snapAccountWriteCounter.Inc(time.Since(start).Nanoseconds())
return nil
}
// Retrieve the current account and flatten it into the internal format
var acc struct { var acc struct {
Nonce uint64 Nonce uint64
Balance *big.Int Balance *big.Int
Root common.Hash Root common.Hash
CodeHash []byte CodeHash []byte
} }
if err := rlp.DecodeBytes(accIt.Value, &acc); err != nil { if err := rlp.DecodeBytes(val, &acc); err != nil {
log.Crit("Invalid account encountered during snapshot creation", "err", err) log.Crit("Invalid account encountered during snapshot creation", "err", err)
} }
data := SlimAccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash)
// If the account is not yet in-progress, write it out // If the account is not yet in-progress, write it out
if accMarker == nil || !bytes.Equal(accountHash[:], accMarker) { if accMarker == nil || !bytes.Equal(accountHash[:], accMarker) {
rawdb.WriteAccountSnapshot(batch, accountHash, data) dataLen := len(val) // Approximate size, saves us a round of RLP-encoding
stats.storage += common.StorageSize(1 + common.HashLength + len(data)) if !write {
if bytes.Equal(acc.CodeHash, emptyCode[:]) {
dataLen -= 32
}
if acc.Root == emptyRoot {
dataLen -= 32
}
snapRecoveredAccountMeter.Mark(1)
} else {
data := SlimAccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash)
dataLen = len(data)
rawdb.WriteAccountSnapshot(batch, accountHash, data)
snapGeneratedAccountMeter.Mark(1)
}
stats.storage += common.StorageSize(1 + common.HashLength + dataLen)
stats.accounts++ stats.accounts++
} }
// If we've exceeded our batch allowance or termination was requested, flush to disk // If we've exceeded our batch allowance or termination was requested, flush to disk
var abort chan *generatorStats if err := checkAndFlush(accountHash[:]); err != nil {
select { return err
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Only write and set the marker if we actually did something useful
if batch.ValueSize() > 0 {
// Ensure the generator entry is in sync with the data
marker := accountHash[:]
journalProgress(batch, marker, stats)
batch.Write()
batch.Reset()
dl.lock.Lock()
dl.genMarker = marker
dl.lock.Unlock()
}
if abort != nil {
stats.Log("Aborting state snapshot generation", dl.root, accountHash[:])
abort <- stats
return
}
} }
// If the account is in-progress, continue where we left off (otherwise iterate all) // If the iterated account is the contract, create a further loop to
if acc.Root != emptyRoot { // verify or regenerate the contract storage.
storeTrie, err := trie.NewSecure(acc.Root, dl.triedb) if acc.Root == emptyRoot {
if err != nil { // If the root is empty, we still need to ensure that any previous snapshot
log.Error("Generator failed to access storage trie", "root", dl.root, "account", accountHash, "stroot", acc.Root, "err", err) // storage values are cleared
abort := <-dl.genAbort // TODO: investigate if this can be avoided, this will be very costly since it
abort <- stats // affects every single EOA account
return // - Perhaps we can avoid if where codeHash is emptyCode
prefix := append(rawdb.SnapshotStoragePrefix, accountHash.Bytes()...)
keyLen := len(rawdb.SnapshotStoragePrefix) + 2*common.HashLength
if err := wipeKeyRange(dl.diskdb, "storage", prefix, nil, nil, keyLen, snapWipedStorageMeter, false); err != nil {
return err
} }
snapAccountWriteCounter.Inc(time.Since(start).Nanoseconds())
} else {
snapAccountWriteCounter.Inc(time.Since(start).Nanoseconds())
var storeMarker []byte var storeMarker []byte
if accMarker != nil && bytes.Equal(accountHash[:], accMarker) && len(dl.genMarker) > common.HashLength { if accMarker != nil && bytes.Equal(accountHash[:], accMarker) && len(dl.genMarker) > common.HashLength {
storeMarker = dl.genMarker[common.HashLength:] storeMarker = dl.genMarker[common.HashLength:]
} }
storeIt := trie.NewIterator(storeTrie.NodeIterator(storeMarker)) onStorage := func(key []byte, val []byte, write bool, delete bool) error {
for storeIt.Next() { defer func(start time.Time) {
rawdb.WriteStorageSnapshot(batch, accountHash, common.BytesToHash(storeIt.Key), storeIt.Value) snapStorageWriteCounter.Inc(time.Since(start).Nanoseconds())
stats.storage += common.StorageSize(1 + 2*common.HashLength + len(storeIt.Value)) }(time.Now())
if delete {
rawdb.DeleteStorageSnapshot(batch, accountHash, common.BytesToHash(key))
snapWipedStorageMeter.Mark(1)
return nil
}
if write {
rawdb.WriteStorageSnapshot(batch, accountHash, common.BytesToHash(key), val)
snapGeneratedStorageMeter.Mark(1)
} else {
snapRecoveredStorageMeter.Mark(1)
}
stats.storage += common.StorageSize(1 + 2*common.HashLength + len(val))
stats.slots++ stats.slots++
// If we've exceeded our batch allowance or termination was requested, flush to disk // If we've exceeded our batch allowance or termination was requested, flush to disk
var abort chan *generatorStats if err := checkAndFlush(append(accountHash[:], key...)); err != nil {
select { return err
case abort = <-dl.genAbort:
default:
}
if batch.ValueSize() > ethdb.IdealBatchSize || abort != nil {
// Only write and set the marker if we actually did something useful
if batch.ValueSize() > 0 {
// Ensure the generator entry is in sync with the data
marker := append(accountHash[:], storeIt.Key...)
journalProgress(batch, marker, stats)
batch.Write()
batch.Reset()
dl.lock.Lock()
dl.genMarker = marker
dl.lock.Unlock()
}
if abort != nil {
stats.Log("Aborting state snapshot generation", dl.root, append(accountHash[:], storeIt.Key...))
abort <- stats
return
}
if time.Since(logged) > 8*time.Second {
stats.Log("Generating state snapshot", dl.root, append(accountHash[:], storeIt.Key...))
logged = time.Now()
}
} }
return nil
} }
if err := storeIt.Err; err != nil { var storeOrigin = common.CopyBytes(storeMarker)
log.Error("Generator failed to iterate storage trie", "accroot", dl.root, "acchash", common.BytesToHash(accIt.Key), "stroot", acc.Root, "err", err) for {
abort := <-dl.genAbort exhausted, last, err := dl.generateRange(acc.Root, append(rawdb.SnapshotStoragePrefix, accountHash.Bytes()...), "storage", storeOrigin, storageCheckRange, stats, onStorage, nil)
abort <- stats if err != nil {
return return err
}
if exhausted {
break
}
if storeOrigin = increaseKey(last); storeOrigin == nil {
break // special case, the last is 0xffffffff...fff
}
} }
} }
if time.Since(logged) > 8*time.Second {
stats.Log("Generating state snapshot", dl.root, accIt.Key)
logged = time.Now()
}
// Some account processed, unmark the marker // Some account processed, unmark the marker
accMarker = nil accMarker = nil
return nil
} }
if err := accIt.Err; err != nil {
log.Error("Generator failed to iterate account trie", "root", dl.root, "err", err) // Global loop for regerating the entire state trie + all layered storage tries.
abort := <-dl.genAbort for {
abort <- stats exhausted, last, err := dl.generateRange(dl.root, rawdb.SnapshotAccountPrefix, "account", accOrigin, accountRange, stats, onAccount, FullAccountRLP)
return // The procedure it aborted, either by external signal or internal error
if err != nil {
if abort == nil { // aborted by internal error, wait the signal
abort = <-dl.genAbort
}
abort <- stats
return
}
// Abort the procedure if the entire snapshot is generated
if exhausted {
break
}
if accOrigin = increaseKey(last); accOrigin == nil {
break // special case, the last is 0xffffffff...fff
}
accountRange = accountCheckRange
} }
// Snapshot fully generated, set the marker to nil. // Snapshot fully generated, set the marker to nil.
