consensus/ethash: improve cache/dataset handling (#15864)

* consensus/ethash: add maxEpoch constant

* consensus/ethash: improve cache/dataset handling

There are two fixes in this commit:

Unmap the memory through a finalizer like the libethash wrapper did. The
release logic was incorrect and freed the memory while it was being
used, leading to crashes like in #14495 or #14943.

Track caches and datasets using simplelru instead of reinventing LRU
logic. This should make it easier to see whether it's correct.

* consensus/ethash: restore 'future item' logic in lru

* consensus/ethash: use mmap even in test mode

This makes it possible to shorten the time taken for TestCacheFileEvict.

* consensus/ethash: shuffle func calc*Size comments around

* consensus/ethash: ensure future cache/dataset is in the lru cache

* consensus/ethash: add issue link to the new test

* consensus/ethash: fix vet

* consensus/ethash: fix test

* consensus: tiny issue + nitpick fixes
pull/15963/head
Felix Lange 7 years ago committed by Péter Szilágyi
parent 5d4267911a
commit 924065e19d
  1. 6
      consensus/ethash/algorithm.go
  2. 4
      consensus/ethash/algorithm_go1.7.go
  3. 34
      consensus/ethash/algorithm_go1.8.go
  4. 23
      consensus/ethash/algorithm_go1.8_test.go
  5. 10
      consensus/ethash/consensus.go
  6. 272
      consensus/ethash/ethash.go
  7. 39
      consensus/ethash/ethash_test.go
  8. 11
      consensus/ethash/sealer.go

@ -355,9 +355,11 @@ func hashimotoFull(dataset []uint32, hash []byte, nonce uint64) ([]byte, []byte)
return hashimoto(hash, nonce, uint64(len(dataset))*4, lookup) return hashimoto(hash, nonce, uint64(len(dataset))*4, lookup)
} }
const maxEpoch = 2048
// datasetSizes is a lookup table for the ethash dataset size for the first 2048 // datasetSizes is a lookup table for the ethash dataset size for the first 2048
// epochs (i.e. 61440000 blocks). // epochs (i.e. 61440000 blocks).
var datasetSizes = []uint64{ var datasetSizes = [maxEpoch]uint64{
1073739904, 1082130304, 1090514816, 1098906752, 1107293056, 1073739904, 1082130304, 1090514816, 1098906752, 1107293056,
1115684224, 1124070016, 1132461952, 1140849536, 1149232768, 1115684224, 1124070016, 1132461952, 1140849536, 1149232768,
1157627776, 1166013824, 1174404736, 1182786944, 1191180416, 1157627776, 1166013824, 1174404736, 1182786944, 1191180416,
@ -771,7 +773,7 @@ var datasetSizes = []uint64{
// cacheSizes is a lookup table for the ethash verification cache size for the // cacheSizes is a lookup table for the ethash verification cache size for the
// first 2048 epochs (i.e. 61440000 blocks). // first 2048 epochs (i.e. 61440000 blocks).
var cacheSizes = []uint64{ var cacheSizes = [maxEpoch]uint64{
16776896, 16907456, 17039296, 17170112, 17301056, 17432512, 17563072, 16776896, 16907456, 17039296, 17170112, 17301056, 17432512, 17563072,
17693888, 17824192, 17955904, 18087488, 18218176, 18349504, 18481088, 17693888, 17824192, 17955904, 18087488, 18218176, 18349504, 18481088,
18611392, 18742336, 18874304, 19004224, 19135936, 19267264, 19398208, 18611392, 18742336, 18874304, 19004224, 19135936, 19267264, 19398208,

@ -25,7 +25,7 @@ package ethash
func cacheSize(block uint64) uint64 { func cacheSize(block uint64) uint64 {
// If we have a pre-generated value, use that // If we have a pre-generated value, use that
epoch := int(block / epochLength) epoch := int(block / epochLength)
if epoch < len(cacheSizes) { if epoch < maxEpoch {
return cacheSizes[epoch] return cacheSizes[epoch]
} }
// We don't have a way to verify primes fast before Go 1.8 // We don't have a way to verify primes fast before Go 1.8
@ -39,7 +39,7 @@ func cacheSize(block uint64) uint64 {
func datasetSize(block uint64) uint64 { func datasetSize(block uint64) uint64 {
// If we have a pre-generated value, use that // If we have a pre-generated value, use that
epoch := int(block / epochLength) epoch := int(block / epochLength)
if epoch < len(datasetSizes) { if epoch < maxEpoch {
return datasetSizes[epoch] return datasetSizes[epoch]
} }
// We don't have a way to verify primes fast before Go 1.8 // We don't have a way to verify primes fast before Go 1.8

