core/state: lazy sorting, snapshot invalidation

pull/20152/head
Martin Holst Swende 5 years ago committed by Péter Szilágyi
parent 542df8898e
commit e146fbe4e7
No known key found for this signature in database
GPG Key ID: E9AE538CEDF8293D
  1. 177
      core/state/snapshot/difflayer.go
  2. 448
      core/state/snapshot/difflayer_test.go
  3. 44
      core/state/snapshot/disklayer.go
  4. 5
      core/state/snapshot/generate.go
  5. 17
      core/state/snapshot/snapshot.go
  6. 30
      core/state/snapshot/sort.go
  7. 8
      core/state/state_object.go
  8. 34
      core/state/statedb.go

@ -40,13 +40,12 @@ type diffLayer struct {
number uint64 // Block number to which this snapshot diff belongs to number uint64 // Block number to which this snapshot diff belongs to
root common.Hash // Root hash to which this snapshot diff belongs to root common.Hash // Root hash to which this snapshot diff belongs to
stale bool // Signals that the layer became stale (state progressed)
accountList []common.Hash // List of account for iteration, might not be sorted yet (lazy) accountList []common.Hash // List of account for iteration. If it exists, it's sorted, otherwise it's nil
accountSorted bool // Flag whether the account list has alreayd been sorted or not accountData map[common.Hash][]byte // Keyed accounts for direct retrival (nil means deleted)
accountData map[common.Hash][]byte // Keyed accounts for direct retrival (nil means deleted) storageList map[common.Hash][]common.Hash // List of storage slots for iterated retrievals, one per account. Any existing lists are sorted if non-nil
storageList map[common.Hash][]common.Hash // List of storage slots for iterated retrievals, one per account storageData map[common.Hash]map[common.Hash][]byte // Keyed storage slots for direct retrival. one per account (nil means deleted)
storageSorted map[common.Hash]bool // Flag whether the storage slot list has alreayd been sorted or not
storageData map[common.Hash]map[common.Hash][]byte // Keyed storage slots for direct retrival. one per account (nil means deleted)
lock sync.RWMutex lock sync.RWMutex
} }
@ -62,21 +61,13 @@ func newDiffLayer(parent snapshot, number uint64, root common.Hash, accounts map
accountData: accounts, accountData: accounts,
storageData: storage, storageData: storage,
} }
// Fill the account hashes and sort them for the iterator // Determine mem size
accountList := make([]common.Hash, 0, len(accounts)) for _, data := range accounts {
for hash, data := range accounts {
accountList = append(accountList, hash)
dl.memory += uint64(len(data)) dl.memory += uint64(len(data))
} }
sort.Sort(hashes(accountList))
dl.accountList = accountList
dl.accountSorted = true
dl.memory += uint64(len(dl.accountList) * common.HashLength)
// Fill the storage hashes and sort them for the iterator // Fill the storage hashes and sort them for the iterator
dl.storageList = make(map[common.Hash][]common.Hash, len(storage)) dl.storageList = make(map[common.Hash][]common.Hash)
dl.storageSorted = make(map[common.Hash]bool, len(storage))
for accountHash, slots := range storage { for accountHash, slots := range storage {
// If the slots are nil, sanity check that it's a deleted account // If the slots are nil, sanity check that it's a deleted account
@ -93,19 +84,11 @@ func newDiffLayer(parent snapshot, number uint64, root common.Hash, accounts map
// account was just updated. // account was just updated.
if account, ok := accounts[accountHash]; account == nil || !ok { if account, ok := accounts[accountHash]; account == nil || !ok {
log.Error(fmt.Sprintf("storage in %#x exists, but account nil (exists: %v)", accountHash, ok)) log.Error(fmt.Sprintf("storage in %#x exists, but account nil (exists: %v)", accountHash, ok))
//panic(fmt.Sprintf("storage in %#x exists, but account nil (exists: %v)", accountHash, ok))
} }
// Fill the storage hashes for this account and sort them for the iterator // Determine mem size
storageList := make([]common.Hash, 0, len(slots)) for _, data := range slots {
for storageHash, data := range slots {
storageList = append(storageList, storageHash)
dl.memory += uint64(len(data)) dl.memory += uint64(len(data))
} }
sort.Sort(hashes(storageList))
dl.storageList[accountHash] = storageList
dl.storageSorted[accountHash] = true
dl.memory += uint64(len(storageList) * common.HashLength)
} }
dl.memory += uint64(len(dl.storageList) * common.HashLength) dl.memory += uint64(len(dl.storageList) * common.HashLength)
@ -119,28 +102,36 @@ func (dl *diffLayer) Info() (uint64, common.Hash) {
// Account directly retrieves the account associated with a particular hash in // Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format. // the snapshot slim data format.