// Note even there is nothing to commit, persist the // Note even there is nothing to commit, persist the
// generator anyway to mark the snapshot is complete. // generator anyway to mark the snapshot is complete.
journalProgress(batch, nil, stats) journalProgress(batch, nil, stats)
batch.Write() if err := batch.Write(); err != nil {
log.Error("Failed to flush batch", "err", err)
abort = <-dl.genAbort
abort <- stats
return
}
batch.Reset()
log.Info("Generated state snapshot", "accounts", stats.accounts, "slots", stats.slots, log.Info("Generated state snapshot", "accounts", stats.accounts, "slots", stats.slots,
"storage", stats.storage, "elapsed", common.PrettyDuration(time.Since(stats.start))) "storage", stats.storage, "elapsed", common.PrettyDuration(time.Since(stats.start)))
@ -332,6 +737,18 @@ func (dl *diskLayer) generate(stats *generatorStats) {
dl.lock.Unlock() dl.lock.Unlock()
// Someone will be looking for us, wait it out // Someone will be looking for us, wait it out
abort := <-dl.genAbort abort = <-dl.genAbort
abort <- nil abort <- nil
} }
// increaseKey increase the input key by one bit. Return nil if the entire
// addition operation overflows,
func increaseKey(key []byte) []byte {
for i := len(key) - 1; i >= 0; i-- {
key[i]++
if key[i] != 0x0 {
return key
}
}
return nil
}

@ -17,16 +17,361 @@
package snapshot package snapshot
import ( import (
"fmt"
"math/big" "math/big"
"os"
"testing" "testing"
"time" "time"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb" "github.com/ethereum/go-ethereum/ethdb/memorydb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/trie"
"golang.org/x/crypto/sha3"
) )
// Tests that snapshot generation from an empty database.
func TestGeneration(t *testing.T) {
// We can't use statedb to make a test trie (circular dependency), so make
// a fake one manually. We're going with a small account trie of 3 accounts,
// two of which also has the same 3-slot storage trie attached.
var (
diskdb = memorydb.New()
triedb = trie.NewDatabase(diskdb)
)
stTrie, _ := trie.NewSecure(common.Hash{}, triedb)
stTrie.Update([]byte("key-1"), []byte("val-1")) // 0x1314700b81afc49f94db3623ef1df38f3ed18b73a1b7ea2f6c095118cf6118a0
stTrie.Update([]byte("key-2"), []byte("val-2")) // 0x18a0f4d79cff4459642dd7604f303886ad9d77c30cf3d7d7cedb3a693ab6d371
stTrie.Update([]byte("key-3"), []byte("val-3")) // 0x51c71a47af0695957647fb68766d0becee77e953df17c29b3c2f25436f055c78
stTrie.Commit(nil) // Root: 0xddefcd9376dd029653ef384bd2f0a126bb755fe84fdcc9e7cf421ba454f2bc67
accTrie, _ := trie.NewSecure(common.Hash{}, triedb)
acc := &Account{Balance: big.NewInt(1), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-1"), val) // 0x9250573b9c18c664139f3b6a7a8081b7d8f8916a8fcc5d94feec6c29f5fd4e9e
acc = &Account{Balance: big.NewInt(2), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()}
val, _ = rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-2"), val) // 0x65145f923027566669a1ae5ccac66f945b55ff6eaeb17d2ea8e048b7d381f2d7
acc = &Account{Balance: big.NewInt(3), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ = rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-3"), val) // 0x50815097425d000edfc8b3a4a13e175fc2bdcfee8bdfbf2d1ff61041d3c235b2
root, _ := accTrie.Commit(nil) // Root: 0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd
triedb.Commit(root, false, nil)
if have, want := root, common.HexToHash("0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd"); have != want {
t.Fatalf("have %#x want %#x", have, want)
}
snap := generateSnapshot(diskdb, triedb, 16, root)
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
func hashData(input []byte) common.Hash {
var hasher = sha3.NewLegacyKeccak256()
var hash common.Hash
hasher.Reset()
hasher.Write(input)
hasher.Sum(hash[:0])
return hash
}
// Tests that snapshot generation with existent flat state.
func TestGenerateExistentState(t *testing.T) {
// We can't use statedb to make a test trie (circular dependency), so make
// a fake one manually. We're going with a small account trie of 3 accounts,
// two of which also has the same 3-slot storage trie attached.
var (
diskdb = memorydb.New()
triedb = trie.NewDatabase(diskdb)
)
stTrie, _ := trie.NewSecure(common.Hash{}, triedb)
stTrie.Update([]byte("key-1"), []byte("val-1")) // 0x1314700b81afc49f94db3623ef1df38f3ed18b73a1b7ea2f6c095118cf6118a0
stTrie.Update([]byte("key-2"), []byte("val-2")) // 0x18a0f4d79cff4459642dd7604f303886ad9d77c30cf3d7d7cedb3a693ab6d371
stTrie.Update([]byte("key-3"), []byte("val-3")) // 0x51c71a47af0695957647fb68766d0becee77e953df17c29b3c2f25436f055c78
stTrie.Commit(nil) // Root: 0xddefcd9376dd029653ef384bd2f0a126bb755fe84fdcc9e7cf421ba454f2bc67
accTrie, _ := trie.NewSecure(common.Hash{}, triedb)
acc := &Account{Balance: big.NewInt(1), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-1"), val) // 0x9250573b9c18c664139f3b6a7a8081b7d8f8916a8fcc5d94feec6c29f5fd4e9e
rawdb.WriteAccountSnapshot(diskdb, hashData([]byte("acc-1")), val)
rawdb.WriteStorageSnapshot(diskdb, hashData([]byte("acc-1")), hashData([]byte("key-1")), []byte("val-1"))
rawdb.WriteStorageSnapshot(diskdb, hashData([]byte("acc-1")), hashData([]byte("key-2")), []byte("val-2"))
rawdb.WriteStorageSnapshot(diskdb, hashData([]byte("acc-1")), hashData([]byte("key-3")), []byte("val-3"))
acc = &Account{Balance: big.NewInt(2), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()}
val, _ = rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-2"), val) // 0x65145f923027566669a1ae5ccac66f945b55ff6eaeb17d2ea8e048b7d381f2d7
diskdb.Put(hashData([]byte("acc-2")).Bytes(), val)
rawdb.WriteAccountSnapshot(diskdb, hashData([]byte("acc-2")), val)
acc = &Account{Balance: big.NewInt(3), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ = rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-3"), val) // 0x50815097425d000edfc8b3a4a13e175fc2bdcfee8bdfbf2d1ff61041d3c235b2
rawdb.WriteAccountSnapshot(diskdb, hashData([]byte("acc-3")), val)
rawdb.WriteStorageSnapshot(diskdb, hashData([]byte("acc-3")), hashData([]byte("key-1")), []byte("val-1"))
rawdb.WriteStorageSnapshot(diskdb, hashData([]byte("acc-3")), hashData([]byte("key-2")), []byte("val-2"))
rawdb.WriteStorageSnapshot(diskdb, hashData([]byte("acc-3")), hashData([]byte("key-3")), []byte("val-3"))
root, _ := accTrie.Commit(nil) // Root: 0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd
triedb.Commit(root, false, nil)
snap := generateSnapshot(diskdb, triedb, 16, root)
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
func checkSnapRoot(t *testing.T, snap *diskLayer, trieRoot common.Hash) {
t.Helper()
accIt := snap.AccountIterator(common.Hash{})
defer accIt.Release()
snapRoot, err := generateTrieRoot(nil, accIt, common.Hash{}, stackTrieGenerate,
func(db ethdb.KeyValueWriter, accountHash, codeHash common.Hash, stat *generateStats) (common.Hash, error) {
storageIt, _ := snap.StorageIterator(accountHash, common.Hash{})
defer storageIt.Release()
hash, err := generateTrieRoot(nil, storageIt, accountHash, stackTrieGenerate, nil, stat, false)
if err != nil {
return common.Hash{}, err
}
return hash, nil
}, newGenerateStats(), true)
if err != nil {
t.Fatal(err)
}
if snapRoot != trieRoot {
t.Fatalf("snaproot: %#x != trieroot #%x", snapRoot, trieRoot)
}
}
type testHelper struct {