@ -20,17 +20,20 @@ package ethash
import "math/big" import "math/big"
// cacheSize calculates and returns the size of the ethash verification cache that // cacheSize returns the size of the ethash verification cache that belongs to a certain
// belongs to a certain block number. The cache size grows linearly, however, we // block number.
// always take the highest prime below the linearly growing threshold in order to
// reduce the risk of accidental regularities leading to cyclic behavior.
func cacheSize(block uint64) uint64 { func cacheSize(block uint64) uint64 {
// If we have a pre-generated value, use that
epoch := int(block / epochLength) epoch := int(block / epochLength)
if epoch < len(cacheSizes) { if epoch < maxEpoch {
return cacheSizes[epoch] return cacheSizes[epoch]
} }
// No known cache size, calculate manually (sanity branch only) return calcCacheSize(epoch)
}
// calcCacheSize calculates the cache size for epoch. The cache size grows linearly,
// however, we always take the highest prime below the linearly growing threshold in order
// to reduce the risk of accidental regularities leading to cyclic behavior.
func calcCacheSize(epoch int) uint64 {
size := cacheInitBytes + cacheGrowthBytes*uint64(epoch) - hashBytes size := cacheInitBytes + cacheGrowthBytes*uint64(epoch) - hashBytes
for !new(big.Int).SetUint64(size / hashBytes).ProbablyPrime(1) { // Always accurate for n < 2^64 for !new(big.Int).SetUint64(size / hashBytes).ProbablyPrime(1) { // Always accurate for n < 2^64
size -= 2 * hashBytes size -= 2 * hashBytes
@ -38,17 +41,20 @@ func cacheSize(block uint64) uint64 {
return size return size
} }
// datasetSize calculates and returns the size of the ethash mining dataset that // datasetSize returns the size of the ethash mining dataset that belongs to a certain
// belongs to a certain block number. The dataset size grows linearly, however, we // block number.
// always take the highest prime below the linearly growing threshold in order to
// reduce the risk of accidental regularities leading to cyclic behavior.
func datasetSize(block uint64) uint64 { func datasetSize(block uint64) uint64 {
// If we have a pre-generated value, use that
epoch := int(block / epochLength) epoch := int(block / epochLength)
if epoch < len(datasetSizes) { if epoch < maxEpoch {
return datasetSizes[epoch] return datasetSizes[epoch]
} }
// No known dataset size, calculate manually (sanity branch only) return calcDatasetSize(epoch)
}
// calcDatasetSize calculates the dataset size for epoch. The dataset size grows linearly,
// however, we always take the highest prime below the linearly growing threshold in order
// to reduce the risk of accidental regularities leading to cyclic behavior.
func calcDatasetSize(epoch int) uint64 {
size := datasetInitBytes + datasetGrowthBytes*uint64(epoch) - mixBytes size := datasetInitBytes + datasetGrowthBytes*uint64(epoch) - mixBytes
for !new(big.Int).SetUint64(size / mixBytes).ProbablyPrime(1) { // Always accurate for n < 2^64 for !new(big.Int).SetUint64(size / mixBytes).ProbablyPrime(1) { // Always accurate for n < 2^64
size -= 2 * mixBytes size -= 2 * mixBytes

