p2p: EIP-8 changes

pull/2226/head
Felix Lange 9 years ago
parent ee1debda53
commit 7d8155714b
  1. 3
      p2p/message_test.go
  2. 3
      p2p/peer.go
  3. 351
      p2p/rlpx.go
  4. 235
      p2p/rlpx_test.go

@ -143,7 +143,8 @@ func TestEOFSignal(t *testing.T) {
} }
func unhex(str string) []byte { func unhex(str string) []byte {
b, err := hex.DecodeString(strings.Replace(str, "\n", "", -1)) r := strings.NewReplacer("\t", "", " ", "", "\n", "")
b, err := hex.DecodeString(r.Replace(str))
if err != nil { if err != nil {
panic(fmt.Sprintf("invalid hex string: %q", str)) panic(fmt.Sprintf("invalid hex string: %q", str))
} }

@ -56,6 +56,9 @@ type protoHandshake struct {
Caps []Cap Caps []Cap
ListenPort uint64 ListenPort uint64
ID discover.NodeID ID discover.NodeID
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
} }
// Peer represents a connected remote node. // Peer represents a connected remote node.

@ -24,11 +24,14 @@ import (
"crypto/elliptic" "crypto/elliptic"
"crypto/hmac" "crypto/hmac"
"crypto/rand" "crypto/rand"
"encoding/binary"
"errors" "errors"
"fmt" "fmt"
"hash" "hash"
"io" "io"
mrand "math/rand"
"net" "net"
"os"
"sync" "sync"
"time" "time"
@ -51,9 +54,10 @@ const (
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1 authRespLen = pubLen + shaLen + 1
eciesBytes = 65 + 16 + 32 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake
encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
// total timeout for encryption handshake and protocol // total timeout for encryption handshake and protocol
// handshake in both directions. // handshake in both directions.
@ -151,10 +155,6 @@ func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake,
if err := msg.Decode(&hs); err != nil { if err := msg.Decode(&hs); err != nil {
return nil, err return nil, err
} }
// validate handshake info
if hs.Version != our.Version {
return nil, DiscIncompatibleVersion
}
if (hs.ID == discover.NodeID{}) { if (hs.ID == discover.NodeID{}) {
return nil, DiscInvalidIdentity return nil, DiscInvalidIdentity
} }
@ -200,6 +200,29 @@ type secrets struct {
Token []byte Token []byte
} }
// RLPx v4 handshake auth (defined in EIP-8).
type authMsgV4 struct {
gotPlain bool // whether read packet had plain format.
Signature [sigLen]byte
InitiatorPubkey [pubLen]byte
Nonce [shaLen]byte
Version uint
// Ignore additional fields (forward-compatibility)
Rest []rlp.RawValue `rlp:"tail"`
}
// RLPx v4 handshake response (defined in EIP-8).
type authRespV4 struct {
RandomPubkey [pubLen]byte
Nonce [shaLen]byte
Version uint
// Ignore additional fields (forward-compatibility)
Rest []rlp.RawValue `rlp:"tail"`
}
// secrets is called after the handshake is completed. // secrets is called after the handshake is completed.
// It extracts the connection secrets from the handshake values. // It extracts the connection secrets from the handshake values.
func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
@ -215,7 +238,6 @@ func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
RemoteID: h.remoteID, RemoteID: h.remoteID,
AES: aesSecret, AES: aesSecret,
MAC: crypto.Sha3(ecdheSecret, aesSecret), MAC: crypto.Sha3(ecdheSecret, aesSecret),
Token: crypto.Sha3(sharedSecret),
} }
// setup sha3 instances for the MACs // setup sha3 instances for the MACs
@ -234,114 +256,89 @@ func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
return s, nil return s, nil
} }
func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) { // staticSharedSecret returns the static shared secret, the result
// of key agreement between the local and remote static node key.
func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen) return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
} }
var configSendEIP = os.Getenv("RLPX_EIP8") != ""
// initiatorEncHandshake negotiates a session token on conn. // initiatorEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection. // it should be called on the dialing side of the connection.
