trie: reduce allocations in stacktrie (#30743)

This PR uses various tweaks and tricks to make the stacktrie near
alloc-free.

```
[user@work go-ethereum]$ benchstat stacktrie.1 stacktrie.7
goos: linux
goarch: amd64
pkg: github.com/ethereum/go-ethereum/trie
cpu: 12th Gen Intel(R) Core(TM) i7-1270P
             │ stacktrie.1  │             stacktrie.7              │
             │    sec/op    │    sec/op     vs base                │
Insert100K-8   106.97m ± 8%   88.21m ± 34%  -17.54% (p=0.000 n=10)

             │   stacktrie.1    │             stacktrie.7              │
             │       B/op       │     B/op      vs base                │
Insert100K-8   13199.608Ki ± 0%   3.424Ki ± 3%  -99.97% (p=0.000 n=10)

             │  stacktrie.1   │             stacktrie.7             │
             │   allocs/op    │ allocs/op   vs base                 │
Insert100K-8   553428.50 ± 0%   22.00 ± 5%  -100.00% (p=0.000 n=10)
```
Also improves derivesha:
```
goos: linux
goarch: amd64
pkg: github.com/ethereum/go-ethereum/core/types
cpu: 12th Gen Intel(R) Core(TM) i7-1270P
                          │ derivesha.1 │             derivesha.2              │
                          │   sec/op    │    sec/op     vs base                │
DeriveSha200/stack_trie-8   477.8µ ± 2%   430.0µ ± 12%  -10.00% (p=0.000 n=10)

                          │ derivesha.1  │             derivesha.2              │
                          │     B/op     │     B/op      vs base                │
DeriveSha200/stack_trie-8   45.17Ki ± 0%   25.65Ki ± 0%  -43.21% (p=0.000 n=10)

                          │ derivesha.1 │            derivesha.2             │
                          │  allocs/op  │ allocs/op   vs base                │
DeriveSha200/stack_trie-8   1259.0 ± 0%   232.0 ± 0%  -81.57% (p=0.000 n=10)

```

---------

Co-authored-by: Gary Rong <garyrong0905@gmail.com>
pull/31071/head
Martin HS 1 week ago committed by GitHub
parent a840e9b59f
commit d3cc618951
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 64
      trie/bytepool.go
  2. 12
      trie/encoding.go
  3. 8
      trie/hasher.go
  4. 35
      trie/node.go
  5. 39
      trie/node_enc.go
  6. 73
      trie/stacktrie.go
  7. 46
      trie/stacktrie_test.go

@ -0,0 +1,64 @@
// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
// bytesPool is a pool for byte slices. It is safe for concurrent use.
type bytesPool struct {
c chan []byte
w int
}
// newBytesPool creates a new bytesPool. The sliceCap sets the capacity of
// newly allocated slices, and the nitems determines how many items the pool
// will hold, at maximum.
func newBytesPool(sliceCap, nitems int) *bytesPool {
return &bytesPool{
c: make(chan []byte, nitems),
w: sliceCap,
}
}
// Get returns a slice. Safe for concurrent use.
func (bp *bytesPool) Get() []byte {
select {
case b := <-bp.c:
return b
default:
return make([]byte, 0, bp.w)
}
}
// GetWithSize returns a slice with specified byte slice size.
func (bp *bytesPool) GetWithSize(s int) []byte {
b := bp.Get()
if cap(b) < s {
return make([]byte, s)
}
return b[:s]
}
// Put returns a slice to the pool. Safe for concurrent use. This method
// will ignore slices that are too small or too large (>3x the cap)
func (bp *bytesPool) Put(b []byte) {
if c := cap(b); c < bp.w || c > 3*bp.w {
return
}
select {
case bp.c <- b:
default:
}
}

@ -104,6 +104,18 @@ func keybytesToHex(str []byte) []byte {
return nibbles return nibbles
} }
// writeHexKey writes the hexkey into the given slice.
// OBS! This method omits the termination flag.
// OBS! The dst slice must be at least 2x as large as the key
func writeHexKey(dst []byte, key []byte) []byte {
_ = dst[2*len(key)-1]
for i, b := range key {
dst[i*2] = b / 16
dst[i*2+1] = b % 16
}
return dst[:2*len(key)]
}
// hexToKeybytes turns hex nibbles into key bytes. // hexToKeybytes turns hex nibbles into key bytes.
// This can only be used for keys of even length. // This can only be used for keys of even length.
func hexToKeybytes(hex []byte) []byte { func hexToKeybytes(hex []byte) []byte {

@ -188,6 +188,14 @@ func (h *hasher) hashData(data []byte) hashNode {
return n return n
} }
// hashDataTo hashes the provided data to the given destination buffer. The caller
// must ensure that the dst buffer is of appropriate size.
func (h *hasher) hashDataTo(dst, data []byte) {
h.sha.Reset()
h.sha.Write(data)
h.sha.Read(dst)
}
// proofHash is used to construct trie proofs, and returns the 'collapsed' // proofHash is used to construct trie proofs, and returns the 'collapsed'
// node (for later RLP encoding) as well as the hashed node -- unless the // node (for later RLP encoding) as well as the hashed node -- unless the
// node is smaller than 32 bytes, in which case it will be returned as is. // node is smaller than 32 bytes, in which case it will be returned as is.

