docs: tracing tutorial (#23119)

* Update tracing.md

* Update native.md

* Update native-accounts.md

* Update native-bindings.md

* Update mobile.md

* Update mobile-accounts.md

* Create tracing-filtered

* Update and rename tracing-filtered to tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md

* Update tracing-filtered.md
pull/23146/head
Ori Pomerantz 3 years ago committed by GitHub
parent c87e781c51
commit b1fec5d2e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      docs/_dapp/mobile-accounts.md
  2. 1
      docs/_dapp/mobile.md
  3. 1
      docs/_dapp/native-accounts.md
  4. 1
      docs/_dapp/native-bindings.md
  5. 1
      docs/_dapp/native.md
  6. 345
      docs/_dapp/tracing-filtered.md
  7. 1
      docs/_dapp/tracing.md

@ -1,5 +1,6 @@
--- ---
title: Mobile Account Management title: Mobile Account Management
sort_key: G
--- ---
To provide Ethereum integration for your mobile applications, the very first thing you To provide Ethereum integration for your mobile applications, the very first thing you

@ -1,5 +1,6 @@
--- ---
title: Mobile API title: Mobile API
sort_key: F
--- ---
The Ethereum blockchain along with its two extension protocols Whisper and Swarm was The Ethereum blockchain along with its two extension protocols Whisper and Swarm was

@ -1,5 +1,6 @@
--- ---
title: Go Account Management title: Go Account Management
sort_key: D
--- ---
To provide Ethereum integration for your native applications, the very first thing you To provide Ethereum integration for your native applications, the very first thing you

@ -1,5 +1,6 @@
--- ---
title: Go Contract Bindings title: Go Contract Bindings
sort_key: E
--- ---
**[Please note, events are not yet implemented as they need some RPC subscription **[Please note, events are not yet implemented as they need some RPC subscription

@ -1,5 +1,6 @@
--- ---
title: Go API title: Go API
sort_key: C
--- ---
The Ethereum blockchain along with its two extension protocols Whisper and Swarm was The Ethereum blockchain along with its two extension protocols Whisper and Swarm was