diskdb *memorydb.Database
triedb *trie.Database
accTrie *trie.SecureTrie
}
func newHelper() *testHelper {
diskdb := memorydb.New()
triedb := trie.NewDatabase(diskdb)
accTrie, _ := trie.NewSecure(common.Hash{}, triedb)
return &testHelper{
diskdb: diskdb,
triedb: triedb,
accTrie: accTrie,
}
}
func (t *testHelper) addTrieAccount(acckey string, acc *Account) {
val, _ := rlp.EncodeToBytes(acc)
t.accTrie.Update([]byte(acckey), val)
}
func (t *testHelper) addSnapAccount(acckey string, acc *Account) {
val, _ := rlp.EncodeToBytes(acc)
key := hashData([]byte(acckey))
rawdb.WriteAccountSnapshot(t.diskdb, key, val)
}
func (t *testHelper) addAccount(acckey string, acc *Account) {
t.addTrieAccount(acckey, acc)
t.addSnapAccount(acckey, acc)
}
func (t *testHelper) addSnapStorage(accKey string, keys []string, vals []string) {
accHash := hashData([]byte(accKey))
for i, key := range keys {
rawdb.WriteStorageSnapshot(t.diskdb, accHash, hashData([]byte(key)), []byte(vals[i]))
}
}
func (t *testHelper) makeStorageTrie(keys []string, vals []string) []byte {
stTrie, _ := trie.NewSecure(common.Hash{}, t.triedb)
for i, k := range keys {
stTrie.Update([]byte(k), []byte(vals[i]))
}
root, _ := stTrie.Commit(nil)
return root.Bytes()
}
func (t *testHelper) Generate() (common.Hash, *diskLayer) {
root, _ := t.accTrie.Commit(nil)
t.triedb.Commit(root, false, nil)
snap := generateSnapshot(t.diskdb, t.triedb, 16, root)
return root, snap
}
// Tests that snapshot generation with existent flat state, where the flat state
// contains some errors:
// - the contract with empty storage root but has storage entries in the disk
// - the contract with non empty storage root but empty storage slots
// - the contract(non-empty storage) misses some storage slots
// - miss in the beginning
// - miss in the middle
// - miss in the end
// - the contract(non-empty storage) has wrong storage slots
// - wrong slots in the beginning
// - wrong slots in the middle
// - wrong slots in the end
// - the contract(non-empty storage) has extra storage slots
// - extra slots in the beginning
// - extra slots in the middle
// - extra slots in the end
func TestGenerateExistentStateWithWrongStorage(t *testing.T) {
helper := newHelper()
stRoot := helper.makeStorageTrie([]string{"key-1", "key-2", "key-3"}, []string{"val-1", "val-2", "val-3"})
// Account one, empty root but non-empty database
helper.addAccount("acc-1", &Account{Balance: big.NewInt(1), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-1", []string{"key-1", "key-2", "key-3"}, []string{"val-1", "val-2", "val-3"})
// Account two, non empty root but empty database
helper.addAccount("acc-2", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
// Miss slots
{
// Account three, non empty root but misses slots in the beginning
helper.addAccount("acc-3", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-3", []string{"key-2", "key-3"}, []string{"val-2", "val-3"})
// Account four, non empty root but misses slots in the middle
helper.addAccount("acc-4", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-4", []string{"key-1", "key-3"}, []string{"val-1", "val-3"})
// Account five, non empty root but misses slots in the end
helper.addAccount("acc-5", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-5", []string{"key-1", "key-2"}, []string{"val-1", "val-2"})
}
// Wrong storage slots
{
// Account six, non empty root but wrong slots in the beginning
helper.addAccount("acc-6", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-6", []string{"key-1", "key-2", "key-3"}, []string{"badval-1", "val-2", "val-3"})
// Account seven, non empty root but wrong slots in the middle
helper.addAccount("acc-7", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-7", []string{"key-1", "key-2", "key-3"}, []string{"val-1", "badval-2", "val-3"})
// Account eight, non empty root but wrong slots in the end
helper.addAccount("acc-8", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-8", []string{"key-1", "key-2", "key-3"}, []string{"val-1", "val-2", "badval-3"})
// Account 9, non empty root but rotated slots
helper.addAccount("acc-9", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-9", []string{"key-1", "key-2", "key-3"}, []string{"val-1", "val-3", "val-2"})
}
// Extra storage slots
{
// Account 10, non empty root but extra slots in the beginning
helper.addAccount("acc-10", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-10", []string{"key-0", "key-1", "key-2", "key-3"}, []string{"val-0", "val-1", "val-2", "val-3"})
// Account 11, non empty root but extra slots in the middle
helper.addAccount("acc-11", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-11", []string{"key-1", "key-2", "key-2-1", "key-3"}, []string{"val-1", "val-2", "val-2-1", "val-3"})
// Account 12, non empty root but extra slots in the end
helper.addAccount("acc-12", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapStorage("acc-12", []string{"key-1", "key-2", "key-3", "key-4"}, []string{"val-1", "val-2", "val-3", "val-4"})
}
root, snap := helper.Generate()
t.Logf("Root: %#x\n", root) // Root = 0x8746cce9fd9c658b2cfd639878ed6584b7a2b3e73bb40f607fcfa156002429a0
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
// Tests that snapshot generation with existent flat state, where the flat state
// contains some errors:
// - miss accounts
// - wrong accounts
// - extra accounts
func TestGenerateExistentStateWithWrongAccounts(t *testing.T) {
helper := newHelper()
stRoot := helper.makeStorageTrie([]string{"key-1", "key-2", "key-3"}, []string{"val-1", "val-2", "val-3"})
// Trie accounts [acc-1, acc-2, acc-3, acc-4, acc-6]
// Extra accounts [acc-0, acc-5, acc-7]
// Missing accounts, only in the trie
{
helper.addTrieAccount("acc-1", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()}) // Beginning
helper.addTrieAccount("acc-4", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()}) // Middle
helper.addTrieAccount("acc-6", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()}) // End
}
// Wrong accounts
{
helper.addTrieAccount("acc-2", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapAccount("acc-2", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: common.Hex2Bytes("0x1234")})
helper.addTrieAccount("acc-3", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
helper.addSnapAccount("acc-3", &Account{Balance: big.NewInt(1), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()})
}
// Extra accounts, only in the snap
{
helper.addSnapAccount("acc-0", &Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyRoot.Bytes()}) // before the beginning
helper.addSnapAccount("acc-5", &Account{Balance: big.NewInt(1), Root: emptyRoot.Bytes(), CodeHash: common.Hex2Bytes("0x1234")}) // Middle
helper.addSnapAccount("acc-7", &Account{Balance: big.NewInt(1), Root: emptyRoot.Bytes(), CodeHash: emptyRoot.Bytes()}) // after the end
}
root, snap := helper.Generate()
t.Logf("Root: %#x\n", root) // Root = 0x825891472281463511e7ebcc7f109e4f9200c20fa384754e11fd605cd98464e8
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
// Tests that snapshot generation errors out correctly in case of a missing trie // Tests that snapshot generation errors out correctly in case of a missing trie
// node in the account trie. // node in the account trie.