@ -45,6 +45,27 @@ type (
} }
hashNode []byte hashNode []byte
valueNode []byte valueNode []byte
// fullnodeEncoder is a type used exclusively for encoding fullNode.
// Briefly instantiating a fullnodeEncoder and initializing with
// existing slices is less memory intense than using the fullNode type.
fullnodeEncoder struct {
Children [17][]byte
}
// extNodeEncoder is a type used exclusively for encoding extension node.
// Briefly instantiating a extNodeEncoder and initializing with existing
// slices is less memory intense than using the shortNode type.
extNodeEncoder struct {
Key []byte
Val []byte
}
// leafNodeEncoder is a type used exclusively for encoding leaf node.
leafNodeEncoder struct {
Key []byte
Val []byte
}
) )
// nilValueNode is used when collapsing internal trie nodes for hashing, since // nilValueNode is used when collapsing internal trie nodes for hashing, since
@ -89,6 +110,7 @@ func (n *fullNode) fstring(ind string) string {
} }
return resp + fmt.Sprintf("\n%s] ", ind) return resp + fmt.Sprintf("\n%s] ", ind)
} }
func (n *shortNode) fstring(ind string) string { func (n *shortNode) fstring(ind string) string {
return fmt.Sprintf("{%x: %v} ", n.Key, n.Val.fstring(ind+" ")) return fmt.Sprintf("{%x: %v} ", n.Key, n.Val.fstring(ind+" "))
} }
@ -99,19 +121,6 @@ func (n valueNode) fstring(ind string) string {
return fmt.Sprintf("%x ", []byte(n)) return fmt.Sprintf("%x ", []byte(n))
} }
// rawNode is a simple binary blob used to differentiate between collapsed trie
// nodes and already encoded RLP binary blobs (while at the same time store them
// in the same cache fields).
type rawNode []byte
func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
func (n rawNode) EncodeRLP(w io.Writer) error {
_, err := w.Write(n)
return err
}
// mustDecodeNode is a wrapper of decodeNode and panic if any error is encountered. // mustDecodeNode is a wrapper of decodeNode and panic if any error is encountered.
func mustDecodeNode(hash, buf []byte) node { func mustDecodeNode(hash, buf []byte) node {
n, err := decodeNode(hash, buf) n, err := decodeNode(hash, buf)

@ -40,6 +40,20 @@ func (n *fullNode) encode(w rlp.EncoderBuffer) {
w.ListEnd(offset) w.ListEnd(offset)
} }
func (n *fullnodeEncoder) encode(w rlp.EncoderBuffer) {
offset := w.List()
for _, c := range n.Children {
if c == nil {
w.Write(rlp.EmptyString)
} else if len(c) < 32 {
w.Write(c) // rawNode
} else {
w.WriteBytes(c) // hashNode
}
}
w.ListEnd(offset)
}
func (n *shortNode) encode(w rlp.EncoderBuffer) { func (n *shortNode) encode(w rlp.EncoderBuffer) {
offset := w.List() offset := w.List()
w.WriteBytes(n.Key) w.WriteBytes(n.Key)
@ -51,6 +65,27 @@ func (n *shortNode) encode(w rlp.EncoderBuffer) {
w.ListEnd(offset) w.ListEnd(offset)
} }
func (n *extNodeEncoder) encode(w rlp.EncoderBuffer) {
offset := w.List()
w.WriteBytes(n.Key)
if n.Val == nil {
w.Write(rlp.EmptyString)
} else if len(n.Val) < 32 {
w.Write(n.Val) // rawNode
} else {
w.WriteBytes(n.Val) // hashNode
}
w.ListEnd(offset)
}
func (n *leafNodeEncoder) encode(w rlp.EncoderBuffer) {
offset := w.List()
w.WriteBytes(n.Key) // Compact format key
w.WriteBytes(n.Val) // Value node, must be non-nil
w.ListEnd(offset)
}
func (n hashNode) encode(w rlp.EncoderBuffer) { func (n hashNode) encode(w rlp.EncoderBuffer) {
w.WriteBytes(n) w.WriteBytes(n)
} }
@ -58,7 +93,3 @@ func (n hashNode) encode(w rlp.EncoderBuffer) {
func (n valueNode) encode(w rlp.EncoderBuffer) { func (n valueNode) encode(w rlp.EncoderBuffer) {
w.WriteBytes(n) w.WriteBytes(n)
} }
func (n rawNode) encode(w rlp.EncoderBuffer) {
w.Write(n)
}