func (dl *diffLayer) Account(hash common.Hash) *Account { func (dl *diffLayer) Account(hash common.Hash) (*Account, error) {
data := dl.AccountRLP(hash) data, err := dl.AccountRLP(hash)
if err != nil {
return nil, err
}
if len(data) == 0 { // can be both nil and []byte{} if len(data) == 0 { // can be both nil and []byte{}
return nil return nil, nil
} }
account := new(Account) account := new(Account)
if err := rlp.DecodeBytes(data, account); err != nil { if err := rlp.DecodeBytes(data, account); err != nil {
panic(err) panic(err)
} }
return account return account, nil
} }
// AccountRLP directly retrieves the account RLP associated with a particular // AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format. // hash in the snapshot slim data format.
func (dl *diffLayer) AccountRLP(hash common.Hash) []byte { func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) {
dl.lock.RLock() dl.lock.RLock()
defer dl.lock.RUnlock() defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.stale {
return nil, ErrSnapshotStale
}
// If the account is known locally, return it. Note, a nil account means it was // If the account is known locally, return it. Note, a nil account means it was
// deleted, and is a different notion than an unknown account! // deleted, and is a different notion than an unknown account!
if data, ok := dl.accountData[hash]; ok { if data, ok := dl.accountData[hash]; ok {
return data return data, nil
} }
// Account unknown to this diff, resolve from parent // Account unknown to this diff, resolve from parent
return dl.parent.AccountRLP(hash) return dl.parent.AccountRLP(hash)
@ -149,18 +140,23 @@ func (dl *diffLayer) AccountRLP(hash common.Hash) []byte {
// Storage directly retrieves the storage data associated with a particular hash, // Storage directly retrieves the storage data associated with a particular hash,
// within a particular account. If the slot is unknown to this diff, it's parent // within a particular account. If the slot is unknown to this diff, it's parent
// is consulted. // is consulted.
func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) []byte { func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
dl.lock.RLock() dl.lock.RLock()
defer dl.lock.RUnlock() defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.stale {
return nil, ErrSnapshotStale
}
// If the account is known locally, try to resolve the slot locally. Note, a nil // If the account is known locally, try to resolve the slot locally. Note, a nil
// account means it was deleted, and is a different notion than an unknown account! // account means it was deleted, and is a different notion than an unknown account!
if storage, ok := dl.storageData[accountHash]; ok { if storage, ok := dl.storageData[accountHash]; ok {
if storage == nil { if storage == nil {
return nil return nil, nil
} }
if data, ok := storage[storageHash]; ok { if data, ok := storage[storageHash]; ok {
return data return data, nil
} }
} }
// Account - or slot within - unknown to this diff, resolve from parent // Account - or slot within - unknown to this diff, resolve from parent
@ -193,13 +189,17 @@ func (dl *diffLayer) Cap(layers int, memory uint64) (uint64, uint64) {
case *diskLayer: case *diskLayer:
return parent.number, dl.number return parent.number, dl.number
case *diffLayer: case *diffLayer:
// Flatten the parent into the grandparent. The flattening internally obtains a
// write lock on grandparent.
flattened := parent.flatten().(*diffLayer)
dl.lock.Lock() dl.lock.Lock()
defer dl.lock.Unlock() defer dl.lock.Unlock()
dl.parent = parent.flatten() dl.parent = flattened
if dl.parent.(*diffLayer).memory < memory { if flattened.memory < memory {
diskNumber, _ := parent.parent.Info() diskNumber, _ := flattened.parent.Info()
return diskNumber, parent.number return diskNumber, flattened.number
} }
default: default:
panic(fmt.Sprintf("unknown data layer: %T", parent)) panic(fmt.Sprintf("unknown data layer: %T", parent))
@ -213,10 +213,18 @@ func (dl *diffLayer) Cap(layers int, memory uint64) (uint64, uint64) {
parent.lock.RLock() parent.lock.RLock()
defer parent.lock.RUnlock() defer parent.lock.RUnlock()
// Start by temporarilly deleting the current snapshot block marker. This // Start by temporarily deleting the current snapshot block marker. This
// ensures that in the case of a crash, the entire snapshot is invalidated. // ensures that in the case of a crash, the entire snapshot is invalidated.