// //
// prv is the local client's private key. // prv is the local client's private key.
// token is the token from a previous session with this node.
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) { func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
h, err := newInitiatorHandshake(remoteID) h := &encHandshake{initiator: true, remoteID: remoteID}
authMsg, err := h.makeAuthMsg(prv, token)
if err != nil { if err != nil {
return s, err return s, err
} }
auth, err := h.authMsg(prv, token) var authPacket []byte
if configSendEIP {
authPacket, err = sealEIP8(authMsg, h)
} else {
authPacket, err = authMsg.sealPlain(h)
}
if err != nil { if err != nil {
return s, err return s, err
} }
if _, err = conn.Write(auth); err != nil { if _, err = conn.Write(authPacket); err != nil {
return s, err return s, err
} }
response := make([]byte, encAuthRespLen) authRespMsg := new(authRespV4)
if _, err = io.ReadFull(conn, response); err != nil { authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
if err != nil {
return s, err return s, err
} }
if err := h.decodeAuthResp(response, prv); err != nil { if err := h.handleAuthResp(authRespMsg); err != nil {
return s, err return s, err
} }
return h.secrets(auth, response) return h.secrets(authPacket, authRespPacket)
} }
func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) { // makeAuthMsg creates the initiator handshake message.
rpub, err := remoteID.Pubkey() func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) {
rpub, err := h.remoteID.Pubkey()
if err != nil { if err != nil {
return nil, fmt.Errorf("bad remoteID: %v", err) return nil, fmt.Errorf("bad remoteID: %v", err)
} }
// generate random initiator nonce h.remotePub = ecies.ImportECDSAPublic(rpub)
n := make([]byte, shaLen) // Generate random initiator nonce.
if _, err := rand.Read(n); err != nil { h.initNonce = make([]byte, shaLen)
if _, err := rand.Read(h.initNonce); err != nil {
return nil, err return nil, err
} }
// generate random keypair to use for signing // Generate random keypair to for ECDH.
randpriv, err := ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil) h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
if err != nil { if err != nil {
return nil, err return nil, err
} }
h := &encHandshake{
initiator: true,
remoteID: remoteID,
remotePub: ecies.ImportECDSAPublic(rpub),
initNonce: n,
randomPrivKey: randpriv,
}
return h, nil
}
// authMsg creates an encrypted initiator handshake message.
func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
var tokenFlag byte
if token == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
var err error
if token, err = h.ecdhShared(prv); err != nil {
return nil, err
}
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
// sign known message: // Sign known message: static-shared-secret ^ nonce
// ecdh-shared-secret^nonce for new peers token, err = h.staticSharedSecret(prv)
// token^nonce for old peers if err != nil {
return nil, err
}
signed := xor(token, h.initNonce) signed := xor(token, h.initNonce)
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
if err != nil { if err != nil {
return nil, err return nil, err
} }
// encode auth message msg := new(authMsgV4)
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag copy(msg.Signature[:], signature)
msg := make([]byte, authMsgLen) copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
n := copy(msg, signature) copy(msg.Nonce[:], h.initNonce)
n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey))) msg.Version = 4
n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) return msg, nil
n += copy(msg[n:], h.initNonce)
msg[n] = tokenFlag
// encrypt auth message using remote-pubk
return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
} }
// decodeAuthResp decode an encrypted authentication response message. func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error { h.respNonce = msg.Nonce[:]
msg, err := crypto.Decrypt(prv, auth) h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
if err != nil { return err
return fmt.Errorf("could not decrypt auth response (%v)", err)
}
h.respNonce = msg[pubLen : pubLen+shaLen]
h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
if err != nil {
return err
}
// ignore token flag for now
return nil
} }
// receiverEncHandshake negotiates a session token on conn. // receiverEncHandshake negotiates a session token on conn.
@ -350,99 +347,165 @@ func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error
// prv is the local client's private key. // prv is the local client's private key.
// token is the token from a previous session with this node. // token is the token from a previous session with this node.