@ -27,6 +27,7 @@ import (
var ( var (
stPool = sync.Pool{New: func() any { return new(stNode) }} stPool = sync.Pool{New: func() any { return new(stNode) }}
bPool = newBytesPool(32, 100)
_ = types.TrieHasher((*StackTrie)(nil)) _ = types.TrieHasher((*StackTrie)(nil))
) )
@ -47,6 +48,8 @@ type StackTrie struct {
h *hasher h *hasher
last []byte last []byte
onTrieNode OnTrieNode onTrieNode OnTrieNode
kBuf []byte // buf space used for hex-key during insertions
pBuf []byte // buf space used for path during insertions
} }
// NewStackTrie allocates and initializes an empty trie. The committed nodes // NewStackTrie allocates and initializes an empty trie. The committed nodes
@ -56,6 +59,17 @@ func NewStackTrie(onTrieNode OnTrieNode) *StackTrie {
root: stPool.Get().(*stNode), root: stPool.Get().(*stNode),
h: newHasher(false), h: newHasher(false),
onTrieNode: onTrieNode, onTrieNode: onTrieNode,
kBuf: make([]byte, 64),
pBuf: make([]byte, 64),
}
}
func (t *StackTrie) grow(key []byte) {
if cap(t.kBuf) < 2*len(key) {
t.kBuf = make([]byte, 2*len(key))
}
if cap(t.pBuf) < 2*len(key) {
t.pBuf = make([]byte, 2*len(key))
} }
} }
@ -64,7 +78,8 @@ func (t *StackTrie) Update(key, value []byte) error {
if len(value) == 0 { if len(value) == 0 {
return errors.New("trying to insert empty (deletion)") return errors.New("trying to insert empty (deletion)")
} }
k := t.TrieKey(key) t.grow(key)
k := writeHexKey(t.kBuf, key)
if bytes.Compare(t.last, k) >= 0 { if bytes.Compare(t.last, k) >= 0 {
return errors.New("non-ascending key order") return errors.New("non-ascending key order")
} }
@ -73,7 +88,7 @@ func (t *StackTrie) Update(key, value []byte) error {
} else { } else {
t.last = append(t.last[:0], k...) // reuse key slice t.last = append(t.last[:0], k...) // reuse key slice
} }
t.insert(t.root, k, value, nil) t.insert(t.root, k, value, t.pBuf[:0])
return nil return nil
} }
@ -129,6 +144,12 @@ const (
) )
func (n *stNode) reset() *stNode { func (n *stNode) reset() *stNode {
if n.typ == hashedNode {
// On hashnodes, we 'own' the val: it is guaranteed to be not held
// by external caller. Hence, when we arrive here, we can put it back
// into the pool
bPool.Put(n.val)
}
n.key = n.key[:0] n.key = n.key[:0]
n.val = nil n.val = nil
for i := range n.children { for i := range n.children {
@ -150,8 +171,12 @@ func (n *stNode) getDiffIndex(key []byte) int {
return len(n.key) return len(n.key)
} }
// Helper function to that inserts a (key, value) pair into // Helper function to that inserts a (key, value) pair into the trie.
// the trie. //
// - The key is not retained by this method, but always copied if needed.
// - The value is retained by this method, as long as the leaf that it represents
// remains unhashed. However: it is never modified.
// - The path is not retained by this method.
func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) { func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
switch st.typ { switch st.typ {
case branchNode: /* Branch */ case branchNode: /* Branch */
@ -283,7 +308,7 @@ func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
case emptyNode: /* Empty */ case emptyNode: /* Empty */
st.typ = leafNode st.typ = leafNode
st.key = key st.key = append(st.key, key...) // deep-copy the key as it's volatile
st.val = value st.val = value
case hashedNode: case hashedNode:
@ -318,35 +343,33 @@ func (t *StackTrie) hash(st *stNode, path []byte) {
return return
case branchNode: case branchNode:
var nodes fullNode var nodes fullnodeEncoder
for i, child := range st.children { for i, child := range st.children {
if child == nil { if child == nil {
nodes.Children[i] = nilValueNode
continue continue
} }
t.hash(child, append(path, byte(i))) t.hash(child, append(path, byte(i)))
nodes.Children[i] = child.val
}
nodes.encode(t.h.encbuf)
blob = t.h.encodedBytes()
if len(child.val) < 32 { for i, child := range st.children {
nodes.Children[i] = rawNode(child.val) if child == nil {
} else { continue
nodes.Children[i] = hashNode(child.val)
} }
st.children[i] = nil st.children[i] = nil
stPool.Put(child.reset()) // Release child back to pool. stPool.Put(child.reset()) // Release child back to pool.
} }
nodes.encode(t.h.encbuf)
blob = t.h.encodedBytes()
case extNode: case extNode:
// recursively hash and commit child as the first step // recursively hash and commit child as the first step
t.hash(st.children[0], append(path, st.key...)) t.hash(st.children[0], append(path, st.key...))
// encode the extension node // encode the extension node
n := shortNode{Key: hexToCompactInPlace(st.key)} n := extNodeEncoder{
if len(st.children[0].val) < 32 { Key: hexToCompactInPlace(st.key),
n.Val = rawNode(st.children[0].val) Val: st.children[0].val,
} else {
n.Val = hashNode(st.children[0].val)
} }
n.encode(t.h.encbuf) n.encode(t.h.encbuf)
blob = t.h.encodedBytes() blob = t.h.encodedBytes()
@ -356,8 +379,10 @@ func (t *StackTrie) hash(st *stNode, path []byte) {
case leafNode: case leafNode:
st.key = append(st.key, byte(16)) st.key = append(st.key, byte(16))
n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)} n := leafNodeEncoder{
Key: hexToCompactInPlace(st.key),
Val: st.val,
}
n.encode(t.h.encbuf) n.encode(t.h.encbuf)
blob = t.h.encodedBytes() blob = t.h.encodedBytes()
@ -368,15 +393,19 @@ func (t *StackTrie) hash(st *stNode, path []byte) {
st.typ = hashedNode st.typ = hashedNode
st.key = st.key[:0] st.key = st.key[:0]
st.val = nil // Release reference to potentially externally held slice.
// Skip committing the non-root node if the size is smaller than 32 bytes // Skip committing the non-root node if the size is smaller than 32 bytes
// as tiny nodes are always embedded in their parent except root node. // as tiny nodes are always embedded in their parent except root node.
if len(blob) < 32 && len(path) > 0 { if len(blob) < 32 && len(path) > 0 {
st.val = common.CopyBytes(blob) st.val = bPool.GetWithSize(len(blob))
copy(st.val, blob)
return return
} }
// Write the hash to the 'val'. We allocate a new val here to not mutate // Write the hash to the 'val'. We allocate a new val here to not mutate
// input values. // input values.
st.val = t.h.hashData(blob) st.val = bPool.GetWithSize(32)
t.h.hashDataTo(st.val, blob)
// Invoke the callback it's provided. Notably, the path and blob slices are // Invoke the callback it's provided. Notably, the path and blob slices are
// volatile, please deep-copy the slices in callback if the contents need // volatile, please deep-copy the slices in callback if the contents need