rawdb.DeleteSnapshotBlock(batch) rawdb.DeleteSnapshotBlock(batch)
// Mark the original base as stale as we're going to create a new wrapper
base.lock.Lock()
if base.stale {
panic("parent disk layer is stale") // we've committed into the same base from two children, boo
}
base.stale = true
base.lock.Unlock()
// Push all the accounts into the database // Push all the accounts into the database
for hash, data := range parent.accountData { for hash, data := range parent.accountData {
if len(data) > 0 { if len(data) > 0 {
@ -264,15 +272,20 @@ func (dl *diffLayer) Cap(layers int, memory uint64) (uint64, uint64) {
} }
} }
// Update the snapshot block marker and write any remainder data // Update the snapshot block marker and write any remainder data
base.number, base.root = parent.number, parent.root newBase := &diskLayer{
root: parent.root,
rawdb.WriteSnapshotBlock(batch, base.number, base.root) number: parent.number,
cache: base.cache,
db: base.db,
journal: base.journal,
}
rawdb.WriteSnapshotBlock(batch, newBase.number, newBase.root)
if err := batch.Write(); err != nil { if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err) log.Crit("Failed to write leftover snapshot", "err", err)
} }
dl.parent = base dl.parent = newBase
return base.number, dl.number return newBase.number, dl.number
} }
// flatten pushes all data from this point downwards, flattening everything into // flatten pushes all data from this point downwards, flattening everything into
@ -289,19 +302,25 @@ func (dl *diffLayer) flatten() snapshot {
// be smarter about grouping flattens together). // be smarter about grouping flattens together).
parent = parent.flatten().(*diffLayer) parent = parent.flatten().(*diffLayer)
parent.lock.Lock()
defer parent.lock.Unlock()
// Before actually writing all our data to the parent, first ensure that the
// parent hasn't been 'corrupted' by someone else already flattening into it
if parent.stale {
panic("parent diff layer is stale") // we've flattened into the same parent from two children, boo
}
parent.stale = true
// Overwrite all the updated accounts blindly, merge the sorted list // Overwrite all the updated accounts blindly, merge the sorted list
for hash, data := range dl.accountData { for hash, data := range dl.accountData {
parent.accountData[hash] = data parent.accountData[hash] = data
} }
parent.accountList = append(parent.accountList, dl.accountList...) // TODO(karalabe): dedup!!
parent.accountSorted = false
// Overwrite all the updates storage slots (individually) // Overwrite all the updates storage slots (individually)
for accountHash, storage := range dl.storageData { for accountHash, storage := range dl.storageData {
// If storage didn't exist (or was deleted) in the parent; or if the storage // If storage didn't exist (or was deleted) in the parent; or if the storage
// was freshly deleted in the child, overwrite blindly // was freshly deleted in the child, overwrite blindly
if parent.storageData[accountHash] == nil || storage == nil { if parent.storageData[accountHash] == nil || storage == nil {
parent.storageList[accountHash] = dl.storageList[accountHash]
parent.storageData[accountHash] = storage parent.storageData[accountHash] = storage
continue continue
} }
@ -311,14 +330,18 @@ func (dl *diffLayer) flatten() snapshot {
comboData[storageHash] = data comboData[storageHash] = data
} }
parent.storageData[accountHash] = comboData parent.storageData[accountHash] = comboData
parent.storageList[accountHash] = append(parent.storageList[accountHash], dl.storageList[accountHash]...) // TODO(karalabe): dedup!!
parent.storageSorted[accountHash] = false
} }
// Return the combo parent // Return the combo parent
parent.number = dl.number return &diffLayer{
parent.root = dl.root parent: parent.parent,
parent.memory += dl.memory number: dl.number,
return parent root: dl.root,
storageList: parent.storageList,
storageData: parent.storageData,
accountList: parent.accountList,
accountData: parent.accountData,
memory: parent.memory + dl.memory,
}
} }
// Journal commits an entire diff hierarchy to disk into a single journal file. // Journal commits an entire diff hierarchy to disk into a single journal file.
@ -335,3 +358,45 @@ func (dl *diffLayer) Journal() error {
writer.Close() writer.Close()
return nil return nil
} }
// AccountList returns a sorted list of all accounts in this difflayer.
func (dl *diffLayer) AccountList() []common.Hash {
dl.lock.Lock()
defer dl.lock.Unlock()
if dl.accountList != nil {
return dl.accountList
}
accountList := make([]common.Hash, len(dl.accountData))
i := 0
for k, _ := range dl.accountData {
accountList[i] = k
i++
// This would be a pretty good opportunity to also
// calculate the size, if we want to
}
sort.Sort(hashes(accountList))
dl.accountList = accountList
return dl.accountList
}
// StorageList returns a sorted list of all storage slot hashes
// in this difflayer for the given account.