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) { func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
// read remote auth sent by initiator. authMsg := new(authMsgV4)
auth := make([]byte, encAuthMsgLen) authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
if _, err := io.ReadFull(conn, auth); err != nil { if err != nil {
return s, err return s, err
} }
h, err := decodeAuthMsg(prv, token, auth) h := new(encHandshake)
if err != nil { if err := h.handleAuthMsg(authMsg, prv); err != nil {
return s, err return s, err
} }
// send auth response authRespMsg, err := h.makeAuthResp()
resp, err := h.authResp(prv, token)
if err != nil { if err != nil {
return s, err return s, err
} }
if _, err = conn.Write(resp); err != nil { var authRespPacket []byte
return s, err if authMsg.gotPlain {
authRespPacket, err = authRespMsg.sealPlain(h)
} else {
authRespPacket, err = sealEIP8(authRespMsg, h)
} }
return h.secrets(auth, resp)
}
func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
var err error
h := new(encHandshake)
// generate random keypair for session
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
if err != nil { if err != nil {
return nil, err return s, err
}
// generate random nonce
h.respNonce = make([]byte, shaLen)
if _, err = rand.Read(h.respNonce); err != nil {
return nil, err
} }
if _, err = conn.Write(authRespPacket); err != nil {
msg, err := crypto.Decrypt(prv, auth) return s, err
if err != nil {
return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
} }
return h.secrets(authPacket, authRespPacket)
}
// decode message parameters func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag // Import the remote identity.
h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1] h.initNonce = msg.Nonce[:]
copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen]) h.remoteID = msg.InitiatorPubkey
rpub, err := h.remoteID.Pubkey() rpub, err := h.remoteID.Pubkey()
if err != nil { if err != nil {
return nil, fmt.Errorf("bad remoteID: %#v", err) return fmt.Errorf("bad remoteID: %#v", err)
} }
h.remotePub = ecies.ImportECDSAPublic(rpub) h.remotePub = ecies.ImportECDSAPublic(rpub)
// recover remote random pubkey from signed message. // Generate random keypair for ECDH.
if token == nil { // If a private key is already set, use it instead of generating one (for testing).
// TODO: it is an error if the initiator has a token and we don't. check that. if h.randomPrivKey == nil {
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
// no session token means we need to generate shared secret. if err != nil {
// ecies shared secret is used as initial session token for new peers. return err
// generate shared key from prv and remote pubkey.
if token, err = h.ecdhShared(prv); err != nil {
return nil, err
} }
} }
// Check the signature.
token, err := h.staticSharedSecret(prv)
if err != nil {
return err
}
signedMsg := xor(token, h.initNonce) signedMsg := xor(token, h.initNonce)
remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]) remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:])
if err != nil { if err != nil {
return err
}
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
return nil
}
func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
// Generate random nonce.
h.respNonce = make([]byte, shaLen)
if _, err = rand.Read(h.respNonce); err != nil {
return nil, err return nil, err
} }
// validate the sha3 of recovered pubkey msg = new(authRespV4)
remoteRandomPubMAC := msg[sigLen : sigLen+shaLen] copy(msg.Nonce[:], h.respNonce)
shaRemoteRandomPub := crypto.Sha3(remoteRandomPub[1:]) copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
if !bytes.Equal(remoteRandomPubMAC, shaRemoteRandomPub) { msg.Version = 4
return nil, fmt.Errorf("sha3 of recovered ephemeral pubkey does not match checksum in auth message") return msg, nil
}
func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) {
buf := make([]byte, authMsgLen)
n := copy(buf, msg.Signature[:])
n += copy(buf[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
n += copy(buf[n:], msg.InitiatorPubkey[:])
n += copy(buf[n:], msg.Nonce[:])
buf[n] = 0 // token-flag
return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil)
}
func (msg *authMsgV4) decodePlain(input []byte) {
n := copy(msg.Signature[:], input)
n += shaLen // skip sha3(initiator-ephemeral-pubk)
n += copy(msg.InitiatorPubkey[:], input[n:])
n += copy(msg.Nonce[:], input[n:])
msg.Version = 4
msg.gotPlain = true
}
func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
buf := make([]byte, authRespLen)
n := copy(buf, msg.RandomPubkey[:])
n += copy(buf[n:], msg.Nonce[:])
return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil)
}
func (msg *authRespV4) decodePlain(input []byte) {
n := copy(msg.RandomPubkey[:], input)
n += copy(msg.Nonce[:], input[n:])
msg.Version = 4
}
var padSpace = make([]byte, 300)
func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
buf := new(bytes.Buffer)
if err := rlp.Encode(buf, msg); err != nil {
return nil, err
} }
// pad with random amount of data. the amount needs to be at least 100 bytes to make
// the message distinguishable from pre-EIP-8 handshakes.
pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
buf.Write(pad)
prefix := make([]byte, 2)
binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix)
return h, nil return append(prefix, enc...), err
} }
// authResp generates the encrypted authentication response message. type plainDecoder interface {
func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) { decodePlain([]byte)
// responder auth message }
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
resp := make([]byte, authRespLen) func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey)) buf := make([]byte, plainSize)
n += copy(resp[n:], h.respNonce) if _, err := io.ReadFull(r, buf); err != nil {
if token == nil { return buf, err
resp[n] = 0 }
} else { // Attempt decoding pre-EIP-8 "plain" format.
resp[n] = 1 key := ecies.ImportECDSA(prv)
if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil {
msg.decodePlain(dec)
return buf, nil
} }
// encrypt using remote-pubk // Could be EIP-8 format, try that.
return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil) prefix := buf[:2]
size := binary.BigEndian.Uint16(prefix)
if size < uint16(plainSize) {
return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
}
buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
return buf, err
}
dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix)
if err != nil {
return buf, err
}
// Can't use rlp.DecodeBytes here because it rejects
// trailing data (forward-compatibility).
s := rlp.NewStream(bytes.NewReader(dec), 0)
return buf, s.Decode(msg)
} }
// importPublicKey unmarshals 512 bit public keys. // importPublicKey unmarshals 512 bit public keys.
@ -458,7 +521,11 @@ func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
} }
// TODO: fewer pointless conversions // TODO: fewer pointless conversions
return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil pub := crypto.ToECDSAPub(pubKey65)
if pub.X == nil {
return nil, fmt.Errorf("invalid public key")
}
return ecies.ImportECDSAPublic(pub), nil
} }
func exportPubkey(pub *ecies.PublicKey) []byte { func exportPubkey(pub *ecies.PublicKey) []byte {

@ -21,6 +21,7 @@ import (
"crypto/rand" "crypto/rand"
"errors" "errors"
"fmt" "fmt"
"io"
"io/ioutil" "io/ioutil"
"net" "net"
"reflect" "reflect"
@ -162,6 +163,7 @@ func TestProtocolHandshake(t *testing.T) {
wg.Add(2) wg.Add(2)
go func() { go func() {
defer wg.Done() defer wg.Done()
defer fd1.Close()
rlpx := newRLPX(fd0) rlpx := newRLPX(fd0)
remid, err := rlpx.doEncHandshake(prv0, node1) remid, err := rlpx.doEncHandshake(prv0, node1)
if err != nil { if err != nil {
@ -178,6 +180,7 @@ func TestProtocolHandshake(t *testing.T) {
t.Errorf("dial side proto handshake error: %v", err) t.Errorf("dial side proto handshake error: %v", err)
return return
} }
phs.Rest = nil
if !reflect.DeepEqual(phs, hs1) { if !reflect.DeepEqual(phs, hs1) {