@ -0,0 +1,345 @@
---
title: Filtered Tracing
sort_key: B
---
In the previous section you learned how to create a complete trace. However, those traces can include the complete status of the EVM at every point
in the execution, which is huge. Usually you are only interested in a small subset of this information. To get it, you can specify a JavaScript filter.
**Note:** The JavaScript package used by Geth is [Goja](https://github.com/dop251/goja), which is only up to the
[ECMAScript 5.1 standard](https://262.ecma-international.org/5.1/). This means we cannot use [arrow functions](https://www.w3schools.com/js/js_arrow_function.asp)
and [template literals](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals).
## Running a Simple Trace
1. Create a file, `filterTrace_1.js`, with this content:
```javascript
tracer = function(tx) {
return debug.traceTransaction(tx, {tracer:
'{' +
'retVal: [],' +
'step: function(log,db) {this.retVal.push(log.getPC() + ":" + log.op.toString())},' +
'fault: function(log,db) {this.retVal.push("FAULT: " + JSON.stringify(log))},' +
'result: function(ctx,db) {return this.retVal}' +
'}'
}) // return debug.traceTransaction ...
} // tracer = function ...
```
We could specify this function directly in the JavaScript console, but it would be unwieldy and difficult
to edit.
2. Run the [JavaScript console](https://geth.ethereum.org/docs/interface/javascript-console).
3. Get the hash of a recent transaction. For example, if you use the Goerli network, you can get such a value
[here](https://goerli.etherscan.io/).
4. Run this command to run the script:
```javascript
loadScript("filterTrace_1.js")
```
5. Run the trancer from the script. Be patient, it could take a long time.
```javascript
tracer("<hash of transaction>")
```
The bottom of the output looks similar to:
```json
"3366:POP", "3367:JUMP", "1355:JUMPDEST", "1356:PUSH1", "1358:MLOAD", "1359:DUP1", "1360:DUP3", "1361:ISZERO", "1362:ISZERO",
"1363:ISZERO", "1364:ISZERO", "1365:DUP2", "1366:MSTORE", "1367:PUSH1", "1369:ADD", "1370:SWAP2", "1371:POP", "1372:POP", "1373:PUSH1",
"1375:MLOAD", "1376:DUP1", "1377:SWAP2", "1378:SUB", "1379:SWAP1", "1380:RETURN"]
```
6. This output isn't very readable. Run this line to get a more readable output with each string in its own line.
```javascript
console.log(JSON.stringify(tracer("<hash of transaction>"), null, 2))
```
You can read about the `JSON.stringify` function
[here](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify). If we just
return the output we get `\n` for newlines, which is why we need to use `console.log`.
### How Does It Work?
We call the same `debug.traceTransaction` function we use for [basic traces](https://geth.ethereum.org/docs/dapp/tracing), but
with a new parameter, `tracer`. This parameter is a string that is the JavaScript object we use. In the case of the trace
above, it is:
```javascript
{
retVal: [],
step: function(log,db) {this.retVal.push(log.getPC() + ":" + log.op.toString())},
fault: function(log,db) {this.retVal.push("FAULT: " + JSON.stringify(log))},
result: function(ctx,db) {return this.retVal}
}
```
This object has to have three member functions:
- `step`, called for each opcode
- `fault`, called if there is a problem in the execution
- `result`, called to produce the results that are returned by `debug.traceTransaction` after the execution is done
It can have additional members. In this case, we use `retVal` to store the list of strings that we'll return in `result`.
The `step` function here adds to `retVal` the program counter and the name of the opcode there. Then, in `result`, we return this
list to be sent to the caller.
## Actual Filtering
For actual filtered tracing we need an `if` statement to only log relevant information. For example, if we are interested in
the transaction's interaction with storage, we might use:
```javascript
tracer = function(tx) {
return debug.traceTransaction(tx, {tracer:
'{' +
'retVal: [],' +
'step: function(log,db) {' +
' if(log.op.toNumber() == 0x54) ' +
' this.retVal.push(log.getPC() + ": SLOAD");' +
' if(log.op.toNumber() == 0x55) ' +