func (dl *diffLayer) StorageList(accountHash common.Hash) []common.Hash {
dl.lock.Lock()
defer dl.lock.Unlock()
if dl.storageList[accountHash] != nil {
return dl.storageList[accountHash]
}
accountStorageMap := dl.storageData[accountHash]
accountStorageList := make([]common.Hash, len(accountStorageMap))
i := 0
for k, _ := range accountStorageMap {
accountStorageList[i] = k
i++
// This would be a pretty good opportunity to also
// calculate the size, if we want to
}
sort.Sort(hashes(accountStorageList))
dl.storageList[accountHash] = accountStorageList
return accountStorageList
}

@ -0,0 +1,448 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"fmt"
"math/big"
"math/rand"
"testing"
"time"
"github.com/allegro/bigcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/rlp"
)
func randomAccount() []byte {
root := randomHash()
a := Account{
Balance: big.NewInt(rand.Int63()),
Nonce: rand.Uint64(),
Root: root[:],
CodeHash: emptyCode[:],
}
data, _ := rlp.EncodeToBytes(a)
return data
}
// TestMergeBasics tests some simple merges
func TestMergeBasics(t *testing.T) {
var (
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(20) < 10 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer{}, 1, common.Hash{}, accounts, storage)
child := newDiffLayer(parent, 1, common.Hash{}, accounts, storage)
child = newDiffLayer(child, 1, common.Hash{}, accounts, storage)
child = newDiffLayer(child, 1, common.Hash{}, accounts, storage)
child = newDiffLayer(child, 1, common.Hash{}, accounts, storage)
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check account lists
// Should be zero/nil first
if got, exp := len(merged.accountList), 0; got != exp {
t.Errorf("accountList wrong, got %v exp %v", got, exp)
}
// Then set when we call AccountList
if got, exp := len(merged.AccountList()), len(accounts); got != exp {
t.Errorf("AccountList() wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.accountList), len(accounts); got != exp {
t.Errorf("accountList [2] wrong, got %v exp %v", got, exp)
}
}
{ // Check storage lists
i := 0
for aHash, sMap := range storage {
if got, exp := len(merged.storageList), i; got != exp {
t.Errorf("[1] storageList wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.StorageList(aHash)), len(sMap); got != exp {
t.Errorf("[2] StorageList() wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.storageList[aHash]), len(sMap); got != exp {
t.Errorf("storageList wrong, got %v exp %v", got, exp)
}
i++
}
}
}
// TestMergeDelete tests some deletion
func TestMergeDelete(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
h1 := common.HexToHash("0x01")
h2 := common.HexToHash("0x02")
flip := func() map[common.Hash][]byte {
accs := make(map[common.Hash][]byte)
accs[h1] = randomAccount()
accs[h2] = nil
return accs
}
flop := func() map[common.Hash][]byte {
accs := make(map[common.Hash][]byte)
accs[h1] = nil
accs[h2] = randomAccount()
return accs
}
// Add some flip-flopping layers on top
parent := newDiffLayer(emptyLayer{}, 1, common.Hash{}, flip(), storage)
child := parent.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
if data, _ := child.Account(h1); data == nil {
t.Errorf("last diff layer: expected %x to be non-nil", h1)
}
if data, _ := child.Account(h2); data != nil {
t.Errorf("last diff layer: expected %x to be nil", h2)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
// check number
if got, exp := merged.number, child.number; got != exp {
t.Errorf("merged layer: wrong number - exp %d got %d", exp, got)
}
if data, _ := merged.Account(h1); data == nil {
t.Errorf("merged layer: expected %x to be non-nil", h1)
}
if data, _ := merged.Account(h2); data != nil {
t.Errorf("merged layer: expected %x to be nil", h2)
}
// If we add more granular metering of memory, we can enable this again,
// but it's not implemented for now
//if got, exp := merged.memory, child.memory; got != exp {
// t.Errorf("mem wrong, got %d, exp %d", got, exp)
//}
}
// This tests that if we create a new account, and set a slot, and then merge
// it, the lists will be correct.
func TestInsertAndMerge(t *testing.T) {
// Fill up a parent
var (
acc = common.HexToHash("0x01")
slot = common.HexToHash("0x02")
parent *diffLayer
child *diffLayer
)
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
parent = newDiffLayer(emptyLayer{}, 1, common.Hash{}, accounts, storage)
}
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
accounts[acc] = randomAccount()
accstorage := make(map[common.Hash][]byte)
storage[acc] = accstorage
storage[acc][slot] = []byte{0x01}
child = newDiffLayer(parent, 2, common.Hash{}, accounts, storage)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check that slot value is present
got, _ := merged.Storage(acc, slot)
if exp := []byte{0x01}; bytes.Compare(got, exp) != 0 {
t.Errorf("merged slot value wrong, got %x, exp %x", got, exp)
}
}
}
// TestCapTree tests some functionality regarding capping/flattening
func TestCapTree(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
// the bottom-most layer, aside from the 'disk layer'
cache, _ := bigcache.NewBigCache(bigcache.Config{ // TODO(karalabe): dedup
Shards: 1,
LifeWindow: time.Hour,
MaxEntriesInWindow: 1 * 1024,
MaxEntrySize: 1,
HardMaxCacheSize: 1,
})
base := &diskLayer{
journal: "",
db: rawdb.NewMemoryDatabase(),
cache: cache,
number: 0,
root: common.HexToHash("0x01"),
}
// The lowest difflayer
a1 := base.Update(common.HexToHash("0xa1"), setAccount("0xa1"), storage)
a2 := a1.Update(common.HexToHash("0xa2"), setAccount("0xa2"), storage)
b2 := a1.Update(common.HexToHash("0xb2"), setAccount("0xb2"), storage)