t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1)) t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1))
return return
@ -186,6 +189,7 @@ func TestProtocolHandshake(t *testing.T) {
}() }()
go func() { go func() {
defer wg.Done() defer wg.Done()
defer fd1.Close()
rlpx := newRLPX(fd1) rlpx := newRLPX(fd1)
remid, err := rlpx.doEncHandshake(prv1, nil) remid, err := rlpx.doEncHandshake(prv1, nil)
if err != nil { if err != nil {
@ -202,6 +206,7 @@ func TestProtocolHandshake(t *testing.T) {
t.Errorf("listen side proto handshake error: %v", err) t.Errorf("listen side proto handshake error: %v", err)
return return
} }
phs.Rest = nil
if !reflect.DeepEqual(phs, hs0) { if !reflect.DeepEqual(phs, hs0) {
t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0)) t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0))
return return
@ -216,7 +221,6 @@ func TestProtocolHandshake(t *testing.T) {
func TestProtocolHandshakeErrors(t *testing.T) { func TestProtocolHandshakeErrors(t *testing.T) {
our := &protoHandshake{Version: 3, Caps: []Cap{{"foo", 2}, {"bar", 3}}, Name: "quux"} our := &protoHandshake{Version: 3, Caps: []Cap{{"foo", 2}, {"bar", 3}}, Name: "quux"}
id := randomID()
tests := []struct { tests := []struct {
code uint64 code uint64
msg interface{} msg interface{}
@ -242,11 +246,6 @@ func TestProtocolHandshakeErrors(t *testing.T) {
msg: []byte{1, 2, 3}, msg: []byte{1, 2, 3},
err: newPeerError(errInvalidMsg, "(code 0) (size 4) rlp: expected input list for p2p.protoHandshake"), err: newPeerError(errInvalidMsg, "(code 0) (size 4) rlp: expected input list for p2p.protoHandshake"),
}, },
{
code: handshakeMsg,
msg: &protoHandshake{Version: 9944, ID: id},
err: DiscIncompatibleVersion,
},
{ {
code: handshakeMsg, code: handshakeMsg,
msg: &protoHandshake{Version: 3}, msg: &protoHandshake{Version: 3},
@ -374,3 +373,227 @@ func TestRLPXFrameRW(t *testing.T) {
} }
} }
} }
type handshakeAuthTest struct {
input string
isPlain bool
wantVersion uint
wantRest []rlp.RawValue
}
var eip8HandshakeAuthTests = []handshakeAuthTest{
// (Auth₁) RLPx v4 plain encoding
{
input: `
048ca79ad18e4b0659fab4853fe5bc58eb83992980f4c9cc147d2aa31532efd29a3d3dc6a3d89eaf
913150cfc777ce0ce4af2758bf4810235f6e6ceccfee1acc6b22c005e9e3a49d6448610a58e98744
ba3ac0399e82692d67c1f58849050b3024e21a52c9d3b01d871ff5f210817912773e610443a9ef14
2e91cdba0bd77b5fdf0769b05671fc35f83d83e4d3b0b000c6b2a1b1bba89e0fc51bf4e460df3105
c444f14be226458940d6061c296350937ffd5e3acaceeaaefd3c6f74be8e23e0f45163cc7ebd7622
0f0128410fd05250273156d548a414444ae2f7dea4dfca2d43c057adb701a715bf59f6fb66b2d1d2
0f2c703f851cbf5ac47396d9ca65b6260bd141ac4d53e2de585a73d1750780db4c9ee4cd4d225173
a4592ee77e2bd94d0be3691f3b406f9bba9b591fc63facc016bfa8
`,
isPlain: true,
wantVersion: 4,
},
// (Auth₂) EIP-8 encoding
{
input: `
01b304ab7578555167be8154d5cc456f567d5ba302662433674222360f08d5f1534499d3678b513b
