[release/1.4.17] core: abstract out a sorted transaction hash map

(cherry picked from commit b4a5251391)
pull/3116/head
Péter Szilágyi 8 years ago committed by Felix Lange
parent d7721def26
commit 794d2eb582
  1. 389
      core/tx_list.go
  2. 14
      core/tx_list_test.go
  3. 16
      core/tx_pool.go
  4. 26
      core/tx_pool_test.go

@ -45,19 +45,181 @@ func (h *nonceHeap) Pop() interface{} {
return x return x
} }
// txSortedMap is a nonce->transaction hash map with a heap based index to allow
// iterating over the contents in a nonce-incrementing way.
type txSortedMap struct {
items map[uint64]*types.Transaction // Hash map storing the transaction data
index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
cache types.Transactions // Cache of the transactions already sorted
}
// newTxSortedMap creates a new sorted transaction map.
func newTxSortedMap() *txSortedMap {
return &txSortedMap{
items: make(map[uint64]*types.Transaction),
index: &nonceHeap{},
}
}
// Get retrieves the current transactions associated with the given nonce.
func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
return m.items[nonce]
}
// Put inserts a new transaction into the map, also updating the map's nonce
// index. If a transaction already exists with the same nonce, it's overwritten.
func (m *txSortedMap) Put(tx *types.Transaction) {
nonce := tx.Nonce()
if m.items[nonce] == nil {
heap.Push(m.index, nonce)
}
m.items[nonce], m.cache = tx, nil
}
// Forward removes all transactions from the map with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
var removed types.Transactions
// Pop off heap items until the threshold is reached
for m.index.Len() > 0 && (*m.index)[0] < threshold {
nonce := heap.Pop(m.index).(uint64)
removed = append(removed, m.items[nonce])
delete(m.items, nonce)
}
// If we had a cached order, shift the front
if m.cache != nil {
m.cache = m.cache[len(removed):]
}
return removed
}
// Filter iterates over the list of transactions and removes all of them for which
// the specified function evaluates to true.
func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
var removed types.Transactions
// Collect all the transactions to filter out
for nonce, tx := range m.items {
if filter(tx) {
removed = append(removed, tx)
delete(m.items, nonce)
}
}
// If transactions were removed, the heap and cache are ruined
if len(removed) > 0 {
*m.index = make([]uint64, 0, len(m.items))
for nonce, _ := range m.items {
*m.index = append(*m.index, nonce)
}
heap.Init(m.index)
m.cache = nil
}
return removed
}
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
func (m *txSortedMap) Cap(threshold int) types.Transactions {
// Short circuit if the number of items is under the limit
if len(m.items) <= threshold {
return nil
}
// Otherwise gather and drop the highest nonce'd transactions
var drops types.Transactions
sort.Sort(*m.index)
for size := len(m.items); size > threshold; size-- {
drops = append(drops, m.items[(*m.index)[size-1]])
delete(m.items, (*m.index)[size-1])
}
*m.index = (*m.index)[:threshold]
heap.Init(m.index)
// If we had a cache, shift the back
if m.cache != nil {
m.cache = m.cache[:len(m.cache)-len(drops)]
}
return drops
}
// Remove deletes a transaction from the maintained map, returning whether the
// transaction was found.
func (m *txSortedMap) Remove(nonce uint64) bool {
// Short circuit if no transaction is present
_, ok := m.items[nonce]
if !ok {
return false
}
// Otherwise delete the transaction and fix the heap index
for i := 0; i < m.index.Len(); i++ {
if (*m.index)[i] == nonce {
heap.Remove(m.index, i)
break
}
}
delete(m.items, nonce)
m.cache = nil
return true
}
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (m *txSortedMap) Ready(start uint64) types.Transactions {
// Short circuit if no transactions are available
if m.index.Len() == 0 || (*m.index)[0] > start {
return nil
}
// Otherwise start accumulating incremental transactions
var ready types.Transactions
for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
ready = append(ready, m.items[next])
delete(m.items, next)
heap.Pop(m.index)
}
m.cache = nil
return ready
}
// Len returns the length of the transaction map.