a3 := a2.Update(common.HexToHash("0xa3"), setAccount("0xa3"), storage)
b3 := b2.Update(common.HexToHash("0xb3"), setAccount("0xb3"), storage)
checkExist := func(layer *diffLayer, key string) error {
accountKey := common.HexToHash(key)
data, _ := layer.Account(accountKey)
if data == nil {
return fmt.Errorf("expected %x to exist, got nil", accountKey)
}
return nil
}
shouldErr := func(layer *diffLayer, key string) error {
accountKey := common.HexToHash(key)
data, err := layer.Account(accountKey)
if err == nil {
return fmt.Errorf("expected error, got data %x", data)
}
return nil
}
// check basics
if err := checkExist(b3, "0xa1"); err != nil {
t.Error(err)
}
if err := checkExist(b3, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(b3, "0xb3"); err != nil {
t.Error(err)
}
// Now, merge the a-chain
diskNum, diffNum := a3.Cap(0, 1024)
if diskNum != 0 {
t.Errorf("disk layer err, got %d exp %d", diskNum, 0)
}
if diffNum != 2 {
t.Errorf("diff layer err, got %d exp %d", diffNum, 2)
}
// At this point, a2 got merged into a1. Thus, a1 is now modified,
// and as a1 is the parent of b2, b2 should no longer be able to iterate into parent
// These should still be accessible
if err := checkExist(b3, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(b3, "0xb3"); err != nil {
t.Error(err)
}
//b2ParentNum, _ := b2.parent.Info()
//if b2.parent.invalid == false
// t.Errorf("err, exp parent to be invalid, got %v", b2.parent, b2ParentNum)
//}
// But these would need iteration into the modified parent:
if err := shouldErr(b3, "0xa1"); err != nil {
t.Error(err)
}
if err := shouldErr(b3, "0xa2"); err != nil {
t.Error(err)
}
if err := shouldErr(b3, "0xa3"); err != nil {
t.Error(err)
}
}
type emptyLayer struct{}
func (emptyLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
panic("implement me")
}
func (emptyLayer) Cap(layers int, memory uint64) (uint64, uint64) {
panic("implement me")
}
func (emptyLayer) Journal() error {
panic("implement me")
}
func (emptyLayer) Info() (uint64, common.Hash) {
return 0, common.Hash{}
}
func (emptyLayer) Number() uint64 {
return 0
}
func (emptyLayer) Account(hash common.Hash) (*Account, error) {
return nil, nil
}
func (emptyLayer) AccountRLP(hash common.Hash) ([]byte, error) {
return nil, nil
}
func (emptyLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
return nil, nil
}
// BenchmarkSearch checks how long it takes to find a non-existing key
// BenchmarkSearch-6 200000 10481 ns/op (1K per layer)
// BenchmarkSearch-6 200000 10760 ns/op (10K per layer)
// BenchmarkSearch-6 100000 17866 ns/op
//
// BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock()
func BenchmarkSearch(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
blocknum := uint64(0)
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 10000; i++ {
accounts[randomHash()] = randomAccount()
}
blocknum++
return newDiffLayer(parent, blocknum, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer{}
for i := 0; i < 128; i++ {
layer = fill(layer)
}
key := common.Hash{}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.AccountRLP(key)
}
}
// BenchmarkSearchSlot checks how long it takes to find a non-existing key
// - Number of layers: 128
// - Each layers contains the account, with a couple of storage slots
// BenchmarkSearchSlot-6 100000 14554 ns/op
// BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex)
// BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic)
func BenchmarkSearchSlot(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
blocknum := uint64(0)
accountKey := common.Hash{}
storageKey := common.HexToHash("0x1337")
accountRLP := randomAccount()
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
accounts[accountKey] = accountRLP
storage := make(map[common.Hash]map[common.Hash][]byte)
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 5; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[accountKey] = accStorage
}
blocknum++
return newDiffLayer(parent, blocknum, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer{}
for i := 0; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Storage(accountKey, storageKey)
}
}
// With accountList and sorting
//BenchmarkFlatten-6 50 29890856 ns/op
//
// Without sorting and tracking accountlist
// BenchmarkFlatten-6 300 5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
fill := func(parent snapshot, blocknum int) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 100; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 20; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, uint64(blocknum), common.Hash{}, accounts, storage)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer snapshot
layer = emptyLayer{}
for i := 1; i < 128; i++ {
layer = fill(layer, i)
}
b.StartTimer()
for i := 1; i < 128; i++ {
dl, ok := layer.(*diffLayer)
if !ok {
break
}
layer = dl.flatten()
}
b.StopTimer()
}
}

@ -17,6 +17,8 @@
package snapshot package snapshot
import ( import (
"sync"
"github.com/allegro/bigcache" "github.com/allegro/bigcache"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/rawdb"
@ -32,6 +34,9 @@ type diskLayer struct {
number uint64 // Block number of the base snapshot number uint64 // Block number of the base snapshot
root common.Hash // Root hash of the base snapshot root common.Hash // Root hash of the base snapshot
stale bool // Signals that the layer became stale (state progressed)
lock sync.RWMutex
} }
// Info returns the block number and root hash for which this snapshot was made. // Info returns the block number and root hash for which this snapshot was made.
