enode.Node was recently changed to store a cache of endpoint information. The IP address in the cache is a netip.Addr. I chose that type over net.IP because it is just better. netip.Addr is meant to be used as a value type. Copying it does not allocate, it can be compared with ==, and can be used as a map key.
This PR changes most uses of Node.IP() into Node.IPAddr(), which returns the cached value directly without allocating.
While there are still some public APIs left where net.IP is used, I have converted all code used internally by p2p/discover to the new types. So this does change some public Go API, but hopefully not APIs any external code actually uses.
There weren't supposed to be any semantic differences resulting from this refactoring, however it does introduce one: In package p2p/netutil we treated the 0.0.0.0/8 network (addresses 0.x.y.z) as LAN, but netip.Addr.IsPrivate() doesn't. The treatment of this particular IP address range is controversial, with some software supporting it and others not. IANA lists it as special-purpose and invalid as a destination for a long time, so I don't know why I put it into the LAN list. It has now been marked as special in p2p/netutil as well.
This pull request fixes the pre-order trie traversal by defining
a more accurate iterator order and path comparison rule.
Co-authored-by: Gary Rong <garyrong0905@gmail.com>
Always prefetch the account trie while starting the prefetcher.
Co-authored-by: steven <steven@stevendeMacBook-Pro.local>
Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
Introduces the first built-in live tracer. The supply tracer tracks ETH supply changes across blocks
and writes the output to disk. This will need to be enabled through CLI using the `--vmtrace supply` flag.
Co-authored-by: Sina Mahmoodi <itz.s1na@gmail.com>
This should fix an occasional test failure in ethclient/simulated.TestForkResendTx.
Inspection of logs revealed the cause of the failure to be that the txpool was not done
reorganizing by the time Fork is called.
Here we clean up internal uses of type discover.node, converting most code to use
enode.Node instead. The discover.node type used to be the canonical representation of
network hosts before ENR was introduced. Most code worked with *node to avoid conversions
when interacting with Table methods. Since *node also contains internal state of Table and
is a mutable type, using *node outside of Table code is prone to data races. It's also
cleaner not having to wrap/unwrap *enode.Node all the time.
discover.node has been renamed to tableNode to clarify its purpose.
While here, we also change most uses of net.UDPAddr into netip.AddrPort. While this is
technically a separate refactoring from the *node -> *enode.Node change, it is more
convenient because *enode.Node handles IP addresses as netip.Addr. The switch to package
netip in discovery would've happened very soon anyway.
The change to netip.AddrPort stops at certain interface points. For example, since package
p2p/netutil has not been converted to use netip.Addr yet, we still have to convert to
net.IP/net.UDPAddr in a few places.
Create the directory before NewKeyStore. This ensures the watcher successfully starts on
the first attempt, and waitWatcherStart functions as intended.
It seems the semantic differences between addFoundNode and addInboundNode were lost in
#29572. My understanding is addFoundNode is for a node you have not contacted directly
(and are unsure if is available) whereas addInboundNode is for adding nodes that have
contacted the local node and we can verify they are active.
handleAddNode seems to be the consolidation of those two methods, yet it bumps the node in
the bucket (updating it's IP addr) even if the node was not an inbound. This PR fixes
this. It wasn't originally caught in tests like TestTable_addSeenNode because the
manipulation of the node object actually modified the node value used by the test.
New logic is added to reject non-inbound updates unless the sequence number of the
(signed) ENR increases. Inbound updates, which are published by the updated node itself,
are always accepted. If an inbound update changes the endpoint, the node will be
revalidated on an expedited schedule.
Co-authored-by: Felix Lange <fjl@twurst.com>