@ -23,24 +23,15 @@ import "testing"
// Tests whether the dataset size calculator works correctly by cross checking the // Tests whether the dataset size calculator works correctly by cross checking the
// hard coded lookup table with the value generated by it. // hard coded lookup table with the value generated by it.
func TestSizeCalculations(t *testing.T) { func TestSizeCalculations(t *testing.T) {
var tests []uint64 // Verify all the cache and dataset sizes from the lookup table.
for epoch, want := range cacheSizes {
// Verify all the cache sizes from the lookup table if size := calcCacheSize(epoch); size != want {
defer func(sizes []uint64) { cacheSizes = sizes }(cacheSizes) t.Errorf("cache %d: cache size mismatch: have %d, want %d", epoch, size, want)
tests, cacheSizes = cacheSizes, []uint64{}
for i, test := range tests {
if size := cacheSize(uint64(i*epochLength) + 1); size != test {
t.Errorf("cache %d: cache size mismatch: have %d, want %d", i, size, test)
} }
} }
// Verify all the dataset sizes from the lookup table for epoch, want := range datasetSizes {
defer func(sizes []uint64) { datasetSizes = sizes }(datasetSizes) if size := calcDatasetSize(epoch); size != want {
tests, datasetSizes = datasetSizes, []uint64{} t.Errorf("dataset %d: dataset size mismatch: have %d, want %d", epoch, size, want)
for i, test := range tests {
if size := datasetSize(uint64(i*epochLength) + 1); size != test {
t.Errorf("dataset %d: dataset size mismatch: have %d, want %d", i, size, test)
} }
} }
} }

@ -476,7 +476,7 @@ func (ethash *Ethash) VerifySeal(chain consensus.ChainReader, header *types.Head
} }
// Sanity check that the block number is below the lookup table size (60M blocks) // Sanity check that the block number is below the lookup table size (60M blocks)
number := header.Number.Uint64() number := header.Number.Uint64()
if number/epochLength >= uint64(len(cacheSizes)) { if number/epochLength >= maxEpoch {
// Go < 1.7 cannot calculate new cache/dataset sizes (no fast prime check) // Go < 1.7 cannot calculate new cache/dataset sizes (no fast prime check)
return errNonceOutOfRange return errNonceOutOfRange
} }
@ -484,14 +484,18 @@ func (ethash *Ethash) VerifySeal(chain consensus.ChainReader, header *types.Head
if header.Difficulty.Sign() <= 0 { if header.Difficulty.Sign() <= 0 {
return errInvalidDifficulty return errInvalidDifficulty
} }
// Recompute the digest and PoW value and verify against the header // Recompute the digest and PoW value and verify against the header
cache := ethash.cache(number) cache := ethash.cache(number)
size := datasetSize(number) size := datasetSize(number)
if ethash.config.PowMode == ModeTest { if ethash.config.PowMode == ModeTest {
size = 32 * 1024 size = 32 * 1024
} }
digest, result := hashimotoLight(size, cache, header.HashNoNonce().Bytes(), header.Nonce.Uint64()) digest, result := hashimotoLight(size, cache.cache, header.HashNoNonce().Bytes(), header.Nonce.Uint64())
// Caches are unmapped in a finalizer. Ensure that the cache stays live
// until after the call to hashimotoLight so it's not unmapped while being used.
runtime.KeepAlive(cache)
if !bytes.Equal(header.MixDigest[:], digest) { if !bytes.Equal(header.MixDigest[:], digest) {
return errInvalidMixDigest return errInvalidMixDigest
} }