func TestGenerateCorruptAccountTrie(t *testing.T) { func TestGenerateCorruptAccountTrie(t *testing.T) {
@ -55,7 +400,7 @@ func TestGenerateCorruptAccountTrie(t *testing.T) {
triedb.Commit(common.HexToHash("0xa04693ea110a31037fb5ee814308a6f1d76bdab0b11676bdf4541d2de55ba978"), false, nil) triedb.Commit(common.HexToHash("0xa04693ea110a31037fb5ee814308a6f1d76bdab0b11676bdf4541d2de55ba978"), false, nil)
diskdb.Delete(common.HexToHash("0x65145f923027566669a1ae5ccac66f945b55ff6eaeb17d2ea8e048b7d381f2d7").Bytes()) diskdb.Delete(common.HexToHash("0x65145f923027566669a1ae5ccac66f945b55ff6eaeb17d2ea8e048b7d381f2d7").Bytes())
snap := generateSnapshot(diskdb, triedb, 16, common.HexToHash("0xa04693ea110a31037fb5ee814308a6f1d76bdab0b11676bdf4541d2de55ba978"), nil) snap := generateSnapshot(diskdb, triedb, 16, common.HexToHash("0xa04693ea110a31037fb5ee814308a6f1d76bdab0b11676bdf4541d2de55ba978"))
select { select {
case <-snap.genPending: case <-snap.genPending:
// Snapshot generation succeeded // Snapshot generation succeeded
@ -115,7 +460,7 @@ func TestGenerateMissingStorageTrie(t *testing.T) {
// Delete a storage trie root and ensure the generator chokes // Delete a storage trie root and ensure the generator chokes
diskdb.Delete(common.HexToHash("0xddefcd9376dd029653ef384bd2f0a126bb755fe84fdcc9e7cf421ba454f2bc67").Bytes()) diskdb.Delete(common.HexToHash("0xddefcd9376dd029653ef384bd2f0a126bb755fe84fdcc9e7cf421ba454f2bc67").Bytes())
snap := generateSnapshot(diskdb, triedb, 16, common.HexToHash("0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd"), nil) snap := generateSnapshot(diskdb, triedb, 16, common.HexToHash("0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd"))
select { select {
case <-snap.genPending: case <-snap.genPending:
// Snapshot generation succeeded // Snapshot generation succeeded
@ -174,7 +519,7 @@ func TestGenerateCorruptStorageTrie(t *testing.T) {
// Delete a storage trie leaf and ensure the generator chokes // Delete a storage trie leaf and ensure the generator chokes
diskdb.Delete(common.HexToHash("0x18a0f4d79cff4459642dd7604f303886ad9d77c30cf3d7d7cedb3a693ab6d371").Bytes()) diskdb.Delete(common.HexToHash("0x18a0f4d79cff4459642dd7604f303886ad9d77c30cf3d7d7cedb3a693ab6d371").Bytes())
snap := generateSnapshot(diskdb, triedb, 16, common.HexToHash("0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd"), nil) snap := generateSnapshot(diskdb, triedb, 16, common.HexToHash("0xe3712f1a226f3782caca78ca770ccc19ee000552813a9f59d479f8611db9b1fd"))
select { select {
case <-snap.genPending: case <-snap.genPending:
// Snapshot generation succeeded // Snapshot generation succeeded
@ -188,3 +533,301 @@ func TestGenerateCorruptStorageTrie(t *testing.T) {
snap.genAbort <- stop snap.genAbort <- stop
<-stop <-stop
} }
func getStorageTrie(n int, triedb *trie.Database) *trie.SecureTrie {
stTrie, _ := trie.NewSecure(common.Hash{}, triedb)
for i := 0; i < n; i++ {
k := fmt.Sprintf("key-%d", i)
v := fmt.Sprintf("val-%d", i)
stTrie.Update([]byte(k), []byte(v))
}
stTrie.Commit(nil)
return stTrie
}
// Tests that snapshot generation when an extra account with storage exists in the snap state.
func TestGenerateWithExtraAccounts(t *testing.T) {
var (
diskdb = memorydb.New()
triedb = trie.NewDatabase(diskdb)
stTrie = getStorageTrie(5, triedb)
)
accTrie, _ := trie.NewSecure(common.Hash{}, triedb)
{ // Account one in the trie
acc := &Account{Balance: big.NewInt(1), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-1"), val) // 0x9250573b9c18c664139f3b6a7a8081b7d8f8916a8fcc5d94feec6c29f5fd4e9e
// Identical in the snap
key := hashData([]byte("acc-1"))
rawdb.WriteAccountSnapshot(diskdb, key, val)
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-1")), []byte("val-1"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-2")), []byte("val-2"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-3")), []byte("val-3"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-4")), []byte("val-4"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-5")), []byte("val-5"))
}
{ // Account two exists only in the snapshot
acc := &Account{Balance: big.NewInt(1), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
key := hashData([]byte("acc-2"))
rawdb.WriteAccountSnapshot(diskdb, key, val)
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("b-key-1")), []byte("b-val-1"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("b-key-2")), []byte("b-val-2"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("b-key-3")), []byte("b-val-3"))
}
root, _ := accTrie.Commit(nil)
t.Logf("root: %x", root)
triedb.Commit(root, false, nil)
// To verify the test: If we now inspect the snap db, there should exist extraneous storage items
if data := rawdb.ReadStorageSnapshot(diskdb, hashData([]byte("acc-2")), hashData([]byte("b-key-1"))); data == nil {
t.Fatalf("expected snap storage to exist")
}
snap := generateSnapshot(diskdb, triedb, 16, root)
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
// If we now inspect the snap db, there should exist no extraneous storage items
if data := rawdb.ReadStorageSnapshot(diskdb, hashData([]byte("acc-2")), hashData([]byte("b-key-1"))); data != nil {
t.Fatalf("expected slot to be removed, got %v", string(data))
}
}
func enableLogging() {
log.Root().SetHandler(log.LvlFilterHandler(log.LvlTrace, log.StreamHandler(os.Stderr, log.TerminalFormat(true))))
}
// Tests that snapshot generation when an extra account with storage exists in the snap state.
func TestGenerateWithManyExtraAccounts(t *testing.T) {
if false {
enableLogging()
}
var (
diskdb = memorydb.New()
triedb = trie.NewDatabase(diskdb)
stTrie = getStorageTrie(3, triedb)
)
accTrie, _ := trie.NewSecure(common.Hash{}, triedb)
{ // Account one in the trie
acc := &Account{Balance: big.NewInt(1), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
accTrie.Update([]byte("acc-1"), val) // 0x9250573b9c18c664139f3b6a7a8081b7d8f8916a8fcc5d94feec6c29f5fd4e9e
// Identical in the snap
key := hashData([]byte("acc-1"))
rawdb.WriteAccountSnapshot(diskdb, key, val)
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-1")), []byte("val-1"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-2")), []byte("val-2"))
rawdb.WriteStorageSnapshot(diskdb, key, hashData([]byte("key-3")), []byte("val-3"))
}
{ // 100 accounts exist only in snapshot
for i := 0; i < 1000; i++ {
//acc := &Account{Balance: big.NewInt(int64(i)), Root: stTrie.Hash().Bytes(), CodeHash: emptyCode.Bytes()}
acc := &Account{Balance: big.NewInt(int64(i)), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
key := hashData([]byte(fmt.Sprintf("acc-%d", i)))
rawdb.WriteAccountSnapshot(diskdb, key, val)
}
}
root, _ := accTrie.Commit(nil)
t.Logf("root: %x", root)
triedb.Commit(root, false, nil)
snap := generateSnapshot(diskdb, triedb, 16, root)
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
// Tests this case
// maxAccountRange 3
// snapshot-accounts: 01, 02, 03, 04, 05, 06, 07
// trie-accounts: 03, 07
//
// We iterate three snapshot storage slots (max = 3) from the database. They are 0x01, 0x02, 0x03.
// The trie has a lot of deletions.
// So in trie, we iterate 2 entries 0x03, 0x07. We create the 0x07 in the database and abort the procedure, because the trie is exhausted.