@ -18,6 +18,7 @@ package trie
import ( import (
"bytes" "bytes"
"encoding/binary"
"math/big" "math/big"
"testing" "testing"
@ -398,3 +399,48 @@ func TestStackTrieErrors(t *testing.T) {
assert.NotNil(t, s.Update([]byte{0x10}, []byte{0xb}), "out of order insert") assert.NotNil(t, s.Update([]byte{0x10}, []byte{0xb}), "out of order insert")
assert.NotNil(t, s.Update([]byte{0xaa}, []byte{0xb}), "repeat insert same key") assert.NotNil(t, s.Update([]byte{0xaa}, []byte{0xb}), "repeat insert same key")
} }
func BenchmarkInsert100K(b *testing.B) {
var num = 100_000
var key = make([]byte, 8)
var val = make([]byte, 20)
var hash common.Hash
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s := NewStackTrie(nil)
var k uint64
for j := 0; j < num; j++ {
binary.BigEndian.PutUint64(key, k)
if err := s.Update(key, val); err != nil {
b.Fatal(err)
}
k += 1024
}
if hash == (common.Hash{}) {
hash = s.Hash()
} else {
if hash != s.Hash() && false {
b.Fatalf("hash wrong, have %x want %x", s.Hash(), hash)
}
}
}
}
func TestInsert100K(t *testing.T) {
var num = 100_000
var key = make([]byte, 8)
var val = make([]byte, 20)
s := NewStackTrie(nil)
var k uint64
for j := 0; j < num; j++ {
binary.BigEndian.PutUint64(key, k)
if err := s.Update(key, val); err != nil {
t.Fatal(err)
}
k += 1024
}
want := common.HexToHash("0xb0071bd257342925d9d8a9f002b9d2b646a35437aa8b089628ab56e428d29a1a")
if have := s.Hash(); have != want {
t.Fatalf("hash wrong, have %x want %x", have, want)
}
}

Loading…
Cancel
Save