@ -26,6 +26,7 @@ import (
"os" "os"
"path/filepath" "path/filepath"
"reflect" "reflect"
"runtime"
"strconv" "strconv"
"sync" "sync"
"time" "time"
@ -35,6 +36,7 @@ import (
"github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rpc" "github.com/ethereum/go-ethereum/rpc"
"github.com/hashicorp/golang-lru/simplelru"
metrics "github.com/rcrowley/go-metrics" metrics "github.com/rcrowley/go-metrics"
) )
@ -142,32 +144,82 @@ func memoryMapAndGenerate(path string, size uint64, generator func(buffer []uint
return memoryMap(path) return memoryMap(path)
} }
// lru tracks caches or datasets by their last use time, keeping at most N of them.
type lru struct {
what string
new func(epoch uint64) interface{}
mu sync.Mutex
// Items are kept in a LRU cache, but there is a special case:
// We always keep an item for (highest seen epoch) + 1 as the 'future item'.
cache *simplelru.LRU
future uint64
futureItem interface{}
}
// newlru create a new least-recently-used cache for ither the verification caches
// or the mining datasets.
func newlru(what string, maxItems int, new func(epoch uint64) interface{}) *lru {
if maxItems <= 0 {
maxItems = 1
}
cache, _ := simplelru.NewLRU(maxItems, func(key, value interface{}) {
log.Trace("Evicted ethash "+what, "epoch", key)
})
return &lru{what: what, new: new, cache: cache}
}
// get retrieves or creates an item for the given epoch. The first return value is always
// non-nil. The second return value is non-nil if lru thinks that an item will be useful in
// the near future.
func (lru *lru) get(epoch uint64) (item, future interface{}) {
lru.mu.Lock()
defer lru.mu.Unlock()
// Get or create the item for the requested epoch.
item, ok := lru.cache.Get(epoch)
if !ok {
if lru.future > 0 && lru.future == epoch {
item = lru.futureItem
} else {
log.Trace("Requiring new ethash "+lru.what, "epoch", epoch)
item = lru.new(epoch)
}
lru.cache.Add(epoch, item)
}
// Update the 'future item' if epoch is larger than previously seen.
if epoch < maxEpoch-1 && lru.future < epoch+1 {
log.Trace("Requiring new future ethash "+lru.what, "epoch", epoch+1)
future = lru.new(epoch + 1)
lru.future = epoch + 1
lru.futureItem = future
}
return item, future
}
// cache wraps an ethash cache with some metadata to allow easier concurrent use. // cache wraps an ethash cache with some metadata to allow easier concurrent use.
type cache struct { type cache struct {
epoch uint64 // Epoch for which this cache is relevant epoch uint64 // Epoch for which this cache is relevant
dump *os.File // File descriptor of the memory mapped cache dump *os.File // File descriptor of the memory mapped cache
mmap mmap.MMap // Memory map itself to unmap before releasing mmap mmap.MMap // Memory map itself to unmap before releasing
cache []uint32 // The actual cache data content (may be memory mapped) cache []uint32 // The actual cache data content (may be memory mapped)
used time.Time // Timestamp of the last use for smarter eviction
once sync.Once // Ensures the cache is generated only once once sync.Once // Ensures the cache is generated only once
lock sync.Mutex // Ensures thread safety for updating the usage time }
// newCache creates a new ethash verification cache and returns it as a plain Go
// interface to be usable in an LRU cache.
func newCache(epoch uint64) interface{} {
return &cache{epoch: epoch}
} }
// generate ensures that the cache content is generated before use. // generate ensures that the cache content is generated before use.
func (c *cache) generate(dir string, limit int, test bool) { func (c *cache) generate(dir string, limit int, test bool) {
c.once.Do(func() { c.once.Do(func() {
// If we have a testing cache, generate and return
if test {
c.cache = make([]uint32, 1024/4)
generateCache(c.cache, c.epoch, seedHash(c.epoch*epochLength+1))
return
}
// If we don't store anything on disk, generate and return
size := cacheSize(c.epoch*epochLength + 1) size := cacheSize(c.epoch*epochLength + 1)
seed := seedHash(c.epoch*epochLength + 1) seed := seedHash(c.epoch*epochLength + 1)
if test {
size = 1024
}
// If we don't store anything on disk, generate and return.
if dir == "" { if dir == "" {
c.cache = make([]uint32, size/4) c.cache = make([]uint32, size/4)
generateCache(c.cache, c.epoch, seed) generateCache(c.cache, c.epoch, seed)
@ -181,6 +233,10 @@ func (c *cache) generate(dir string, limit int, test bool) {
path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian)) path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian))
logger := log.New("epoch", c.epoch) logger := log.New("epoch", c.epoch)
// We're about to mmap the file, ensure that the mapping is cleaned up when the
// cache becomes unused.
runtime.SetFinalizer(c, (*cache).finalizer)
// Try to load the file from disk and memory map it // Try to load the file from disk and memory map it
var err error var err error
c.dump, c.mmap, c.cache, err = memoryMap(path) c.dump, c.mmap, c.cache, err = memoryMap(path)
@ -207,49 +263,41 @@ func (c *cache) generate(dir string, limit int, test bool) {
}) })
} }
// release closes any file handlers and memory maps open. // finalizer unmaps the memory and closes the file.
func (c *cache) release() { func (c *cache) finalizer() {
if c.mmap != nil { if c.mmap != nil {
c.mmap.Unmap() c.mmap.Unmap()
c.mmap = nil
}
if c.dump != nil {
c.dump.Close() c.dump.Close()
c.dump = nil c.mmap, c.dump = nil, nil
} }
} }
// dataset wraps an ethash dataset with some metadata to allow easier concurrent use. // dataset wraps an ethash dataset with some metadata to allow easier concurrent use.
type dataset struct { type dataset struct {
epoch uint64 // Epoch for which this cache is relevant epoch uint64 // Epoch for which this cache is relevant
dump *os.File // File descriptor of the memory mapped cache dump *os.File // File descriptor of the memory mapped cache