// But in the database, we still have the stale storage slots 0x04, 0x05. They are not iterated yet, but the procedure is finished.
func TestGenerateWithExtraBeforeAndAfter(t *testing.T) {
accountCheckRange = 3
if false {
enableLogging()
}
var (
diskdb = memorydb.New()
triedb = trie.NewDatabase(diskdb)
)
accTrie, _ := trie.New(common.Hash{}, triedb)
{
acc := &Account{Balance: big.NewInt(1), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
accTrie.Update(common.HexToHash("0x03").Bytes(), val)
accTrie.Update(common.HexToHash("0x07").Bytes(), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x01"), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x02"), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x03"), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x04"), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x05"), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x06"), val)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x07"), val)
}
root, _ := accTrie.Commit(nil)
t.Logf("root: %x", root)
triedb.Commit(root, false, nil)
snap := generateSnapshot(diskdb, triedb, 16, root)
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
// TestGenerateWithMalformedSnapdata tests what happes if we have some junk
// in the snapshot database, which cannot be parsed back to an account
func TestGenerateWithMalformedSnapdata(t *testing.T) {
accountCheckRange = 3
if false {
enableLogging()
}
var (
diskdb = memorydb.New()
triedb = trie.NewDatabase(diskdb)
)
accTrie, _ := trie.New(common.Hash{}, triedb)
{
acc := &Account{Balance: big.NewInt(1), Root: emptyRoot.Bytes(), CodeHash: emptyCode.Bytes()}
val, _ := rlp.EncodeToBytes(acc)
accTrie.Update(common.HexToHash("0x03").Bytes(), val)
junk := make([]byte, 100)
copy(junk, []byte{0xde, 0xad})
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x02"), junk)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x03"), junk)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x04"), junk)
rawdb.WriteAccountSnapshot(diskdb, common.HexToHash("0x05"), junk)
}
root, _ := accTrie.Commit(nil)
t.Logf("root: %x", root)
triedb.Commit(root, false, nil)
snap := generateSnapshot(diskdb, triedb, 16, root)
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
// If we now inspect the snap db, there should exist no extraneous storage items
if data := rawdb.ReadStorageSnapshot(diskdb, hashData([]byte("acc-2")), hashData([]byte("b-key-1"))); data != nil {
t.Fatalf("expected slot to be removed, got %v", string(data))
}
}
func TestGenerateFromEmptySnap(t *testing.T) {
//enableLogging()
accountCheckRange = 10
storageCheckRange = 20
helper := newHelper()
stRoot := helper.makeStorageTrie([]string{"key-1", "key-2", "key-3"}, []string{"val-1", "val-2", "val-3"})
// Add 1K accounts to the trie
for i := 0; i < 400; i++ {
helper.addTrieAccount(fmt.Sprintf("acc-%d", i),
&Account{Balance: big.NewInt(1), Root: stRoot, CodeHash: emptyCode.Bytes()})
}
root, snap := helper.Generate()
t.Logf("Root: %#x\n", root) // Root: 0x6f7af6d2e1a1bf2b84a3beb3f8b64388465fbc1e274ca5d5d3fc787ca78f59e4
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(1 * time.Second):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}
// Tests that snapshot generation with existent flat state, where the flat state
// storage is correct, but incomplete.
// The incomplete part is on the second range
// snap: [ 0x01, 0x02, 0x03, 0x04] , [ 0x05, 0x06, 0x07, {missing}] (with storageCheck = 4)
// trie: 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
// This hits a case where the snap verification passes, but there are more elements in the trie
// which we must also add.
func TestGenerateWithIncompleteStorage(t *testing.T) {
storageCheckRange = 4
helper := newHelper()
stKeys := []string{"1", "2", "3", "4", "5", "6", "7", "8"}
stVals := []string{"v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8"}
stRoot := helper.makeStorageTrie(stKeys, stVals)
// We add 8 accounts, each one is missing exactly one of the storage slots. This means
// we don't have to order the keys and figure out exactly which hash-key winds up
// on the sensitive spots at the boundaries
for i := 0; i < 8; i++ {
accKey := fmt.Sprintf("acc-%d", i)
helper.addAccount(accKey, &Account{Balance: big.NewInt(int64(i)), Root: stRoot, CodeHash: emptyCode.Bytes()})
var moddedKeys []string
var moddedVals []string
for ii := 0; ii < 8; ii++ {
if ii != i {
moddedKeys = append(moddedKeys, stKeys[ii])
moddedVals = append(moddedVals, stVals[ii])
}
}
helper.addSnapStorage(accKey, moddedKeys, moddedVals)
}
root, snap := helper.Generate()
t.Logf("Root: %#x\n", root) // Root: 0xca73f6f05ba4ca3024ef340ef3dfca8fdabc1b677ff13f5a9571fd49c16e67ff
select {
case <-snap.genPending:
// Snapshot generation succeeded
case <-time.After(250 * time.Millisecond):
t.Errorf("Snapshot generation failed")
}
checkSnapRoot(t, snap, root)
// Signal abortion to the generator and wait for it to tear down
stop := make(chan *generatorStats)
snap.genAbort <- stop
<-stop
}

@ -37,7 +37,10 @@ const journalVersion uint64 = 0
// journalGenerator is a disk layer entry containing the generator progress marker. // journalGenerator is a disk layer entry containing the generator progress marker.
type journalGenerator struct { type journalGenerator struct {
Wiping bool // Whether the database was in progress of being wiped // Indicator that whether the database was in progress of being wiped.
// It's deprecated but keep it here for background compatibility.
Wiping bool
Done bool // Whether the generator finished creating the snapshot Done bool // Whether the generator finished creating the snapshot
Marker []byte Marker []byte
Accounts uint64 Accounts uint64
@ -193,14 +196,6 @@ func loadSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int,
} }
// Everything loaded correctly, resume any suspended operations // Everything loaded correctly, resume any suspended operations
if !generator.Done { if !generator.Done {
// If the generator was still wiping, restart one from scratch (fine for
// now as it's rare and the wiper deletes the stuff it touches anyway, so
// restarting won't incur a lot of extra database hops.
var wiper chan struct{}
if generator.Wiping {
log.Info("Resuming previous snapshot wipe")
wiper = wipeSnapshot(diskdb, false)
}
// Whether or not wiping was in progress, load any generator progress too // Whether or not wiping was in progress, load any generator progress too
base.genMarker = generator.Marker base.genMarker = generator.Marker
if base.genMarker == nil { if base.genMarker == nil {
@ -214,7 +209,6 @@ func loadSnapshot(diskdb ethdb.KeyValueStore, triedb *trie.Database, cache int,
origin = binary.BigEndian.Uint64(generator.Marker) origin = binary.BigEndian.Uint64(generator.Marker)
} }
go base.generate(&generatorStats{ go base.generate(&generatorStats{
wiping: wiper,
origin: origin, origin: origin,
start: time.Now(), start: time.Now(),
accounts: generator.Accounts, accounts: generator.Accounts,
@ -381,7 +375,6 @@ func (dl *diskLayer) LegacyJournal(buffer *bytes.Buffer) (common.Hash, error) {
Marker: dl.genMarker, Marker: dl.genMarker,
} }
if stats != nil { if stats != nil {
entry.Wiping = (stats.wiping != nil)
entry.Accounts = stats.accounts entry.Accounts = stats.accounts
entry.Slots = stats.slots entry.Slots = stats.slots
entry.Storage = uint64(stats.storage) entry.Storage = uint64(stats.storage)

@ -656,9 +656,6 @@ func (t *Tree) Rebuild(root common.Hash) {
// building a brand new snapshot. // building a brand new snapshot.
