|
|
|
@ -124,11 +124,10 @@ library Math { |
|
|
|
|
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use |
|
|
|
|
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 |
|
|
|
|
// variables such that product = prod1 * 2^256 + prod0. |
|
|
|
|
uint256 prod0; // Least significant 256 bits of the product |
|
|
|
|
uint256 prod0 = x * y; // Least significant 256 bits of the product |
|
|
|
|
uint256 prod1; // Most significant 256 bits of the product |
|
|
|
|
assembly { |
|
|
|
|
let mm := mulmod(x, y, not(0)) |
|
|
|
|
prod0 := mul(x, y) |
|
|
|
|
prod1 := sub(sub(mm, prod0), lt(mm, prod0)) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -163,8 +162,7 @@ library Math { |
|
|
|
|
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. |
|
|
|
|
// See https://cs.stackexchange.com/q/138556/92363. |
|
|
|
|
|
|
|
|
|
// Does not overflow because the denominator cannot be zero at this stage in the function. |
|
|
|
|
uint256 twos = denominator & (~denominator + 1); |
|
|
|
|
uint256 twos = denominator & (0 - denominator); |
|
|
|
|
assembly { |
|
|
|
|
// Divide denominator by twos. |
|
|
|
|
denominator := div(denominator, twos) |
|
|
|
|