@ -41,28 +46,39 @@ func (dl *diskLayer) Info() (uint64, common.Hash) {
// Account directly retrieves the account associated with a particular hash in // Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format. // the snapshot slim data format.
func (dl *diskLayer) Account(hash common.Hash) *Account { func (dl *diskLayer) Account(hash common.Hash) (*Account, error) {
data := dl.AccountRLP(hash) data, err := dl.AccountRLP(hash)
if err != nil {
return nil, err
}
if len(data) == 0 { // can be both nil and []byte{} if len(data) == 0 { // can be both nil and []byte{}
return nil return nil, nil
} }
account := new(Account) account := new(Account)
if err := rlp.DecodeBytes(data, account); err != nil { if err := rlp.DecodeBytes(data, account); err != nil {
panic(err) panic(err)
} }
return account return account, nil
} }
// AccountRLP directly retrieves the account RLP associated with a particular // AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format. // hash in the snapshot slim data format.
func (dl *diskLayer) AccountRLP(hash common.Hash) []byte { func (dl *diskLayer) AccountRLP(hash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.stale {
return nil, ErrSnapshotStale
}
key := string(hash[:]) key := string(hash[:])
// Try to retrieve the account from the memory cache // Try to retrieve the account from the memory cache
if blob, err := dl.cache.Get(key); err == nil { if blob, err := dl.cache.Get(key); err == nil {
snapshotCleanHitMeter.Mark(1) snapshotCleanHitMeter.Mark(1)
snapshotCleanReadMeter.Mark(int64(len(blob))) snapshotCleanReadMeter.Mark(int64(len(blob)))
return blob return blob, nil
} }
// Cache doesn't contain account, pull from disk and cache for later // Cache doesn't contain account, pull from disk and cache for later
blob := rawdb.ReadAccountSnapshot(dl.db, hash) blob := rawdb.ReadAccountSnapshot(dl.db, hash)
@ -71,19 +87,27 @@ func (dl *diskLayer) AccountRLP(hash common.Hash) []byte {
snapshotCleanMissMeter.Mark(1) snapshotCleanMissMeter.Mark(1)
snapshotCleanWriteMeter.Mark(int64(len(blob))) snapshotCleanWriteMeter.Mark(int64(len(blob)))
return blob return blob, nil
} }
// Storage directly retrieves the storage data associated with a particular hash, // Storage directly retrieves the storage data associated with a particular hash,
// within a particular account. // within a particular account.
func (dl *diskLayer) Storage(accountHash, storageHash common.Hash) []byte { func (dl *diskLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the layer was flattened into, consider it invalid (any live reference to
// the original should be marked as unusable).
if dl.stale {
return nil, ErrSnapshotStale
}
key := string(append(accountHash[:], storageHash[:]...)) key := string(append(accountHash[:], storageHash[:]...))
// Try to retrieve the storage slot from the memory cache // Try to retrieve the storage slot from the memory cache
if blob, err := dl.cache.Get(key); err == nil { if blob, err := dl.cache.Get(key); err == nil {
snapshotCleanHitMeter.Mark(1) snapshotCleanHitMeter.Mark(1)
snapshotCleanReadMeter.Mark(int64(len(blob))) snapshotCleanReadMeter.Mark(int64(len(blob)))
return blob return blob, nil
} }
// Cache doesn't contain storage slot, pull from disk and cache for later // Cache doesn't contain storage slot, pull from disk and cache for later
blob := rawdb.ReadStorageSnapshot(dl.db, accountHash, storageHash) blob := rawdb.ReadStorageSnapshot(dl.db, accountHash, storageHash)
@ -92,7 +116,7 @@ func (dl *diskLayer) Storage(accountHash, storageHash common.Hash) []byte {
snapshotCleanMissMeter.Mark(1) snapshotCleanMissMeter.Mark(1)
snapshotCleanWriteMeter.Mark(int64(len(blob))) snapshotCleanWriteMeter.Mark(int64(len(blob)))
return blob return blob, nil
} }
// Update creates a new layer on top of the existing snapshot diff tree with // Update creates a new layer on top of the existing snapshot diff tree with

@ -135,6 +135,7 @@ func generateSnapshot(db ethdb.KeyValueStore, journal string, headNumber uint64,
curStorageNodes int curStorageNodes int
curAccountSize common.StorageSize curAccountSize common.StorageSize
curStorageSize common.StorageSize curStorageSize common.StorageSize
accountHash = common.BytesToHash(accIt.Key)