rawdb.DeleteSnapshotRecoveryNumber(t.diskdb) rawdb.DeleteSnapshotRecoveryNumber(t.diskdb)
// Track whether there's a wipe currently running and keep it alive if so
var wiper chan struct{}
// Iterate over and mark all layers stale // Iterate over and mark all layers stale
for _, layer := range t.layers { for _, layer := range t.layers {
switch layer := layer.(type) { switch layer := layer.(type) {
@ -667,10 +664,7 @@ func (t *Tree) Rebuild(root common.Hash) {
if layer.genAbort != nil { if layer.genAbort != nil {
abort := make(chan *generatorStats) abort := make(chan *generatorStats)
layer.genAbort <- abort layer.genAbort <- abort
<-abort
if stats := <-abort; stats != nil {
wiper = stats.wiping
}
} }
// Layer should be inactive now, mark it as stale // Layer should be inactive now, mark it as stale
layer.lock.Lock() layer.lock.Lock()
@ -691,7 +685,7 @@ func (t *Tree) Rebuild(root common.Hash) {
// generator will run a wiper first if there's not one running right now. // generator will run a wiper first if there's not one running right now.
log.Info("Rebuilding state snapshot") log.Info("Rebuilding state snapshot")
t.layers = map[common.Hash]snapshot{ t.layers = map[common.Hash]snapshot{
root: generateSnapshot(t.diskdb, t.triedb, t.cache, root, wiper), root: generateSnapshot(t.diskdb, t.triedb, t.cache, root),
} }
} }

@ -24,10 +24,11 @@ import (
"github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
) )
// wipeSnapshot starts a goroutine to iterate over the entire key-value database // wipeSnapshot starts a goroutine to iterate over the entire key-value database
// and delete all the data associated with the snapshot (accounts, storage, // and delete all the data associated with the snapshot (accounts, storage,
// metadata). After all is done, the snapshot range of the database is compacted // metadata). After all is done, the snapshot range of the database is compacted
// to free up unused data blocks. // to free up unused data blocks.
func wipeSnapshot(db ethdb.KeyValueStore, full bool) chan struct{} { func wipeSnapshot(db ethdb.KeyValueStore, full bool) chan struct{} {
@ -53,10 +54,10 @@ func wipeSnapshot(db ethdb.KeyValueStore, full bool) chan struct{} {
// removed in sync to avoid data races. After all is done, the snapshot range of // removed in sync to avoid data races. After all is done, the snapshot range of
// the database is compacted to free up unused data blocks. // the database is compacted to free up unused data blocks.
func wipeContent(db ethdb.KeyValueStore) error { func wipeContent(db ethdb.KeyValueStore) error {
if err := wipeKeyRange(db, "accounts", rawdb.SnapshotAccountPrefix, len(rawdb.SnapshotAccountPrefix)+common.HashLength); err != nil { if err := wipeKeyRange(db, "accounts", rawdb.SnapshotAccountPrefix, nil, nil, len(rawdb.SnapshotAccountPrefix)+common.HashLength, snapWipedAccountMeter, true); err != nil {
return err return err
} }
if err := wipeKeyRange(db, "storage", rawdb.SnapshotStoragePrefix, len(rawdb.SnapshotStoragePrefix)+2*common.HashLength); err != nil { if err := wipeKeyRange(db, "storage", rawdb.SnapshotStoragePrefix, nil, nil, len(rawdb.SnapshotStoragePrefix)+2*common.HashLength, snapWipedStorageMeter, true); err != nil {
return err return err
} }
// Compact the snapshot section of the database to get rid of unused space // Compact the snapshot section of the database to get rid of unused space
@ -82,8 +83,11 @@ func wipeContent(db ethdb.KeyValueStore) error {
} }
// wipeKeyRange deletes a range of keys from the database starting with prefix // wipeKeyRange deletes a range of keys from the database starting with prefix
// and having a specific total key length. // and having a specific total key length. The start and limit is optional for
func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int) error { // specifying a particular key range for deletion.
//
// Origin is included for wiping and limit is excluded if they are specified.
func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, origin []byte, limit []byte, keylen int, meter metrics.Meter, report bool) error {
// Batch deletions together to avoid holding an iterator for too long // Batch deletions together to avoid holding an iterator for too long
var ( var (
batch = db.NewBatch() batch = db.NewBatch()
@ -92,7 +96,11 @@ func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int
// Iterate over the key-range and delete all of them // Iterate over the key-range and delete all of them
start, logged := time.Now(), time.Now() start, logged := time.Now(), time.Now()
it := db.NewIterator(prefix, nil) it := db.NewIterator(prefix, origin)
var stop []byte
if limit != nil {
stop = append(prefix, limit...)
}
for it.Next() { for it.Next() {
// Skip any keys with the correct prefix but wrong length (trie nodes) // Skip any keys with the correct prefix but wrong length (trie nodes)
key := it.Key() key := it.Key()
@ -102,6 +110,9 @@ func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int
if len(key) != keylen { if len(key) != keylen {
continue continue
} }
if stop != nil && bytes.Compare(key, stop) >= 0 {
break
}
// Delete the key and periodically recreate the batch and iterator // Delete the key and periodically recreate the batch and iterator
batch.Delete(key) batch.Delete(key)
items++ items++
@ -116,7 +127,7 @@ func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int
seekPos := key[len(prefix):] seekPos := key[len(prefix):]
it = db.NewIterator(prefix, seekPos) it = db.NewIterator(prefix, seekPos)
if time.Since(logged) > 8*time.Second { if time.Since(logged) > 8*time.Second && report {
log.Info("Deleting state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start))) log.Info("Deleting state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now() logged = time.Now()
} }
@ -126,6 +137,11 @@ func wipeKeyRange(db ethdb.KeyValueStore, kind string, prefix []byte, keylen int
if err := batch.Write(); err != nil { if err := batch.Write(); err != nil {
return err return err
} }
log.Info("Deleted state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start))) if meter != nil {
meter.Mark(int64(items))
}
if report {
log.Info("Deleted state snapshot leftovers", "kind", kind, "wiped", items, "elapsed", common.PrettyDuration(time.Since(start)))
}
return nil return nil
} }

@ -948,7 +948,7 @@ func (s *StateDB) Commit(deleteEmptyObjects bool) (common.Hash, error) {
// The onleaf func is called _serially_, so we can reuse the same account // The onleaf func is called _serially_, so we can reuse the same account
// for unmarshalling every time. // for unmarshalling every time.
var account Account var account Account
root, err := s.trie.Commit(func(path []byte, leaf []byte, parent common.Hash) error { root, err := s.trie.Commit(func(_ [][]byte, _ []byte, leaf []byte, parent common.Hash) error {
if err := rlp.DecodeBytes(leaf, &account); err != nil { if err := rlp.DecodeBytes(leaf, &account); err != nil {
return nil return nil
} }

@ -26,17 +26,31 @@ import (
) )
// NewStateSync create a new state trie download scheduler. // NewStateSync create a new state trie download scheduler.
func NewStateSync(root common.Hash, database ethdb.KeyValueReader, bloom *trie.SyncBloom) *trie.Sync { func NewStateSync(root common.Hash, database ethdb.KeyValueReader, bloom *trie.SyncBloom, onLeaf func(paths [][]byte, leaf []byte) error) *trie.Sync {
// Register the storage slot callback if the external callback is specified.
var onSlot func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error
if onLeaf != nil {
onSlot = func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error {
return onLeaf(paths, leaf)
}
}
// Register the account callback to connect the state trie and the storage
// trie belongs to the contract.
var syncer *trie.Sync var syncer *trie.Sync
callback := func(path []byte, leaf []byte, parent common.Hash) error { onAccount := func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error {
if onLeaf != nil {
if err := onLeaf(paths, leaf); err != nil {
return err
}
}
var obj Account var obj Account
if err := rlp.Decode(bytes.NewReader(leaf), &obj); err != nil { if err := rlp.Decode(bytes.NewReader(leaf), &obj); err != nil {
return err return err
} }
syncer.AddSubTrie(obj.Root, path, parent, nil) syncer.AddSubTrie(obj.Root, hexpath, parent, onSlot)
syncer.AddCodeEntry(common.BytesToHash(obj.CodeHash), path, parent) syncer.AddCodeEntry(common.BytesToHash(obj.CodeHash), hexpath, parent)
return nil return nil
} }
syncer = trie.NewSync(root, database, callback, bloom) syncer = trie.NewSync(root, database, onAccount, bloom)
return syncer return syncer
} }

@ -133,7 +133,7 @@ func checkStateConsistency(db ethdb.Database, root common.Hash) error {
// Tests that an empty state is not scheduled for syncing. // Tests that an empty state is not scheduled for syncing.