mmap mmap.MMap // Memory map itself to unmap before releasing mmap mmap.MMap // Memory map itself to unmap before releasing
dataset []uint32 // The actual cache data content dataset []uint32 // The actual cache data content
used time.Time // Timestamp of the last use for smarter eviction
once sync.Once // Ensures the cache is generated only once once sync.Once // Ensures the cache is generated only once
lock sync.Mutex // Ensures thread safety for updating the usage time }
// newDataset creates a new ethash mining dataset and returns it as a plain Go
// interface to be usable in an LRU cache.
func newDataset(epoch uint64) interface{} {
return &dataset{epoch: epoch}
} }
// generate ensures that the dataset content is generated before use. // generate ensures that the dataset content is generated before use.
func (d *dataset) generate(dir string, limit int, test bool) { func (d *dataset) generate(dir string, limit int, test bool) {
d.once.Do(func() { d.once.Do(func() {
// If we have a testing dataset, generate and return
if test {
cache := make([]uint32, 1024/4)
generateCache(cache, d.epoch, seedHash(d.epoch*epochLength+1))
d.dataset = make([]uint32, 32*1024/4)
generateDataset(d.dataset, d.epoch, cache)
return
}
// If we don't store anything on disk, generate and return
csize := cacheSize(d.epoch*epochLength + 1) csize := cacheSize(d.epoch*epochLength + 1)
dsize := datasetSize(d.epoch*epochLength + 1) dsize := datasetSize(d.epoch*epochLength + 1)
seed := seedHash(d.epoch*epochLength + 1) seed := seedHash(d.epoch*epochLength + 1)
if test {
csize = 1024
dsize = 32 * 1024
}
// If we don't store anything on disk, generate and return
if dir == "" { if dir == "" {
cache := make([]uint32, csize/4) cache := make([]uint32, csize/4)
generateCache(cache, d.epoch, seed) generateCache(cache, d.epoch, seed)
@ -265,6 +313,10 @@ func (d *dataset) generate(dir string, limit int, test bool) {
path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian)) path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian))
logger := log.New("epoch", d.epoch) logger := log.New("epoch", d.epoch)
// We're about to mmap the file, ensure that the mapping is cleaned up when the
// cache becomes unused.
runtime.SetFinalizer(d, (*dataset).finalizer)
// Try to load the file from disk and memory map it // Try to load the file from disk and memory map it
var err error var err error
d.dump, d.mmap, d.dataset, err = memoryMap(path) d.dump, d.mmap, d.dataset, err = memoryMap(path)
@ -294,15 +346,12 @@ func (d *dataset) generate(dir string, limit int, test bool) {
}) })
} }
// release closes any file handlers and memory maps open. // finalizer closes any file handlers and memory maps open.
func (d *dataset) release() { func (d *dataset) finalizer() {
if d.mmap != nil { if d.mmap != nil {
d.mmap.Unmap() d.mmap.Unmap()
d.mmap = nil
}
if d.dump != nil {
d.dump.Close() d.dump.Close()
d.dump = nil d.mmap, d.dump = nil, nil
} }
} }
@ -310,14 +359,12 @@ func (d *dataset) release() {
func MakeCache(block uint64, dir string) { func MakeCache(block uint64, dir string) {
c := cache{epoch: block / epochLength} c := cache{epoch: block / epochLength}
c.generate(dir, math.MaxInt32, false) c.generate(dir, math.MaxInt32, false)
c.release()
} }
// MakeDataset generates a new ethash dataset and optionally stores it to disk. // MakeDataset generates a new ethash dataset and optionally stores it to disk.
func MakeDataset(block uint64, dir string) { func MakeDataset(block uint64, dir string) {
d := dataset{epoch: block / epochLength} d := dataset{epoch: block / epochLength}
d.generate(dir, math.MaxInt32, false) d.generate(dir, math.MaxInt32, false)
d.release()
} }
// Mode defines the type and amount of PoW verification an ethash engine makes. // Mode defines the type and amount of PoW verification an ethash engine makes.
@ -347,10 +394,8 @@ type Config struct {
type Ethash struct { type Ethash struct {
config Config config Config
caches map[uint64]*cache // In memory caches to avoid regenerating too often caches *lru // In memory caches to avoid regenerating too often
fcache *cache // Pre-generated cache for the estimated future epoch datasets *lru // In memory datasets to avoid regenerating too often
datasets map[uint64]*dataset // In memory datasets to avoid regenerating too often
fdataset *dataset // Pre-generated dataset for the estimated future epoch
// Mining related fields // Mining related fields
rand *rand.Rand // Properly seeded random source for nonces rand *rand.Rand // Properly seeded random source for nonces
@ -380,8 +425,8 @@ func New(config Config) *Ethash {
} }
return &Ethash{ return &Ethash{
config: config, config: config,
caches: make(map[uint64]*cache), caches: newlru("cache", config.CachesInMem, newCache),
datasets: make(map[uint64]*dataset), datasets: newlru("dataset", config.DatasetsInMem, newDataset),
update: make(chan struct{}), update: make(chan struct{}),
hashrate: metrics.NewMeter(), hashrate: metrics.NewMeter(),
} }
@ -390,16 +435,7 @@ func New(config Config) *Ethash {
// NewTester creates a small sized ethash PoW scheme useful only for testing // NewTester creates a small sized ethash PoW scheme useful only for testing
// purposes. // purposes.
func NewTester() *Ethash { func NewTester() *Ethash {
return &Ethash{ return New(Config{CachesInMem: 1, PowMode: ModeTest})
config: Config{
CachesInMem: 1,
PowMode: ModeTest,
},
caches: make(map[uint64]*cache),
datasets: make(map[uint64]*dataset),
update: make(chan struct{}),
hashrate: metrics.NewMeter(),
}
} }
// NewFaker creates a ethash consensus engine with a fake PoW scheme that accepts // NewFaker creates a ethash consensus engine with a fake PoW scheme that accepts
@ -456,126 +492,40 @@ func NewShared() *Ethash {