' this.retVal.push(log.getPC() + ": SSTORE");' +
'},' +
'fault: function(log,db) {this.retVal.push("FAULT: " + JSON.stringify(log))},' +
'result: function(ctx,db) {return this.retVal}' +
'}'
}) // return debug.traceTransaction ...
} // tracer = function ...
```
The `step` function here looks at the opcode number of the op, and only pushes an entry if the opcode is
`SLOAD` or `SSTORE` ([here is a list of EVM opcodes and their numbers](https://github.com/wolflo/evm-opcodes)).
We could have used `log.op.toString()` instead, but it is faster to compare numbers rather than strings.
The output looks similar to this:
```javascript
[
"5921: SLOAD",
.
.
.
"2413: SSTORE",
"2420: SLOAD",
"2475: SSTORE",
"6094: SSTORE"
]
```
## Stack Information
The trace above tells us the program counter (PC) and whether the program read from storage or wrote to it. That
isn't very useful. To know more, you can use the `log.stack.peek` function to peek into the stack. `log.stack.peek(0)`
is the stack top, `log.stack.peek(1)` the entry below it, etc. The values returned by `log.stack.peek` are
Go `big.Int` objects. By default they are converted to JavaScript floating point numbers, so you need
`toString(16)` to get them as hexadecimals, which is how we normally represent 256-bit values such as
storage cells and their content.
```javascript
tracer = function(tx) {
return debug.traceTransaction(tx, {tracer:
'{' +
'retVal: [],' +
'step: function(log,db) {' +
' if(log.op.toNumber() == 0x54) ' +
' this.retVal.push(log.getPC() + ": SLOAD " + ' +
' log.stack.peek(0).toString(16));' +
' if(log.op.toNumber() == 0x55) ' +
' this.retVal.push(log.getPC() + ": SSTORE " +' +
' log.stack.peek(0).toString(16) + " <- " +' +
' log.stack.peek(1).toString(16));' +
'},' +
'fault: function(log,db) {this.retVal.push("FAULT: " + JSON.stringify(log))},' +
'result: function(ctx,db) {return this.retVal}' +
'}'
}) // return debug.traceTransaction ...
} // tracer = function ...
```
This function gives you a trace of all the storage operations, and show you their parameters. This gives
you a more complete picture of the program's interaction with storage. The output is similar to:
```javascript
[
"5921: SLOAD 0",
.
.
.
"2413: SSTORE 3f0af0a7a3ed17f5ba6a93e0a2a05e766ed67bf82195d2dd15feead3749a575d <- fb8629ad13d9a12456",
"2420: SLOAD cc39b177dd3a7f50d4c09527584048378a692aed24d31d2eabeddb7f3c041870",
"2475: SSTORE cc39b177dd3a7f50d4c09527584048378a692aed24d31d2eabeddb7f3c041870 <- 358c3de691bd19",
"6094: SSTORE 0 <- 1"
]
```
## Operation Results
One piece of information missing from the function above is the result on an `SLOAD` operation. The
state we get inside `log` is the state prior to the execution of the opcode, so that value is not
known yet. For more operations we can figure it out for ourselves, but we don't have access to the
storage, so here we can't.
The solution is to have a flag, `afterSload`, which is only true in the opcode right after an
`SLOAD`, when we can see the result at the top of the stack.
```javascript
tracer = function(tx) {
return debug.traceTransaction(tx, {tracer:
'{' +
'retVal: [],' +
'afterSload: false,' +
'step: function(log,db) {' +
' if(this.afterSload) {' +
' this.retVal.push(" Result: " + ' +
' log.stack.peek(0).toString(16)); ' +
' this.afterSload = false; ' +
' } ' +
' if(log.op.toNumber() == 0x54) {' +
' this.retVal.push(log.getPC() + ": SLOAD " + ' +
' log.stack.peek(0).toString(16));' +
' this.afterSload = true; ' +
' } ' +
' if(log.op.toNumber() == 0x55) ' +
' this.retVal.push(log.getPC() + ": SSTORE " +' +
' log.stack.peek(0).toString(16) + " <- " +' +
' log.stack.peek(1).toString(16));' +
'},' +
'fault: function(log,db) {this.retVal.push("FAULT: " + JSON.stringify(log))},' +
'result: function(ctx,db) {return this.retVal}' +
'}'
}) // return debug.traceTransaction ...
} // tracer = function ...
```
The output now contains the result in the line that follows the `SLOAD`. We could have also modified the `SLOAD`
line itself, but that would have been a bit more work.
```javascript
[
"5921: SLOAD 0",
" Result: 1",
.
.
.