func TestEmptyStateSync(t *testing.T) { func TestEmptyStateSync(t *testing.T) {
empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
sync := NewStateSync(empty, rawdb.NewMemoryDatabase(), trie.NewSyncBloom(1, memorydb.New())) sync := NewStateSync(empty, rawdb.NewMemoryDatabase(), trie.NewSyncBloom(1, memorydb.New()), nil)
if nodes, paths, codes := sync.Missing(1); len(nodes) != 0 || len(paths) != 0 || len(codes) != 0 { if nodes, paths, codes := sync.Missing(1); len(nodes) != 0 || len(paths) != 0 || len(codes) != 0 {
t.Errorf(" content requested for empty state: %v, %v, %v", nodes, paths, codes) t.Errorf(" content requested for empty state: %v, %v, %v", nodes, paths, codes)
} }
@ -170,7 +170,7 @@ func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool) {
// Create a destination state and sync with the scheduler // Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase() dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil)
nodes, paths, codes := sched.Missing(count) nodes, paths, codes := sched.Missing(count)
var ( var (
@ -249,7 +249,7 @@ func TestIterativeDelayedStateSync(t *testing.T) {
// Create a destination state and sync with the scheduler // Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase() dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil)
nodes, _, codes := sched.Missing(0) nodes, _, codes := sched.Missing(0)
queue := append(append([]common.Hash{}, nodes...), codes...) queue := append(append([]common.Hash{}, nodes...), codes...)
@ -297,7 +297,7 @@ func testIterativeRandomStateSync(t *testing.T, count int) {
// Create a destination state and sync with the scheduler // Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase() dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil)
queue := make(map[common.Hash]struct{}) queue := make(map[common.Hash]struct{})
nodes, _, codes := sched.Missing(count) nodes, _, codes := sched.Missing(count)
@ -347,7 +347,7 @@ func TestIterativeRandomDelayedStateSync(t *testing.T) {
// Create a destination state and sync with the scheduler // Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase() dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil)
queue := make(map[common.Hash]struct{}) queue := make(map[common.Hash]struct{})
nodes, _, codes := sched.Missing(0) nodes, _, codes := sched.Missing(0)
@ -414,7 +414,7 @@ func TestIncompleteStateSync(t *testing.T) {
// Create a destination state and sync with the scheduler // Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase() dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil)
var added []common.Hash var added []common.Hash

@ -298,7 +298,7 @@ func newStateSync(d *Downloader, root common.Hash) *stateSync {
return &stateSync{ return &stateSync{
d: d, d: d,
root: root, root: root,
sched: state.NewStateSync(root, d.stateDB, d.stateBloom), sched: state.NewStateSync(root, d.stateDB, d.stateBloom, nil),
keccak: sha3.NewLegacyKeccak256().(crypto.KeccakState), keccak: sha3.NewLegacyKeccak256().(crypto.KeccakState),
trieTasks: make(map[common.Hash]*trieTask), trieTasks: make(map[common.Hash]*trieTask),
codeTasks: make(map[common.Hash]*codeTask), codeTasks: make(map[common.Hash]*codeTask),

@ -29,6 +29,7 @@ import (
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/event"
@ -51,7 +52,7 @@ const (
// maxRequestSize is the maximum number of bytes to request from a remote peer. // maxRequestSize is the maximum number of bytes to request from a remote peer.
maxRequestSize = 512 * 1024 maxRequestSize = 512 * 1024
// maxStorageSetRequestCountis th maximum number of contracts to request the // maxStorageSetRequestCount is the maximum number of contracts to request the
// storage of in a single query. If this number is too low, we're not filling // storage of in a single query. If this number is too low, we're not filling
// responses fully and waste round trip times. If it's too high, we're capping // responses fully and waste round trip times. If it's too high, we're capping
// responses and waste bandwidth. // responses and waste bandwidth.
@ -435,9 +436,14 @@ type Syncer struct {
bytecodeHealDups uint64 // Number of bytecodes already processed bytecodeHealDups uint64 // Number of bytecodes already processed
bytecodeHealNops uint64 // Number of bytecodes not requested bytecodeHealNops uint64 // Number of bytecodes not requested
startTime time.Time // Time instance when snapshot sync started stateWriter ethdb.Batch // Shared batch writer used for persisting raw states
startAcc common.Hash // Account hash where sync started from accountHealed uint64 // Number of accounts downloaded during the healing stage
logTime time.Time // Time instance when status was last reported accountHealedBytes common.StorageSize // Number of raw account bytes persisted to disk during the healing stage
storageHealed uint64 // Number of storage slots downloaded during the healing stage
storageHealedBytes common.StorageSize // Number of raw storage bytes persisted to disk during the healing stage
startTime time.Time // Time instance when snapshot sync started
logTime time.Time // Time instance when status was last reported
pend sync.WaitGroup // Tracks network request goroutines for graceful shutdown pend sync.WaitGroup // Tracks network request goroutines for graceful shutdown
lock sync.RWMutex // Protects fields that can change outside of sync (peers, reqs, root) lock sync.RWMutex // Protects fields that can change outside of sync (peers, reqs, root)
@ -477,6 +483,7 @@ func NewSyncer(db ethdb.KeyValueStore) *Syncer {
bytecodeHealReqFails: make(chan *bytecodeHealRequest), bytecodeHealReqFails: make(chan *bytecodeHealRequest),
trienodeHealResps: make(chan *trienodeHealResponse), trienodeHealResps: make(chan *trienodeHealResponse),
bytecodeHealResps: make(chan *bytecodeHealResponse), bytecodeHealResps: make(chan *bytecodeHealResponse),
stateWriter: db.NewBatch(),
} }
} }
@ -544,7 +551,7 @@ func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error {
s.lock.Lock() s.lock.Lock()
s.root = root s.root = root
s.healer = &healTask{ s.healer = &healTask{
scheduler: state.NewStateSync(root, s.db, nil), scheduler: state.NewStateSync(root, s.db, nil, s.onHealState),
trieTasks: make(map[common.Hash]trie.SyncPath), trieTasks: make(map[common.Hash]trie.SyncPath),
codeTasks: make(map[common.Hash]struct{}), codeTasks: make(map[common.Hash]struct{}),
} }
@ -560,6 +567,11 @@ func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error {
log.Debug("Snapshot sync already completed") log.Debug("Snapshot sync already completed")
return nil return nil
} }
// If sync is still not finished, we need to ensure that any marker is wiped.