func (m *txSortedMap) Len() int {
return len(m.items)
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (m *txSortedMap) Flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it
if m.cache == nil {
m.cache = make(types.Transactions, 0, len(m.items))
for _, tx := range m.items {
m.cache = append(m.cache, tx)
}
sort.Sort(types.TxByNonce(m.cache))
}
// Copy the cache to prevent accidental modifications
txs := make(types.Transactions, len(m.cache))
copy(txs, m.cache)
return txs
}
// txList is a "list" of transactions belonging to an account, sorted by account // txList is a "list" of transactions belonging to an account, sorted by account
// nonce. The same type can be used both for storing contiguous transactions for // nonce. The same type can be used both for storing contiguous transactions for
// the executable/pending queue; and for storing gapped transactions for the non- // the executable/pending queue; and for storing gapped transactions for the non-
// executable/future queue, with minor behavoiral changes. // executable/future queue, with minor behavoiral changes.
type txList struct { type txList struct {
strict bool // Whether nonces are strictly continuous or not strict bool // Whether nonces are strictly continuous or not
items map[uint64]*types.Transaction // Hash map storing the transaction data txs *txSortedMap // Heap indexed sorted hash map of the transactions
cache types.Transactions // Cache of the transactions already sorted
first uint64 // Nonce of the lowest stored transaction (strict mode)
last uint64 // Nonce of the highest stored transaction (strict mode)
index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance) costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
} }
@ -66,9 +228,7 @@ type txList struct {
func newTxList(strict bool) *txList { func newTxList(strict bool) *txList {
return &txList{ return &txList{
strict: strict, strict: strict,
items: make(map[uint64]*types.Transaction), txs: newTxSortedMap(),
first: math.MaxUint64,
index: &nonceHeap{},
costcap: new(big.Int), costcap: new(big.Int),
} }
} }
@ -76,36 +236,19 @@ func newTxList(strict bool) *txList {
// Add tries to insert a new transaction into the list, returning whether the // Add tries to insert a new transaction into the list, returning whether the
// transaction was accepted, and if yes, any previous transaction it replaced. // transaction was accepted, and if yes, any previous transaction it replaced.
// //
// In case of strict lists (contiguous nonces) the nonce boundaries are updated // If the new transaction is accepted into the list, the lists' cost threshold
// appropriately with the new transaction. Otherwise (gapped nonces) the heap of // is also potentially updated.
// nonces is expanded with the new transaction.
func (l *txList) Add(tx *types.Transaction) (bool, *types.Transaction) { func (l *txList) Add(tx *types.Transaction) (bool, *types.Transaction) {
// If an existing transaction is better, discard new one // If there's an older better transaction, abort
nonce := tx.Nonce() old := l.txs.Get(tx.Nonce())
if old != nil && old.GasPrice().Cmp(tx.GasPrice()) >= 0 {
old, ok := l.items[nonce]
if ok && old.GasPrice().Cmp(tx.GasPrice()) >= 0 {
return false, nil return false, nil
} }
// Otherwise insert the transaction and replace any previous one // Otherwise overwrite the old transaction with the current one
l.items[nonce] = tx l.txs.Put(tx)
if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 { if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
l.costcap = cost l.costcap = cost
} }
if l.strict {
// In strict mode, maintain the nonce sequence boundaries
if nonce < l.first {
l.first = nonce
}
if nonce > l.last {
l.last = nonce
}
} else {
// In gapped mode, maintain the nonce heap
heap.Push(l.index, nonce)
}
l.cache = nil
return true, old return true, old
} }
@ -113,31 +256,7 @@ func (l *txList) Add(tx *types.Transaction) (bool, *types.Transaction) {
// provided threshold. Every removed transaction is returned for any post-removal // provided threshold. Every removed transaction is returned for any post-removal
// maintenance. // maintenance.