) )
var acc struct { var acc struct {
Nonce uint64 Nonce uint64
@ -148,7 +149,7 @@ func generateSnapshot(db ethdb.KeyValueStore, journal string, headNumber uint64,
data := AccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash) data := AccountRLP(acc.Nonce, acc.Balance, acc.Root, acc.CodeHash)
curAccountSize += common.StorageSize(1 + common.HashLength + len(data)) curAccountSize += common.StorageSize(1 + common.HashLength + len(data))
rawdb.WriteAccountSnapshot(batch, common.BytesToHash(accIt.Key), data) rawdb.WriteAccountSnapshot(batch, accountHash, data)
if batch.ValueSize() > ethdb.IdealBatchSize { if batch.ValueSize() > ethdb.IdealBatchSize {
batch.Write() batch.Write()
batch.Reset() batch.Reset()
@ -163,7 +164,7 @@ func generateSnapshot(db ethdb.KeyValueStore, journal string, headNumber uint64,
curStorageSize += common.StorageSize(1 + 2*common.HashLength + len(storeIt.Value)) curStorageSize += common.StorageSize(1 + 2*common.HashLength + len(storeIt.Value))
curStorageCount++ curStorageCount++
rawdb.WriteStorageSnapshot(batch, common.BytesToHash(accIt.Key), common.BytesToHash(storeIt.Key), storeIt.Value) rawdb.WriteStorageSnapshot(batch, accountHash, common.BytesToHash(storeIt.Key), storeIt.Value)
if batch.ValueSize() > ethdb.IdealBatchSize { if batch.ValueSize() > ethdb.IdealBatchSize {
batch.Write() batch.Write()
batch.Reset() batch.Reset()

@ -38,6 +38,11 @@ var (
snapshotCleanMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/miss", nil) snapshotCleanMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/miss", nil)
snapshotCleanReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/read", nil) snapshotCleanReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/read", nil)
snapshotCleanWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/write", nil) snapshotCleanWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/write", nil)
// ErrSnapshotStale is returned from data accessors if the underlying snapshot
// layer had been invalidated due to the chain progressing forward far enough
// to not maintain the layer's original state.
ErrSnapshotStale = errors.New("snapshot stale")
) )
// Snapshot represents the functionality supported by a snapshot storage layer. // Snapshot represents the functionality supported by a snapshot storage layer.
@ -47,15 +52,15 @@ type Snapshot interface {
// Account directly retrieves the account associated with a particular hash in // Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format. // the snapshot slim data format.
Account(hash common.Hash) *Account Account(hash common.Hash) (*Account, error)
// AccountRLP directly retrieves the account RLP associated with a particular // AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format. // hash in the snapshot slim data format.
AccountRLP(hash common.Hash) []byte AccountRLP(hash common.Hash) ([]byte, error)
// Storage directly retrieves the storage data associated with a particular hash, // Storage directly retrieves the storage data associated with a particular hash,
// within a particular account. // within a particular account.
Storage(accountHash, storageHash common.Hash) []byte Storage(accountHash, storageHash common.Hash) ([]byte, error)
} }
// snapshot is the internal version of the snapshot data layer that supports some // snapshot is the internal version of the snapshot data layer that supports some
@ -80,7 +85,7 @@ type snapshot interface {
} }
// SnapshotTree is an Ethereum state snapshot tree. It consists of one persistent // SnapshotTree is an Ethereum state snapshot tree. It consists of one persistent
// base layer backed by a key-value store, on top of which arbitrarilly many in- // base layer backed by a key-value store, on top of which arbitrarily many in-
// memory diff layers are topped. The memory diffs can form a tree with branching, // memory diff layers are topped. The memory diffs can form a tree with branching,
// but the disk layer is singleton and common to all. If a reorg goes deeper than // but the disk layer is singleton and common to all. If a reorg goes deeper than
// the disk layer, everything needs to be deleted. // the disk layer, everything needs to be deleted.