// Otherwise, it may happen that requests for e.g. genesis-data is delivered
// from the snapshot data, instead of from the trie
snapshot.ClearSnapshotMarker(s.db)
defer func() { // Persist any progress, independent of failure defer func() { // Persist any progress, independent of failure
for _, task := range s.tasks { for _, task := range s.tasks {
s.forwardAccountTask(task) s.forwardAccountTask(task)
@ -569,6 +581,14 @@ func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error {
}() }()
log.Debug("Starting snapshot sync cycle", "root", root) log.Debug("Starting snapshot sync cycle", "root", root)
// Flush out the last committed raw states
defer func() {
if s.stateWriter.ValueSize() > 0 {
s.stateWriter.Write()
s.stateWriter.Reset()
}
}()
defer s.report(true) defer s.report(true)
// Whether sync completed or not, disregard any future packets // Whether sync completed or not, disregard any future packets
@ -1694,7 +1714,7 @@ func (s *Syncer) processBytecodeResponse(res *bytecodeResponse) {
// processStorageResponse integrates an already validated storage response // processStorageResponse integrates an already validated storage response
// into the account tasks. // into the account tasks.
func (s *Syncer) processStorageResponse(res *storageResponse) { func (s *Syncer) processStorageResponse(res *storageResponse) {
// Switch the suntask from pending to idle // Switch the subtask from pending to idle
if res.subTask != nil { if res.subTask != nil {
res.subTask.req = nil res.subTask.req = nil
} }
@ -1826,6 +1846,14 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
nodes++ nodes++
} }
it.Release() it.Release()
// Persist the received storage segements. These flat state maybe
// outdated during the sync, but it can be fixed later during the
// snapshot generation.
for j := 0; j < len(res.hashes[i]); j++ {
rawdb.WriteStorageSnapshot(batch, account, res.hashes[i][j], res.slots[i][j])
bytes += common.StorageSize(1 + 2*common.HashLength + len(res.slots[i][j]))
}
} }
if err := batch.Write(); err != nil { if err := batch.Write(); err != nil {
log.Crit("Failed to persist storage slots", "err", err) log.Crit("Failed to persist storage slots", "err", err)
@ -1983,6 +2011,14 @@ func (s *Syncer) forwardAccountTask(task *accountTask) {
} }
it.Release() it.Release()
// Persist the received account segements. These flat state maybe
// outdated during the sync, but it can be fixed later during the
// snapshot generation.
for i, hash := range res.hashes {
blob := snapshot.SlimAccountRLP(res.accounts[i].Nonce, res.accounts[i].Balance, res.accounts[i].Root, res.accounts[i].CodeHash)
rawdb.WriteAccountSnapshot(batch, hash, blob)
bytes += common.StorageSize(1 + common.HashLength + len(blob))
}
if err := batch.Write(); err != nil { if err := batch.Write(); err != nil {
log.Crit("Failed to persist accounts", "err", err) log.Crit("Failed to persist accounts", "err", err)
} }
@ -2569,6 +2605,33 @@ func (s *Syncer) onHealByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) e
return nil return nil
} }
// onHealState is a callback method to invoke when a flat state(account
// or storage slot) is downloded during the healing stage. The flat states
// can be persisted blindly and can be fixed later in the generation stage.
// Note it's not concurrent safe, please handle the concurrent issue outside.
func (s *Syncer) onHealState(paths [][]byte, value []byte) error {
if len(paths) == 1 {
var account state.Account
if err := rlp.DecodeBytes(value, &account); err != nil {
return nil
}
blob := snapshot.SlimAccountRLP(account.Nonce, account.Balance, account.Root, account.CodeHash)
rawdb.WriteAccountSnapshot(s.stateWriter, common.BytesToHash(paths[0]), blob)
s.accountHealed += 1
s.accountHealedBytes += common.StorageSize(1 + common.HashLength + len(blob))
}
if len(paths) == 2 {
rawdb.WriteStorageSnapshot(s.stateWriter, common.BytesToHash(paths[0]), common.BytesToHash(paths[1]), value)
s.storageHealed += 1
s.storageHealedBytes += common.StorageSize(1 + 2*common.HashLength + len(value))
}
if s.stateWriter.ValueSize() > ethdb.IdealBatchSize {
s.stateWriter.Write() // It's fine to ignore the error here
s.stateWriter.Reset()
}
return nil
}
// hashSpace is the total size of the 256 bit hash space for accounts. // hashSpace is the total size of the 256 bit hash space for accounts.
var hashSpace = new(big.Int).Exp(common.Big2, common.Big256, nil) var hashSpace = new(big.Int).Exp(common.Big2, common.Big256, nil)
@ -2632,7 +2695,9 @@ func (s *Syncer) reportHealProgress(force bool) {
var ( var (
trienode = fmt.Sprintf("%d@%v", s.trienodeHealSynced, s.trienodeHealBytes.TerminalString()) trienode = fmt.Sprintf("%d@%v", s.trienodeHealSynced, s.trienodeHealBytes.TerminalString())
bytecode = fmt.Sprintf("%d@%v", s.bytecodeHealSynced, s.bytecodeHealBytes.TerminalString()) bytecode = fmt.Sprintf("%d@%v", s.bytecodeHealSynced, s.bytecodeHealBytes.TerminalString())
accounts = fmt.Sprintf("%d@%v", s.accountHealed, s.accountHealedBytes.TerminalString())
storage = fmt.Sprintf("%d@%v", s.storageHealed, s.storageHealedBytes.TerminalString())
) )
log.Info("State heal in progress", "nodes", trienode, "codes", bytecode, log.Info("State heal in progress", "accounts", accounts, "slots", storage,
"pending", s.healer.scheduler.Pending()) "codes", bytecode, "nodes", trienode, "pending", s.healer.scheduler.Pending())
} }

@ -220,13 +220,13 @@ func (c *committer) commitLoop(db *Database) {
switch n := n.(type) { switch n := n.(type) {
case *shortNode: case *shortNode:
if child, ok := n.Val.(valueNode); ok { if child, ok := n.Val.(valueNode); ok {
c.onleaf(nil, child, hash) c.onleaf(nil, nil, child, hash)
} }
case *fullNode: case *fullNode:
// For children in range [0, 15], it's impossible // For children in range [0, 15], it's impossible
// to contain valuenode. Only check the 17th child. // to contain valuenode. Only check the 17th child.
if n.Children[16] != nil { if n.Children[16] != nil {
c.onleaf(nil, n.Children[16].(valueNode), hash) c.onleaf(nil, nil, n.Children[16].(valueNode), hash)
} }
} }
} }

@ -398,7 +398,14 @@ func (s *Sync) children(req *request, object node) ([]*request, error) {
// Notify any external watcher of a new key/value node // Notify any external watcher of a new key/value node
if req.callback != nil { if req.callback != nil {
if node, ok := (child.node).(valueNode); ok { if node, ok := (child.node).(valueNode); ok {
if err := req.callback(child.path, node, req.hash); err != nil { var paths [][]byte
if len(child.path) == 2*common.HashLength {
paths = append(paths, hexToKeybytes(child.path))
} else if len(child.path) == 4*common.HashLength {
paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength]))
paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:]))
}
if err := req.callback(paths, child.path, node, req.hash); err != nil {
return nil, err return nil, err
} }
} }

@ -37,9 +37,20 @@ var (
) )
// LeafCallback is a callback type invoked when a trie operation reaches a leaf // LeafCallback is a callback type invoked when a trie operation reaches a leaf
// node. It's used by state sync and commit to allow handling external references // node.
// between account and storage tries. //
type LeafCallback func(path []byte, leaf []byte, parent common.Hash) error // The paths is a path tuple identifying a particular trie node either in a single
// trie (account) or a layered trie (account -> storage). Each path in the tuple
// is in the raw format(32 bytes).
//
// The hexpath is a composite hexary path identifying the trie node. All the key
// bytes are converted to the hexary nibbles and composited with the parent path
// if the trie node is in a layered trie.
//
// It's used by state sync and commit to allow handling external references
// between account and storage tries. And also it's used in the state healing
// for extracting the raw states(leaf nodes) with corresponding paths.
type LeafCallback func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error
// Trie is a Merkle Patricia Trie. // Trie is a Merkle Patricia Trie.
// The zero value is an empty trie with no database. // The zero value is an empty trie with no database.

@ -569,7 +569,7 @@ func BenchmarkCommitAfterHash(b *testing.B) {
benchmarkCommitAfterHash(b, nil) benchmarkCommitAfterHash(b, nil)
}) })
var a account var a account
onleaf := func(path []byte, leaf []byte, parent common.Hash) error { onleaf := func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error {
rlp.DecodeBytes(leaf, &a) rlp.DecodeBytes(leaf, &a)
return nil return nil
} }

Loading…
Cancel
Save