"2413: SSTORE 3f0af0a7a3ed17f5ba6a93e0a2a05e766ed67bf82195d2dd15feead3749a575d <- fb8629ad13d9a12456",
"2420: SLOAD cc39b177dd3a7f50d4c09527584048378a692aed24d31d2eabeddb7f3c041870",
" Result: 0",
"2475: SSTORE cc39b177dd3a7f50d4c09527584048378a692aed24d31d2eabeddb7f3c041870 <- 358c3de691bd19",
"6094: SSTORE 0 <- 1"
]
```
## Dealing With Calls Between Contracts
So far we have treated the storage as if there are only 2^256 cells. However, that is not true. Contracts
can call other contracts, and then the storage involved is the storage of the other contract. We can see
the address of the current contract in `log.contract.getAddress()`. This value is the execution context,
the contract whose storage we are using, even when we use code from another contract (by using
`CALLCODE` or `DELEGATECODE`).
However, `log.contract.getAddress()` returns an array of bytes. We use `this.byteHex()` and `array2Hex()`
to convert this array to the hexadecimal representation we usually use to identify contracts.
```javascript
tracer = function(tx) {
return debug.traceTransaction(tx, {tracer:
'{' +
'retVal: [],' +
'afterSload: false,' +
'callStack: [],' +
'byte2Hex: function(byte) {' +
' if (byte < 0x10) ' +
' return "0" + byte.toString(16); ' +
' return byte.toString(16); ' +
'},' +
'array2Hex: function(arr) {' +
' var retVal = ""; ' +
' for (var i=0; i<arr.length; i++) ' +
' retVal += this.byte2Hex(arr[i]); ' +
' return retVal; ' +
'}, ' +
'getAddr: function(log) {' +
' return this.array2Hex(log.contract.getAddress());' +
'}, ' +
'step: function(log,db) {' +
' var opcode = log.op.toNumber();' +
// SLOAD
' if (opcode == 0x54) {' +
' this.retVal.push(log.getPC() + ": SLOAD " + ' +
' this.getAddr(log) + ":" + ' +
' log.stack.peek(0).toString(16));' +
' this.afterSload = true; ' +
' } ' +
// SLOAD Result
' if (this.afterSload) {' +
' this.retVal.push(" Result: " + ' +
' log.stack.peek(0).toString(16)); ' +
' this.afterSload = false; ' +
' } ' +
// SSTORE
' if (opcode == 0x55) ' +
' this.retVal.push(log.getPC() + ": SSTORE " +' +
' this.getAddr(log) + ":" + ' +
' log.stack.peek(0).toString(16) + " <- " +' +
' log.stack.peek(1).toString(16));' +
// End of step
'},' +
'fault: function(log,db) {this.retVal.push("FAULT: " + JSON.stringify(log))},' +
'result: function(ctx,db) {return this.retVal}' +
'}'
}) // return debug.traceTransaction ...
} // tracer = function ...
```
The output is similar to:
```javascript
[
"423: SLOAD 22ff293e14f1ec3a09b137e9e06084afd63addf9:360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc",
" Result: 360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc",
"10778: SLOAD 22ff293e14f1ec3a09b137e9e06084afd63addf9:6",
" Result: 6",
.
.
.
"13529: SLOAD f2d68898557ccb2cf4c10c3ef2b034b2a69dad00:8328de571f86baa080836c50543c740196dbc109d42041802573ba9a13efa340",
" Result: 8328de571f86baa080836c50543c740196dbc109d42041802573ba9a13efa340",
"423: SLOAD f2d68898557ccb2cf4c10c3ef2b034b2a69dad00:360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc",
" Result: 360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc",
"13529: SLOAD f2d68898557ccb2cf4c10c3ef2b034b2a69dad00:b38558064d8dd9c883d2a8c80c604667ddb90a324bc70b1bac4e70d90b148ed4",
" Result: b38558064d8dd9c883d2a8c80c604667ddb90a324bc70b1bac4e70d90b148ed4",
"11041: SSTORE 22ff293e14f1ec3a09b137e9e06084afd63addf9:6 <- 0"
]
```
## Conclusion
This tutorial only taught the basics of using JavaScript to filter traces. We did not go over access to memory,
or how to use the `db` parameter to know the state of the chain at the time of execution. All this and more is
covered [in the reference](https://geth.ethereum.org/docs/rpc/ns-debug#javascript-based-tracing).
Hopefully with this tool you will find it easier to trace the EVM's behavior and debug thorny contract issues.
Original version by [Ori Pomerantz](qbzzt1@gmail.com)

@ -1,5 +1,6 @@
--- ---
title: EVM Tracing title: EVM Tracing
sort_key: A
--- ---
There are two different types of transactions in Ethereum: plain value transfers and There are two different types of transactions in Ethereum: plain value transfers and

Loading…
Cancel
Save