func (l *txList) Forward(threshold uint64) types.Transactions { func (l *txList) Forward(threshold uint64) types.Transactions {
var removed types.Transactions return l.txs.Forward(threshold)
if l.strict {
// In strict mode, push the lowest nonce forward to the threshold
for l.first < threshold {
if tx, ok := l.items[l.first]; ok {
removed = append(removed, tx)
}
delete(l.items, l.first)
l.first++
}
if l.first > l.last {
l.last = l.first
}
} else {
// In gapped mode, pop off heap items until the threshold is reached
for l.index.Len() > 0 && (*l.index)[0] < threshold {
nonce := heap.Pop(l.index).(uint64)
removed = append(removed, l.items[nonce])
delete(l.items, nonce)
}
}
l.cache = nil
return removed
} }
// Filter removes all transactions from the list with a cost higher than the // Filter removes all transactions from the list with a cost higher than the
@ -155,110 +274,43 @@ func (l *txList) Filter(threshold *big.Int) (types.Transactions, types.Transacti
} }
l.costcap = new(big.Int).Set(threshold) // Lower the cap to the threshold l.costcap = new(big.Int).Set(threshold) // Lower the cap to the threshold
// Gather all the transactions needing deletion // Filter out all the transactions above the account's funds
var removed types.Transactions removed := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Cost().Cmp(threshold) > 0 })
for _, tx := range l.items {
if cost := tx.Cost(); cost.Cmp(threshold) > 0 { // If the list was strict, filter anything above the lowest nonce
removed = append(removed, tx)
delete(l.items, tx.Nonce())
}
}
// Readjust the nonce boundaries/indexes and gather invalidate tranactions
var invalids types.Transactions var invalids types.Transactions
if l.strict { if l.strict && len(removed) > 0 {
// In strict mode iterate find the first gap and invalidate everything after it lowest := uint64(math.MaxUint64)
for i := l.first; i <= l.last; i++ { for _, tx := range removed {
if _, ok := l.items[i]; !ok { if nonce := tx.Nonce(); lowest > nonce {
// Gap found, invalidate all subsequent transactions lowest = nonce
for j := i + 1; j <= l.last; j++ {
if tx, ok := l.items[j]; ok {
invalids = append(invalids, tx)
delete(l.items, j)
}
}
// Reduce the highest transaction nonce and return
l.last = i - 1
break
}
} }
} else {
// In gapped mode no transactions are invalid, but the heap is ruined
l.index = &nonceHeap{}
for nonce, _ := range l.items {
*l.index = append(*l.index, nonce)
} }
heap.Init(l.index) invalids = l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
} }
l.cache = nil
return removed, invalids return removed, invalids
} }
// Cap places a hard limit on the number of items, returning all transactions // Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit. // exceeding that limit.
func (l *txList) Cap(threshold int) types.Transactions { func (l *txList) Cap(threshold int) types.Transactions {
// Short circuit if the number of items is under the limit return l.txs.Cap(threshold)
if len(l.items) < threshold {
return nil
}
// Otherwise gather and drop the highest nonce'd transactions
var drops types.Transactions
if l.strict {
// In strict mode, just gather top down from last to first
for len(l.items) > threshold {
if tx, ok := l.items[l.last]; ok {
drops = append(drops, tx)
delete(l.items, l.last)
l.last--
}
}
} else {
// In gapped mode it's expensive: we need to sort and drop like that
sort.Sort(*l.index)
for size := len(l.items); size > threshold; size-- {
drops = append(drops, l.items[(*l.index)[size-1]])
delete(l.items, (*l.index)[size-1])
*l.index = (*l.index)[:size-1]
}
heap.Init(l.index)
}
l.cache = nil
return drops
} }
// Remove deletes a transaction from the maintained list, returning whether the // Remove deletes a transaction from the maintained list, returning whether the
// transaction was found, and also returning any transaction invalidated due to // transaction was found, and also returning any transaction invalidated due to
// the deletion (strict mode only). // the deletion (strict mode only).
func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) { func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
// Remove the transaction from the set
nonce := tx.Nonce() nonce := tx.Nonce()
if _, ok := l.items[nonce]; ok { if removed := l.txs.Remove(nonce); !removed {
// Remove the item and invalidate the sorted cache return false, nil
delete(l.items, nonce)
l.cache = nil
// Remove all invalidated transactions (strict mode only!)
var invalids types.Transactions
if l.strict {
invalids = make(types.Transactions, 0, l.last-nonce)
for i := nonce + 1; i <= l.last; i++ {
invalids = append(invalids, l.items[i])
delete(l.items, i)
}
l.last = nonce - 1
} else {
// In gapped mode, remove the nonce from the index but honour the heap
for i := 0; i < l.index.Len(); i++ {
if (*l.index)[i] == nonce {
heap.Remove(l.index, i)
break
}
}
} }
return true, invalids // In strict mode, filter out non-executable transactions
if l.strict {
return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
} }
return false, nil return true, nil
} }
// Ready retrieves a sequentially increasing list of transactions starting at the // Ready retrieves a sequentially increasing list of transactions starting at the
@ -269,63 +321,22 @@ func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
// prevent getting into and invalid state. This is not something that should ever // prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing! // happen but better to be self correcting than failing!