0fca474f3a514b18e75683032eb63fccb16c156dc6eb2c0b1593f0d84ac74f6e475f1b8d56116b84
9634a8c458705bf83a626ea0384d4d7341aae591fae42ce6bd5c850bfe0b999a694a49bbbaf3ef6c
da61110601d3b4c02ab6c30437257a6e0117792631a4b47c1d52fc0f8f89caadeb7d02770bf999cc
147d2df3b62e1ffb2c9d8c125a3984865356266bca11ce7d3a688663a51d82defaa8aad69da39ab6
d5470e81ec5f2a7a47fb865ff7cca21516f9299a07b1bc63ba56c7a1a892112841ca44b6e0034dee
70c9adabc15d76a54f443593fafdc3b27af8059703f88928e199cb122362a4b35f62386da7caad09
c001edaeb5f8a06d2b26fb6cb93c52a9fca51853b68193916982358fe1e5369e249875bb8d0d0ec3
6f917bc5e1eafd5896d46bd61ff23f1a863a8a8dcd54c7b109b771c8e61ec9c8908c733c0263440e
2aa067241aaa433f0bb053c7b31a838504b148f570c0ad62837129e547678c5190341e4f1693956c
3bf7678318e2d5b5340c9e488eefea198576344afbdf66db5f51204a6961a63ce072c8926c
`,
wantVersion: 4,
wantRest: []rlp.RawValue{},
},
// (Auth₃) RLPx v4 EIP-8 encoding with version 56, additional list elements
{
input: `
01b8044c6c312173685d1edd268aa95e1d495474c6959bcdd10067ba4c9013df9e40ff45f5bfd6f7
2471f93a91b493f8e00abc4b80f682973de715d77ba3a005a242eb859f9a211d93a347fa64b597bf
280a6b88e26299cf263b01b8dfdb712278464fd1c25840b995e84d367d743f66c0e54a586725b7bb
f12acca27170ae3283c1073adda4b6d79f27656993aefccf16e0d0409fe07db2dc398a1b7e8ee93b
cd181485fd332f381d6a050fba4c7641a5112ac1b0b61168d20f01b479e19adf7fdbfa0905f63352
bfc7e23cf3357657455119d879c78d3cf8c8c06375f3f7d4861aa02a122467e069acaf513025ff19
6641f6d2810ce493f51bee9c966b15c5043505350392b57645385a18c78f14669cc4d960446c1757
1b7c5d725021babbcd786957f3d17089c084907bda22c2b2675b4378b114c601d858802a55345a15
116bc61da4193996187ed70d16730e9ae6b3bb8787ebcaea1871d850997ddc08b4f4ea668fbf3740
7ac044b55be0908ecb94d4ed172ece66fd31bfdadf2b97a8bc690163ee11f5b575a4b44e36e2bfb2
f0fce91676fd64c7773bac6a003f481fddd0bae0a1f31aa27504e2a533af4cef3b623f4791b2cca6
d490
`,
wantVersion: 56,
wantRest: []rlp.RawValue{{0x01}, {0x02}, {0xC2, 0x04, 0x05}},
},
}
type handshakeAckTest struct {
input string
wantVersion uint
wantRest []rlp.RawValue
}
var eip8HandshakeRespTests = []handshakeAckTest{
// (Ack₁) RLPx v4 plain encoding
{
input: `
049f8abcfa9c0dc65b982e98af921bc0ba6e4243169348a236abe9df5f93aa69d99cadddaa387662
b0ff2c08e9006d5a11a278b1b3331e5aaabf0a32f01281b6f4ede0e09a2d5f585b26513cb794d963
5a57563921c04a9090b4f14ee42be1a5461049af4ea7a7f49bf4c97a352d39c8d02ee4acc416388c
1c66cec761d2bc1c72da6ba143477f049c9d2dde846c252c111b904f630ac98e51609b3b1f58168d
dca6505b7196532e5f85b259a20c45e1979491683fee108e9660edbf38f3add489ae73e3dda2c71b
d1497113d5c755e942d1
`,
wantVersion: 4,
},
// (Ack₂) EIP-8 encoding
{
input: `
01ea0451958701280a56482929d3b0757da8f7fbe5286784beead59d95089c217c9b917788989470
b0e330cc6e4fb383c0340ed85fab836ec9fb8a49672712aeabbdfd1e837c1ff4cace34311cd7f4de
05d59279e3524ab26ef753a0095637ac88f2b499b9914b5f64e143eae548a1066e14cd2f4bd7f814
c4652f11b254f8a2d0191e2f5546fae6055694aed14d906df79ad3b407d94692694e259191cde171