// cache tries to retrieve a verification cache for the specified block number // cache tries to retrieve a verification cache for the specified block number
// by first checking against a list of in-memory caches, then against caches // by first checking against a list of in-memory caches, then against caches
// stored on disk, and finally generating one if none can be found. // stored on disk, and finally generating one if none can be found.
func (ethash *Ethash) cache(block uint64) []uint32 { func (ethash *Ethash) cache(block uint64) *cache {
epoch := block / epochLength epoch := block / epochLength
currentI, futureI := ethash.caches.get(epoch)
current := currentI.(*cache)
// If we have a PoW for that epoch, use that // Wait for generation finish.
ethash.lock.Lock()
current, future := ethash.caches[epoch], (*cache)(nil)
if current == nil {
// No in-memory cache, evict the oldest if the cache limit was reached
for len(ethash.caches) > 0 && len(ethash.caches) >= ethash.config.CachesInMem {
var evict *cache
for _, cache := range ethash.caches {
if evict == nil || evict.used.After(cache.used) {
evict = cache
}
}
delete(ethash.caches, evict.epoch)
evict.release()
log.Trace("Evicted ethash cache", "epoch", evict.epoch, "used", evict.used)
}
// If we have the new cache pre-generated, use that, otherwise create a new one
if ethash.fcache != nil && ethash.fcache.epoch == epoch {
log.Trace("Using pre-generated cache", "epoch", epoch)
current, ethash.fcache = ethash.fcache, nil
} else {
log.Trace("Requiring new ethash cache", "epoch", epoch)
current = &cache{epoch: epoch}
}
ethash.caches[epoch] = current
// If we just used up the future cache, or need a refresh, regenerate
if ethash.fcache == nil || ethash.fcache.epoch <= epoch {
if ethash.fcache != nil {
ethash.fcache.release()
}
log.Trace("Requiring new future ethash cache", "epoch", epoch+1)
future = &cache{epoch: epoch + 1}
ethash.fcache = future
}
// New current cache, set its initial timestamp
current.used = time.Now()
}
ethash.lock.Unlock()
// Wait for generation finish, bump the timestamp and finalize the cache
current.generate(ethash.config.CacheDir, ethash.config.CachesOnDisk, ethash.config.PowMode == ModeTest) current.generate(ethash.config.CacheDir, ethash.config.CachesOnDisk, ethash.config.PowMode == ModeTest)
current.lock.Lock() // If we need a new future cache, now's a good time to regenerate it.
current.used = time.Now() if futureI != nil {
current.lock.Unlock() future := futureI.(*cache)
// If we exhausted the future cache, now's a good time to regenerate it
if future != nil {
go future.generate(ethash.config.CacheDir, ethash.config.CachesOnDisk, ethash.config.PowMode == ModeTest) go future.generate(ethash.config.CacheDir, ethash.config.CachesOnDisk, ethash.config.PowMode == ModeTest)
} }
return current.cache return current
} }
// dataset tries to retrieve a mining dataset for the specified block number // dataset tries to retrieve a mining dataset for the specified block number
// by first checking against a list of in-memory datasets, then against DAGs // by first checking against a list of in-memory datasets, then against DAGs
// stored on disk, and finally generating one if none can be found. // stored on disk, and finally generating one if none can be found.
func (ethash *Ethash) dataset(block uint64) []uint32 { func (ethash *Ethash) dataset(block uint64) *dataset {
epoch := block / epochLength epoch := block / epochLength
currentI, futureI := ethash.datasets.get(epoch)
current := currentI.(*dataset)
// If we have a PoW for that epoch, use that // Wait for generation finish.
ethash.lock.Lock()
current, future := ethash.datasets[epoch], (*dataset)(nil)
if current == nil {
// No in-memory dataset, evict the oldest if the dataset limit was reached
for len(ethash.datasets) > 0 && len(ethash.datasets) >= ethash.config.DatasetsInMem {
var evict *dataset
for _, dataset := range ethash.datasets {
if evict == nil || evict.used.After(dataset.used) {
evict = dataset
}
}
delete(ethash.datasets, evict.epoch)
evict.release()
log.Trace("Evicted ethash dataset", "epoch", evict.epoch, "used", evict.used)
}
// If we have the new cache pre-generated, use that, otherwise create a new one
if ethash.fdataset != nil && ethash.fdataset.epoch == epoch {
log.Trace("Using pre-generated dataset", "epoch", epoch)
current = &dataset{epoch: ethash.fdataset.epoch} // Reload from disk
ethash.fdataset = nil
} else {
log.Trace("Requiring new ethash dataset", "epoch", epoch)
current = &dataset{epoch: epoch}
}
ethash.datasets[epoch] = current
// If we just used up the future dataset, or need a refresh, regenerate
if ethash.fdataset == nil || ethash.fdataset.epoch <= epoch {
if ethash.fdataset != nil {
ethash.fdataset.release()
}
log.Trace("Requiring new future ethash dataset", "epoch", epoch+1)
future = &dataset{epoch: epoch + 1}
ethash.fdataset = future
}
// New current dataset, set its initial timestamp
current.used = time.Now()
}
ethash.lock.Unlock()
// Wait for generation finish, bump the timestamp and finalize the cache
current.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.PowMode == ModeTest) current.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.PowMode == ModeTest)
current.lock.Lock() // If we need a new future dataset, now's a good time to regenerate it.
current.used = time.Now() if futureI != nil {
current.lock.Unlock() future := futureI.(*dataset)
// If we exhausted the future dataset, now's a good time to regenerate it
if future != nil {
go future.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.PowMode == ModeTest) go future.generate(ethash.config.DatasetDir, ethash.config.DatasetsOnDisk, ethash.config.PowMode == ModeTest)
} }
return current.dataset
return current
} }
// Threads returns the number of mining threads currently enabled. This doesn't // Threads returns the number of mining threads currently enabled. This doesn't