func (l *txList) Ready(start uint64) types.Transactions { func (l *txList) Ready(start uint64) types.Transactions {
var txs types.Transactions return l.txs.Ready(start)
if l.strict {
// In strict mode make sure we have valid transaction, return all contiguous
if l.first > start {
return nil
}
for {
if tx, ok := l.items[l.first]; ok {
txs = append(txs, tx)
delete(l.items, l.first)
l.first++
continue
}
break
}
} else {
// In gapped mode, check the heap start and return all contiguous
if l.index.Len() == 0 || (*l.index)[0] > start {
return nil
}
next := (*l.index)[0]
for l.index.Len() > 0 && (*l.index)[0] == next {
txs = append(txs, l.items[next])
delete(l.items, next)
heap.Pop(l.index)
next++
}
}
l.cache = nil
return txs
} }
// Len returns the length of the transaction list. // Len returns the length of the transaction list.
func (l *txList) Len() int { func (l *txList) Len() int {
return len(l.items) return l.txs.Len()
} }
// Empty returns whether the list of transactions is empty or not. // Empty returns whether the list of transactions is empty or not.
func (l *txList) Empty() bool { func (l *txList) Empty() bool {
return len(l.items) == 0 return l.Len() == 0
} }
// Flatten creates a nonce-sorted slice of transactions based on the loosely // Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case // sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents. // it's requested again before any modifications are made to the contents.
func (l *txList) Flatten() types.Transactions { func (l *txList) Flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it return l.txs.Flatten()
if l.cache == nil {
l.cache = make(types.Transactions, 0, len(l.items))
for _, tx := range l.items {
l.cache = append(l.cache, tx)
}
sort.Sort(types.TxByNonce(l.cache))
}
// Copy the cache to prevent accidental modifications
txs := make(types.Transactions, len(l.cache))
copy(txs, l.cache)
return txs
} }

@ -41,18 +41,12 @@ func TestStrictTxListAdd(t *testing.T) {
list.Add(txs[v]) list.Add(txs[v])
} }
// Verify internal state // Verify internal state
if list.first != 0 { if len(list.txs.items) != len(txs) {
t.Errorf("lowest nonce mismatch: have %d, want %d", list.first, 0) t.Errorf("transaction count mismatch: have %d, want %d", len(list.txs.items), len(txs))
}
if int(list.last) != len(txs)-1 {
t.Errorf("highest nonce mismatch: have %d, want %d", list.last, len(txs)-1)
}
if len(list.items) != len(txs) {
t.Errorf("transaction count mismatch: have %d, want %d", len(list.items), len(txs))
} }
for i, tx := range txs { for i, tx := range txs {
if list.items[tx.Nonce()] != tx { if list.txs.items[tx.Nonce()] != tx {
t.Errorf("item %d: transaction mismatch: have %v, want %v", i, list.items[tx.Nonce()], tx) t.Errorf("item %d: transaction mismatch: have %v, want %v", i, list.txs.items[tx.Nonce()], tx)
} }
} }
} }

@ -154,7 +154,8 @@ func (pool *TxPool) resetState() {
// Update all accounts to the latest known pending nonce // Update all accounts to the latest known pending nonce
for addr, list := range pool.pending { for addr, list := range pool.pending {
pool.pendingState.SetNonce(addr, list.last+1) txs := list.Flatten() // Heavy but will be cached and is needed by the miner anyway
pool.pendingState.SetNonce(addr, txs[len(txs)-1].Nonce()+1)
} }
// Check the queue and move transactions over to the pending if possible // Check the queue and move transactions over to the pending if possible
// or remove those that have become invalid // or remove those that have become invalid
@ -366,7 +367,7 @@ func (pool *TxPool) promoteTx(addr common.Address, hash common.Hash, tx *types.T
// Set the potentially new pending nonce and notify any subsystems of the new tx // Set the potentially new pending nonce and notify any subsystems of the new tx
pool.beats[addr] = time.Now() pool.beats[addr] = time.Now()
pool.pendingState.SetNonce(addr, list.last+1) pool.pendingState.SetNonce(addr, tx.Nonce()+1)
go pool.eventMux.Post(TxPreEvent{tx}) go pool.eventMux.Post(TxPreEvent{tx})
} }
@ -439,19 +440,20 @@ func (pool *TxPool) removeTx(hash common.Hash) {
// Remove the transaction from the pending lists and reset the account nonce // Remove the transaction from the pending lists and reset the account nonce
if pending := pool.pending[addr]; pending != nil { if pending := pool.pending[addr]; pending != nil {