ad542fc588fa2b7333313d82a9f887332f1dfc36cea03f831cb9a23fea05b33deb999e85489e645f
6aab1872475d488d7bd6c7c120caf28dbfc5d6833888155ed69d34dbdc39c1f299be1057810f34fb
e754d021bfca14dc989753d61c413d261934e1a9c67ee060a25eefb54e81a4d14baff922180c395d
3f998d70f46f6b58306f969627ae364497e73fc27f6d17ae45a413d322cb8814276be6ddd13b885b
201b943213656cde498fa0e9ddc8e0b8f8a53824fbd82254f3e2c17e8eaea009c38b4aa0a3f306e8
797db43c25d68e86f262e564086f59a2fc60511c42abfb3057c247a8a8fe4fb3ccbadde17514b7ac
8000cdb6a912778426260c47f38919a91f25f4b5ffb455d6aaaf150f7e5529c100ce62d6d92826a7
1778d809bdf60232ae21ce8a437eca8223f45ac37f6487452ce626f549b3b5fdee26afd2072e4bc7
5833c2464c805246155289f4
`,
wantVersion: 4,
wantRest: []rlp.RawValue{},
},
// (Ack₃) EIP-8 encoding with version 57, additional list elements
{
input: `
01f004076e58aae772bb101ab1a8e64e01ee96e64857ce82b1113817c6cdd52c09d26f7b90981cd7
ae835aeac72e1573b8a0225dd56d157a010846d888dac7464baf53f2ad4e3d584531fa203658fab0
3a06c9fd5e35737e417bc28c1cbf5e5dfc666de7090f69c3b29754725f84f75382891c561040ea1d
dc0d8f381ed1b9d0d4ad2a0ec021421d847820d6fa0ba66eaf58175f1b235e851c7e2124069fbc20
2888ddb3ac4d56bcbd1b9b7eab59e78f2e2d400905050f4a92dec1c4bdf797b3fc9b2f8e84a482f3
d800386186712dae00d5c386ec9387a5e9c9a1aca5a573ca91082c7d68421f388e79127a5177d4f8
590237364fd348c9611fa39f78dcdceee3f390f07991b7b47e1daa3ebcb6ccc9607811cb17ce51f1
c8c2c5098dbdd28fca547b3f58c01a424ac05f869f49c6a34672ea2cbbc558428aa1fe48bbfd6115
8b1b735a65d99f21e70dbc020bfdface9f724a0d1fb5895db971cc81aa7608baa0920abb0a565c9c
436e2fd13323428296c86385f2384e408a31e104670df0791d93e743a3a5194ee6b076fb6323ca59
3011b7348c16cf58f66b9633906ba54a2ee803187344b394f75dd2e663a57b956cb830dd7a908d4f
39a2336a61ef9fda549180d4ccde21514d117b6c6fd07a9102b5efe710a32af4eeacae2cb3b1dec0
35b9593b48b9d3ca4c13d245d5f04169b0b1
`,
wantVersion: 57,
wantRest: []rlp.RawValue{{0x06}, {0xC2, 0x07, 0x08}, {0x81, 0xFA}},
},
}
func TestHandshakeForwardCompatibility(t *testing.T) {
var (
keyA, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
keyB, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
pubA = crypto.FromECDSAPub(&keyA.PublicKey)[1:]
pubB = crypto.FromECDSAPub(&keyB.PublicKey)[1:]
ephA, _ = crypto.HexToECDSA("869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d")
ephB, _ = crypto.HexToECDSA("e238eb8e04fee6511ab04c6dd3c89ce097b11f25d584863ac2b6d5b35b1847e4")
ephPubA = crypto.FromECDSAPub(&ephA.PublicKey)[1:]
ephPubB = crypto.FromECDSAPub(&ephB.PublicKey)[1:]
nonceA = unhex("7e968bba13b6c50e2c4cd7f241cc0d64d1ac25c7f5952df231ac6a2bda8ee5d6")
nonceB = unhex("559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd")
_, _, _, _ = pubA, pubB, ephPubA, ephPubB
authSignature = unhex("299ca6acfd35e3d72d8ba3d1e2b60b5561d5af5218eb5bc182045769eb4226910a301acae3b369fffc4a4899d6b02531e89fd4fe36a2cf0d93607ba470b50f7800")
_ = authSignature
)