@ -17,7 +17,11 @@
package ethash package ethash
import ( import (
"io/ioutil"
"math/big" "math/big"
"math/rand"
"os"
"sync"
"testing" "testing"
"github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/types"
@ -38,3 +42,38 @@ func TestTestMode(t *testing.T) {
t.Fatalf("unexpected verification error: %v", err) t.Fatalf("unexpected verification error: %v", err)
} }
} }
// This test checks that cache lru logic doesn't crash under load.
// It reproduces https://github.com/ethereum/go-ethereum/issues/14943
func TestCacheFileEvict(t *testing.T) {
tmpdir, err := ioutil.TempDir("", "ethash-test")
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(tmpdir)
e := New(Config{CachesInMem: 3, CachesOnDisk: 10, CacheDir: tmpdir, PowMode: ModeTest})
workers := 8
epochs := 100
var wg sync.WaitGroup
wg.Add(workers)
for i := 0; i < workers; i++ {
go verifyTest(&wg, e, i, epochs)
}
wg.Wait()
}
func verifyTest(wg *sync.WaitGroup, e *Ethash, workerIndex, epochs int) {
defer wg.Done()
const wiggle = 4 * epochLength
r := rand.New(rand.NewSource(int64(workerIndex)))
for epoch := 0; epoch < epochs; epoch++ {
block := int64(epoch)*epochLength - wiggle/2 + r.Int63n(wiggle)
if block < 0 {
block = 0
}
head := &types.Header{Number: big.NewInt(block), Difficulty: big.NewInt(100)}
e.VerifySeal(nil, head)
}
}