@ -220,7 +225,7 @@ func loadSnapshot(db ethdb.KeyValueStore, journal string, headNumber uint64, hea
if _, err := os.Stat(journal); os.IsNotExist(err) { if _, err := os.Stat(journal); os.IsNotExist(err) {
// Journal doesn't exist, don't worry if it's not supposed to // Journal doesn't exist, don't worry if it's not supposed to
if number != headNumber || root != headRoot { if number != headNumber || root != headRoot {
return nil, fmt.Errorf("snapshot journal missing, head does't match snapshot: #%d [%#x] vs. #%d [%#x]", return nil, fmt.Errorf("snapshot journal missing, head doesn't match snapshot: #%d [%#x] vs. #%d [%#x]",
headNumber, headRoot, number, root) headNumber, headRoot, number, root)
} }
return base, nil return base, nil
@ -237,7 +242,7 @@ func loadSnapshot(db ethdb.KeyValueStore, journal string, headNumber uint64, hea
// Journal doesn't exist, don't worry if it's not supposed to // Journal doesn't exist, don't worry if it's not supposed to
number, root = snapshot.Info() number, root = snapshot.Info()
if number != headNumber || root != headRoot { if number != headNumber || root != headRoot {
return nil, fmt.Errorf("head does't match snapshot: #%d [%#x] vs. #%d [%#x]", return nil, fmt.Errorf("head doesn't match snapshot: #%d [%#x] vs. #%d [%#x]",
headNumber, headRoot, number, root) headNumber, headRoot, number, root)
} }
return snapshot, nil return snapshot, nil

@ -60,3 +60,33 @@ func merge(a, b []common.Hash) []common.Hash {
} }
return result return result
} }
// dedupMerge combines two sorted lists of hashes into a combo sorted one,
// and removes duplicates in the process
func dedupMerge(a, b []common.Hash) []common.Hash {
result := make([]common.Hash, len(a)+len(b))
i := 0
for len(a) > 0 && len(b) > 0 {
if diff := bytes.Compare(a[0][:], b[0][:]); diff < 0 {
result[i] = a[0]
a = a[1:]
} else {
result[i] = b[0]
b = b[1:]
// If they were equal, progress a too
if diff == 0 {
a = a[1:]
}
}
i++
}
for j := 0; j < len(a); j++ {
result[i] = a[j]
i++
}
for j := 0; j < len(b); j++ {
result[i] = b[j]
i++
}
return result[:i]
}

@ -204,13 +204,13 @@ func (s *stateObject) GetCommittedState(db Database, key common.Hash) common.Has
if metrics.EnabledExpensive { if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.SnapshotStorageReads += time.Since(start) }(time.Now()) defer func(start time.Time) { s.db.SnapshotStorageReads += time.Since(start) }(time.Now())
} }
enc = s.db.snap.Storage(s.addrHash, crypto.Keccak256Hash(key[:])) enc, err = s.db.snap.Storage(s.addrHash, crypto.Keccak256Hash(key[:]))
} else { }
// Track the amount of time wasted on reading the storage trie // If snapshot unavailable or reading from it failed, load from the database
if s.db.snap == nil || err != nil {
if metrics.EnabledExpensive { if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.StorageReads += time.Since(start) }(time.Now()) defer func(start time.Time) { s.db.StorageReads += time.Since(start) }(time.Now())
} }
// Otherwise load the value from the database
if enc, err = s.getTrie(db).TryGet(key[:]); err != nil { if enc, err = s.getTrie(db).TryGet(key[:]); err != nil {
s.setError(err) s.setError(err)
return common.Hash{} return common.Hash{}

@ -511,25 +511,31 @@ func (s *StateDB) getDeletedStateObject(addr common.Address) *stateObject {
return obj return obj
} }
// If no live objects are available, attempt to use snapshots // If no live objects are available, attempt to use snapshots
var data Account var (
data Account
err error
)
if s.snap != nil { if s.snap != nil {
if metrics.EnabledExpensive { if metrics.EnabledExpensive {
defer func(start time.Time) { s.SnapshotAccountReads += time.Since(start) }(time.Now()) defer func(start time.Time) { s.SnapshotAccountReads += time.Since(start) }(time.Now())
} }
acc := s.snap.Account(crypto.Keccak256Hash(addr[:])) var acc *snapshot.Account
if acc == nil { if acc, err = s.snap.Account(crypto.Keccak256Hash(addr[:])); err == nil {
return nil if acc == nil {
} return nil
data.Nonce, data.Balance, data.CodeHash = acc.Nonce, acc.Balance, acc.CodeHash }
if len(data.CodeHash) == 0 { data.Nonce, data.Balance, data.CodeHash = acc.Nonce, acc.Balance, acc.CodeHash
data.CodeHash = emptyCodeHash if len(data.CodeHash) == 0 {
} data.CodeHash = emptyCodeHash
data.Root = common.BytesToHash(acc.Root) }
if data.Root == (common.Hash{}) { data.Root = common.BytesToHash(acc.Root)
data.Root = emptyRoot if data.Root == (common.Hash{}) {
data.Root = emptyRoot
}
} }
} else { }
// Snapshot unavailable, fall back to the trie // If snapshot unavailable or reading from it failed, load from the database
if s.snap == nil || err != nil {
if metrics.EnabledExpensive { if metrics.EnabledExpensive {
defer func(start time.Time) { s.AccountReads += time.Since(start) }(time.Now()) defer func(start time.Time) { s.AccountReads += time.Since(start) }(time.Now())
} }

Loading…
Cancel
Save