makeAuth := func(test handshakeAuthTest) *authMsgV4 {
msg := &authMsgV4{Version: test.wantVersion, Rest: test.wantRest, gotPlain: test.isPlain}
copy(msg.Signature[:], authSignature)
copy(msg.InitiatorPubkey[:], pubA)
copy(msg.Nonce[:], nonceA)
return msg
}
makeAck := func(test handshakeAckTest) *authRespV4 {
msg := &authRespV4{Version: test.wantVersion, Rest: test.wantRest}
copy(msg.RandomPubkey[:], ephPubB)
copy(msg.Nonce[:], nonceB)
return msg
}
// check auth msg parsing
for _, test := range eip8HandshakeAuthTests {
r := bytes.NewReader(unhex(test.input))
msg := new(authMsgV4)
ciphertext, err := readHandshakeMsg(msg, encAuthMsgLen, keyB, r)
if err != nil {
t.Errorf("error for input %x:\n %v", unhex(test.input), err)
continue
}
if !bytes.Equal(ciphertext, unhex(test.input)) {
t.Errorf("wrong ciphertext for input %x:\n %x", unhex(test.input), ciphertext)
}
want := makeAuth(test)
if !reflect.DeepEqual(msg, want) {
t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", unhex(test.input), spew.Sdump(msg), spew.Sdump(want))
}
}
// check auth resp parsing
for _, test := range eip8HandshakeRespTests {
input := unhex(test.input)
r := bytes.NewReader(input)
msg := new(authRespV4)
ciphertext, err := readHandshakeMsg(msg, encAuthRespLen, keyA, r)
if err != nil {
t.Errorf("error for input %x:\n %v", input, err)
continue
}
if !bytes.Equal(ciphertext, input) {
t.Errorf("wrong ciphertext for input %x:\n %x", input, err)
}
want := makeAck(test)
if !reflect.DeepEqual(msg, want) {
t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", input, spew.Sdump(msg), spew.Sdump(want))
}
}
// check derivation for (Auth₂, Ack₂) on recipient side
var (
hs = &encHandshake{
initiator: false,
respNonce: nonceB,
randomPrivKey: ecies.ImportECDSA(ephB),
}
authCiphertext = unhex(eip8HandshakeAuthTests[1].input)
authRespCiphertext = unhex(eip8HandshakeRespTests[1].input)
authMsg = makeAuth(eip8HandshakeAuthTests[1])
wantAES = unhex("80e8632c05fed6fc2a13b0f8d31a3cf645366239170ea067065aba8e28bac487")
wantMAC = unhex("2ea74ec5dae199227dff1af715362700e989d889d7a493cb0639691efb8e5f98")
wantFooIngressHash = unhex("0c7ec6340062cc46f5e9f1e3cf86f8c8c403c5a0964f5df0ebd34a75ddc86db5")
)
if err := hs.handleAuthMsg(authMsg, keyB); err != nil {
t.Fatalf("handleAuthMsg: %v", err)
}
derived, err := hs.secrets(authCiphertext, authRespCiphertext)
if err != nil {
t.Fatalf("secrets: %v", err)
}
if !bytes.Equal(derived.AES, wantAES) {
t.Errorf("aes-secret mismatch:\ngot %x\nwant %x", derived.AES, wantAES)
}
if !bytes.Equal(derived.MAC, wantMAC) {
t.Errorf("mac-secret mismatch:\ngot %x\nwant %x", derived.MAC, wantMAC)
}
io.WriteString(derived.IngressMAC, "foo")
fooIngressHash := derived.IngressMAC.Sum(nil)
if !bytes.Equal(fooIngressHash, wantFooIngressHash) {
t.Errorf("ingress-mac('foo') mismatch:\ngot %x\nwant %x", fooIngressHash, wantFooIngressHash)
}
}

Loading…
Cancel
Save