@ -100,7 +100,6 @@ func (ethash *Ethash) mine(block *types.Block, id int, seed uint64, abort chan s
header = block.Header() header = block.Header()
hash = header.HashNoNonce().Bytes() hash = header.HashNoNonce().Bytes()
target = new(big.Int).Div(maxUint256, header.Difficulty) target = new(big.Int).Div(maxUint256, header.Difficulty)
number = header.Number.Uint64() number = header.Number.Uint64()
dataset = ethash.dataset(number) dataset = ethash.dataset(number)
) )
@ -111,13 +110,14 @@ func (ethash *Ethash) mine(block *types.Block, id int, seed uint64, abort chan s
) )
logger := log.New("miner", id) logger := log.New("miner", id)
logger.Trace("Started ethash search for new nonces", "seed", seed) logger.Trace("Started ethash search for new nonces", "seed", seed)
search:
for { for {
select { select {
case <-abort: case <-abort:
// Mining terminated, update stats and abort // Mining terminated, update stats and abort
logger.Trace("Ethash nonce search aborted", "attempts", nonce-seed) logger.Trace("Ethash nonce search aborted", "attempts", nonce-seed)
ethash.hashrate.Mark(attempts) ethash.hashrate.Mark(attempts)
return break search
default: default:
// We don't have to update hash rate on every nonce, so update after after 2^X nonces // We don't have to update hash rate on every nonce, so update after after 2^X nonces
@ -127,7 +127,7 @@ func (ethash *Ethash) mine(block *types.Block, id int, seed uint64, abort chan s
attempts = 0 attempts = 0
} }
// Compute the PoW value of this nonce // Compute the PoW value of this nonce
digest, result := hashimotoFull(dataset, hash, nonce) digest, result := hashimotoFull(dataset.dataset, hash, nonce)
if new(big.Int).SetBytes(result).Cmp(target) <= 0 { if new(big.Int).SetBytes(result).Cmp(target) <= 0 {
// Correct nonce found, create a new header with it // Correct nonce found, create a new header with it
header = types.CopyHeader(header) header = types.CopyHeader(header)
@ -141,9 +141,12 @@ func (ethash *Ethash) mine(block *types.Block, id int, seed uint64, abort chan s
case <-abort: case <-abort:
logger.Trace("Ethash nonce found but discarded", "attempts", nonce-seed, "nonce", nonce) logger.Trace("Ethash nonce found but discarded", "attempts", nonce-seed, "nonce", nonce)
} }
return break search
} }
nonce++ nonce++
} }
} }
// Datasets are unmapped in a finalizer. Ensure that the dataset stays live
// during sealing so it's not unmapped while being read.
runtime.KeepAlive(dataset)
} }

Loading…
Cancel
Save