if removed, invalids := pending.Remove(tx); removed { if removed, invalids := pending.Remove(tx); removed {
// If no more transactions are left, remove the list and reset the nonce // If no more transactions are left, remove the list
if pending.Empty() { if pending.Empty() {
delete(pool.pending, addr) delete(pool.pending, addr)
delete(pool.beats, addr) delete(pool.beats, addr)
pool.pendingState.SetNonce(addr, tx.Nonce())
} else { } else {
// Otherwise update the nonce and postpone any invalidated transactions // Otherwise postpone any invalidated transactions
pool.pendingState.SetNonce(addr, pending.last)
for _, tx := range invalids { for _, tx := range invalids {
pool.enqueueTx(tx.Hash(), tx) pool.enqueueTx(tx.Hash(), tx)
} }
} }
// Update the account nonce if needed
if nonce := tx.Nonce(); pool.pendingState.GetNonce(addr) > nonce {
pool.pendingState.SetNonce(addr, tx.Nonce())
}
} }
} }
// Transaction is in the future queue // Transaction is in the future queue

@ -105,7 +105,7 @@ func TestTransactionQueue(t *testing.T) {
currentState.SetNonce(from, 2) currentState.SetNonce(from, 2)
pool.enqueueTx(tx.Hash(), tx) pool.enqueueTx(tx.Hash(), tx)
pool.promoteExecutables() pool.promoteExecutables()
if _, ok := pool.pending[from].items[tx.Nonce()]; ok { if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
t.Error("expected transaction to be in tx pool") t.Error("expected transaction to be in tx pool")
} }
@ -224,7 +224,7 @@ func TestTransactionDoubleNonce(t *testing.T) {
if pool.pending[addr].Len() != 1 { if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
} }
if tx := pool.pending[addr].items[0]; tx.Hash() != tx2.Hash() { if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
} }
// Add the thid transaction and ensure it's not saved (smaller price) // Add the thid transaction and ensure it's not saved (smaller price)
@ -235,7 +235,7 @@ func TestTransactionDoubleNonce(t *testing.T) {
if pool.pending[addr].Len() != 1 { if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
} }
if tx := pool.pending[addr].items[0]; tx.Hash() != tx2.Hash() { if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
} }
// Ensure the total transaction count is correct // Ensure the total transaction count is correct
@ -346,16 +346,16 @@ func TestTransactionDropping(t *testing.T) {
state.AddBalance(account, big.NewInt(-750)) state.AddBalance(account, big.NewInt(-750))
pool.resetState() pool.resetState()
if _, ok := pool.pending[account].items[tx0.Nonce()]; !ok { if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0) t.Errorf("funded pending transaction missing: %v", tx0)
} }
if _, ok := pool.pending[account].items[tx1.Nonce()]; ok { if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1) t.Errorf("out-of-fund pending transaction present: %v", tx1)
} }
if _, ok := pool.queue[account].items[tx10.Nonce()]; !ok { if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10) t.Errorf("funded queued transaction missing: %v", tx10)
} }
if _, ok := pool.queue[account].items[tx11.Nonce()]; ok { if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11) t.Errorf("out-of-fund queued transaction present: %v", tx11)
} }
if len(pool.all) != 2 { if len(pool.all) != 2 {
@ -410,25 +410,25 @@ func TestTransactionPostponing(t *testing.T) {
state.AddBalance(account, big.NewInt(-750)) state.AddBalance(account, big.NewInt(-750))
pool.resetState() pool.resetState()
if _, ok := pool.pending[account].items[txns[0].Nonce()]; !ok { if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0]) t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
} }
if _, ok := pool.queue[account].items[txns[0].Nonce()]; ok { if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0]) t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
} }
for i, tx := range txns[1:] { for i, tx := range txns[1:] {
if i%2 == 1 { if i%2 == 1 {
if _, ok := pool.pending[account].items[tx.Nonce()]; ok { if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
} }
if _, ok := pool.queue[account].items[tx.Nonce()]; !ok { if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
} }
} else { } else {
if _, ok := pool.pending[account].items[tx.Nonce()]; ok { if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
} }
if _, ok := pool.queue[account].items[tx.Nonce()]; ok { if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
} }
} }

Loading…
Cancel
Save